refs / refs-internal.hon commit Sync with 2.12.5 (1df0306)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return true iff refname is minimally safe. "Safe" here means that
  66 * deleting a loose reference by this name will not do any damage, for
  67 * example by causing a file that is not a reference to be deleted.
  68 * This function does not check that the reference name is legal; for
  69 * that, use check_refname_format().
  70 *
  71 * A refname that starts with "refs/" is considered safe iff it
  72 * doesn't contain any "." or ".." components or consecutive '/'
  73 * characters, end with '/', or (on Windows) contain any '\'
  74 * characters. Names that do not start with "refs/" are considered
  75 * safe iff they consist entirely of upper case characters and '_'
  76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  77 */
  78int refname_is_safe(const char *refname);
  79
  80enum peel_status {
  81        /* object was peeled successfully: */
  82        PEEL_PEELED = 0,
  83
  84        /*
  85         * object cannot be peeled because the named object (or an
  86         * object referred to by a tag in the peel chain), does not
  87         * exist.
  88         */
  89        PEEL_INVALID = -1,
  90
  91        /* object cannot be peeled because it is not a tag: */
  92        PEEL_NON_TAG = -2,
  93
  94        /* ref_entry contains no peeled value because it is a symref: */
  95        PEEL_IS_SYMREF = -3,
  96
  97        /*
  98         * ref_entry cannot be peeled because it is broken (i.e., the
  99         * symbolic reference cannot even be resolved to an object
 100         * name):
 101         */
 102        PEEL_BROKEN = -4
 103};
 104
 105/*
 106 * Peel the named object; i.e., if the object is a tag, resolve the
 107 * tag recursively until a non-tag is found.  If successful, store the
 108 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 110 * and leave sha1 unchanged.
 111 */
 112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 113
 114/*
 115 * Copy the reflog message msg to buf, which has been allocated sufficiently
 116 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 117 * because reflog file is one line per entry.
 118 */
 119int copy_reflog_msg(char *buf, const char *msg);
 120
 121/**
 122 * Information needed for a single ref update. Set new_sha1 to the new
 123 * value or to null_sha1 to delete the ref. To check the old value
 124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 126 * not exist before update.
 127 */
 128struct ref_update {
 129
 130        /*
 131         * If (flags & REF_HAVE_NEW), set the reference to this value:
 132         */
 133        unsigned char new_sha1[20];
 134
 135        /*
 136         * If (flags & REF_HAVE_OLD), check that the reference
 137         * previously had this value:
 138         */
 139        unsigned char old_sha1[20];
 140
 141        /*
 142         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 143         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 144         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 145         * REF_DELETED_LOOSE:
 146         */
 147        unsigned int flags;
 148
 149        void *backend_data;
 150        unsigned int type;
 151        char *msg;
 152
 153        /*
 154         * If this ref_update was split off of a symref update via
 155         * split_symref_update(), then this member points at that
 156         * update. This is used for two purposes:
 157         * 1. When reporting errors, we report the refname under which
 158         *    the update was originally requested.
 159         * 2. When we read the old value of this reference, we
 160         *    propagate it back to its parent update for recording in
 161         *    the latter's reflog.
 162         */
 163        struct ref_update *parent_update;
 164
 165        const char refname[FLEX_ARRAY];
 166};
 167
 168int refs_read_raw_ref(struct ref_store *ref_store,
 169                      const char *refname, unsigned char *sha1,
 170                      struct strbuf *referent, unsigned int *type);
 171
 172/*
 173 * Add a ref_update with the specified properties to transaction, and
 174 * return a pointer to the new object. This function does not verify
 175 * that refname is well-formed. new_sha1 and old_sha1 are only
 176 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 177 * respectively, are set in flags.
 178 */
 179struct ref_update *ref_transaction_add_update(
 180                struct ref_transaction *transaction,
 181                const char *refname, unsigned int flags,
 182                const unsigned char *new_sha1,
 183                const unsigned char *old_sha1,
 184                const char *msg);
 185
 186/*
 187 * Transaction states.
 188 * OPEN:   The transaction is in a valid state and can accept new updates.
 189 *         An OPEN transaction can be committed.
 190 * CLOSED: A closed transaction is no longer active and no other operations
 191 *         than free can be used on it in this state.
 192 *         A transaction can either become closed by successfully committing
 193 *         an active transaction or if there is a failure while building
 194 *         the transaction thus rendering it failed/inactive.
 195 */
 196enum ref_transaction_state {
 197        REF_TRANSACTION_OPEN   = 0,
 198        REF_TRANSACTION_CLOSED = 1
 199};
 200
 201/*
 202 * Data structure for holding a reference transaction, which can
 203 * consist of checks and updates to multiple references, carried out
 204 * as atomically as possible.  This structure is opaque to callers.
 205 */
 206struct ref_transaction {
 207        struct ref_store *ref_store;
 208        struct ref_update **updates;
 209        size_t alloc;
 210        size_t nr;
 211        enum ref_transaction_state state;
 212};
 213
 214/*
 215 * Check for entries in extras that are within the specified
 216 * directory, where dirname is a reference directory name including
 217 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 218 * conflicting references that are found in skip. If there is a
 219 * conflicting reference, return its name.
 220 *
 221 * extras and skip must be sorted lists of reference names. Either one
 222 * can be NULL, signifying the empty list.
 223 */
 224const char *find_descendant_ref(const char *dirname,
 225                                const struct string_list *extras,
 226                                const struct string_list *skip);
 227
 228/*
 229 * Check whether an attempt to rename old_refname to new_refname would
 230 * cause a D/F conflict with any existing reference (other than
 231 * possibly old_refname). If there would be a conflict, emit an error
 232 * message and return false; otherwise, return true.
 233 *
 234 * Note that this function is not safe against all races with other
 235 * processes (though rename_ref() catches some races that might get by
 236 * this check).
 237 */
 238int refs_rename_ref_available(struct ref_store *refs,
 239                              const char *old_refname,
 240                              const char *new_refname);
 241
 242/* We allow "recursive" symbolic refs. Only within reason, though */
 243#define SYMREF_MAXDEPTH 5
 244
 245/* Include broken references in a do_for_each_ref*() iteration: */
 246#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 247
 248/*
 249 * Reference iterators
 250 *
 251 * A reference iterator encapsulates the state of an in-progress
 252 * iteration over references. Create an instance of `struct
 253 * ref_iterator` via one of the functions in this module.
 254 *
 255 * A freshly-created ref_iterator doesn't yet point at a reference. To
 256 * advance the iterator, call ref_iterator_advance(). If successful,
 257 * this sets the iterator's refname, oid, and flags fields to describe
 258 * the next reference and returns ITER_OK. The data pointed at by
 259 * refname and oid belong to the iterator; if you want to retain them
 260 * after calling ref_iterator_advance() again or calling
 261 * ref_iterator_abort(), you must make a copy. When the iteration has
 262 * been exhausted, ref_iterator_advance() releases any resources
 263 * assocated with the iteration, frees the ref_iterator object, and
 264 * returns ITER_DONE. If you want to abort the iteration early, call
 265 * ref_iterator_abort(), which also frees the ref_iterator object and
 266 * any associated resources. If there was an internal error advancing
 267 * to the next entry, ref_iterator_advance() aborts the iteration,
 268 * frees the ref_iterator, and returns ITER_ERROR.
 269 *
 270 * The reference currently being looked at can be peeled by calling
 271 * ref_iterator_peel(). This function is often faster than peel_ref(),
 272 * so it should be preferred when iterating over references.
 273 *
 274 * Putting it all together, a typical iteration looks like this:
 275 *
 276 *     int ok;
 277 *     struct ref_iterator *iter = ...;
 278 *
 279 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 280 *             if (want_to_stop_iteration()) {
 281 *                     ok = ref_iterator_abort(iter);
 282 *                     break;
 283 *             }
 284 *
 285 *             // Access information about the current reference:
 286 *             if (!(iter->flags & REF_ISSYMREF))
 287 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 288 *
 289 *             // If you need to peel the reference:
 290 *             ref_iterator_peel(iter, &oid);
 291 *     }
 292 *
 293 *     if (ok != ITER_DONE)
 294 *             handle_error();
 295 */
 296struct ref_iterator {
 297        struct ref_iterator_vtable *vtable;
 298        const char *refname;
 299        const struct object_id *oid;
 300        unsigned int flags;
 301};
 302
 303/*
 304 * Advance the iterator to the first or next item and return ITER_OK.
 305 * If the iteration is exhausted, free the resources associated with
 306 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 307 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 308 * call this function again after it has returned ITER_DONE or
 309 * ITER_ERROR.
 310 */
 311int ref_iterator_advance(struct ref_iterator *ref_iterator);
 312
 313/*
 314 * If possible, peel the reference currently being viewed by the
 315 * iterator. Return 0 on success.
 316 */
 317int ref_iterator_peel(struct ref_iterator *ref_iterator,
 318                      struct object_id *peeled);
 319
 320/*
 321 * End the iteration before it has been exhausted, freeing the
 322 * reference iterator and any associated resources and returning
 323 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 324 */
 325int ref_iterator_abort(struct ref_iterator *ref_iterator);
 326
 327/*
 328 * An iterator over nothing (its first ref_iterator_advance() call
 329 * returns ITER_DONE).
 330 */
 331struct ref_iterator *empty_ref_iterator_begin(void);
 332
 333/*
 334 * Return true iff ref_iterator is an empty_ref_iterator.
 335 */
 336int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 337
 338/*
 339 * Return an iterator that goes over each reference in `refs` for
 340 * which the refname begins with prefix. If trim is non-zero, then
 341 * trim that many characters off the beginning of each refname. flags
 342 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 343 * the iteration.
 344 */
 345struct ref_iterator *refs_ref_iterator_begin(
 346                struct ref_store *refs,
 347                const char *prefix, int trim, int flags);
 348
 349/*
 350 * A callback function used to instruct merge_ref_iterator how to
 351 * interleave the entries from iter0 and iter1. The function should
 352 * return one of the constants defined in enum iterator_selection. It
 353 * must not advance either of the iterators itself.
 354 *
 355 * The function must be prepared to handle the case that iter0 and/or
 356 * iter1 is NULL, which indicates that the corresponding sub-iterator
 357 * has been exhausted. Its return value must be consistent with the
 358 * current states of the iterators; e.g., it must not return
 359 * ITER_SKIP_1 if iter1 has already been exhausted.
 360 */
 361typedef enum iterator_selection ref_iterator_select_fn(
 362                struct ref_iterator *iter0, struct ref_iterator *iter1,
 363                void *cb_data);
 364
 365/*
 366 * Iterate over the entries from iter0 and iter1, with the values
 367 * interleaved as directed by the select function. The iterator takes
 368 * ownership of iter0 and iter1 and frees them when the iteration is
 369 * over.
 370 */
 371struct ref_iterator *merge_ref_iterator_begin(
 372                struct ref_iterator *iter0, struct ref_iterator *iter1,
 373                ref_iterator_select_fn *select, void *cb_data);
 374
 375/*
 376 * An iterator consisting of the union of the entries from front and
 377 * back. If there are entries common to the two sub-iterators, use the
 378 * one from front. Each iterator must iterate over its entries in
 379 * strcmp() order by refname for this to work.
 380 *
 381 * The new iterator takes ownership of its arguments and frees them
 382 * when the iteration is over. As a convenience to callers, if front
 383 * or back is an empty_ref_iterator, then abort that one immediately
 384 * and return the other iterator directly, without wrapping it.
 385 */
 386struct ref_iterator *overlay_ref_iterator_begin(
 387                struct ref_iterator *front, struct ref_iterator *back);
 388
 389/*
 390 * Wrap iter0, only letting through the references whose names start
 391 * with prefix. If trim is set, set iter->refname to the name of the
 392 * reference with that many characters trimmed off the front;
 393 * otherwise set it to the full refname. The new iterator takes over
 394 * ownership of iter0 and frees it when iteration is over. It makes
 395 * its own copy of prefix.
 396 *
 397 * As an convenience to callers, if prefix is the empty string and
 398 * trim is zero, this function returns iter0 directly, without
 399 * wrapping it.
 400 */
 401struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 402                                               const char *prefix,
 403                                               int trim);
 404
 405/* Internal implementation of reference iteration: */
 406
 407/*
 408 * Base class constructor for ref_iterators. Initialize the
 409 * ref_iterator part of iter, setting its vtable pointer as specified.
 410 * This is meant to be called only by the initializers of derived
 411 * classes.
 412 */
 413void base_ref_iterator_init(struct ref_iterator *iter,
 414                            struct ref_iterator_vtable *vtable);
 415
 416/*
 417 * Base class destructor for ref_iterators. Destroy the ref_iterator
 418 * part of iter and shallow-free the object. This is meant to be
 419 * called only by the destructors of derived classes.
 420 */
 421void base_ref_iterator_free(struct ref_iterator *iter);
 422
 423/* Virtual function declarations for ref_iterators: */
 424
 425typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 426
 427typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 428                                 struct object_id *peeled);
 429
 430/*
 431 * Implementations of this function should free any resources specific
 432 * to the derived class, then call base_ref_iterator_free() to clean
 433 * up and free the ref_iterator object.
 434 */
 435typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 436
 437struct ref_iterator_vtable {
 438        ref_iterator_advance_fn *advance;
 439        ref_iterator_peel_fn *peel;
 440        ref_iterator_abort_fn *abort;
 441};
 442
 443/*
 444 * current_ref_iter is a performance hack: when iterating over
 445 * references using the for_each_ref*() functions, current_ref_iter is
 446 * set to the reference iterator before calling the callback function.
 447 * If the callback function calls peel_ref(), then peel_ref() first
 448 * checks whether the reference to be peeled is the one referred to by
 449 * the iterator (it usually is) and if so, asks the iterator for the
 450 * peeled version of the reference if it is available. This avoids a
 451 * refname lookup in a common case. current_ref_iter is set to NULL
 452 * when the iteration is over.
 453 */
 454extern struct ref_iterator *current_ref_iter;
 455
 456/*
 457 * The common backend for the for_each_*ref* functions. Call fn for
 458 * each reference in iter. If the iterator itself ever returns
 459 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 460 * the iteration and return that value. Otherwise, return 0. In any
 461 * case, free the iterator when done. This function is basically an
 462 * adapter between the callback style of reference iteration and the
 463 * iterator style.
 464 */
 465int do_for_each_ref_iterator(struct ref_iterator *iter,
 466                             each_ref_fn fn, void *cb_data);
 467
 468/*
 469 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 470 * Normally this will be used with a files ref_store, since that's
 471 * where all reference backends will presumably store their
 472 * per-worktree refs.
 473 */
 474#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 475
 476struct ref_store;
 477
 478/* refs backends */
 479
 480/* ref_store_init flags */
 481#define REF_STORE_READ          (1 << 0)
 482#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 483#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 484#define REF_STORE_MAIN          (1 << 3)
 485
 486/*
 487 * Initialize the ref_store for the specified gitdir. These functions
 488 * should call base_ref_store_init() to initialize the shared part of
 489 * the ref_store and to record the ref_store for later lookup.
 490 */
 491typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 492                                            unsigned int flags);
 493
 494typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 495
 496typedef int ref_transaction_commit_fn(struct ref_store *refs,
 497                                      struct ref_transaction *transaction,
 498                                      struct strbuf *err);
 499
 500typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 501typedef int peel_ref_fn(struct ref_store *ref_store,
 502                        const char *refname, unsigned char *sha1);
 503typedef int create_symref_fn(struct ref_store *ref_store,
 504                             const char *ref_target,
 505                             const char *refs_heads_master,
 506                             const char *logmsg);
 507typedef int delete_refs_fn(struct ref_store *ref_store,
 508                           struct string_list *refnames, unsigned int flags);
 509typedef int rename_ref_fn(struct ref_store *ref_store,
 510                          const char *oldref, const char *newref,
 511                          const char *logmsg);
 512
 513/*
 514 * Iterate over the references in the specified ref_store that are
 515 * within find_containing_dir(prefix). If prefix is NULL or the empty
 516 * string, iterate over all references in the submodule.
 517 */
 518typedef struct ref_iterator *ref_iterator_begin_fn(
 519                struct ref_store *ref_store,
 520                const char *prefix, unsigned int flags);
 521
 522/* reflog functions */
 523
 524/*
 525 * Iterate over the references in the specified ref_store that have a
 526 * reflog. The refs are iterated over in arbitrary order.
 527 */
 528typedef struct ref_iterator *reflog_iterator_begin_fn(
 529                struct ref_store *ref_store);
 530
 531typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 532                                   const char *refname,
 533                                   each_reflog_ent_fn fn,
 534                                   void *cb_data);
 535typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 536                                           const char *refname,
 537                                           each_reflog_ent_fn fn,
 538                                           void *cb_data);
 539typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 540typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 541                             int force_create, struct strbuf *err);
 542typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 543typedef int reflog_expire_fn(struct ref_store *ref_store,
 544                             const char *refname, const unsigned char *sha1,
 545                             unsigned int flags,
 546                             reflog_expiry_prepare_fn prepare_fn,
 547                             reflog_expiry_should_prune_fn should_prune_fn,
 548                             reflog_expiry_cleanup_fn cleanup_fn,
 549                             void *policy_cb_data);
 550
 551/*
 552 * Read a reference from the specified reference store, non-recursively.
 553 * Set type to describe the reference, and:
 554 *
 555 * - If refname is the name of a normal reference, fill in sha1
 556 *   (leaving referent unchanged).
 557 *
 558 * - If refname is the name of a symbolic reference, write the full
 559 *   name of the reference to which it refers (e.g.
 560 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 561 *   type (leaving sha1 unchanged). The caller is responsible for
 562 *   validating that referent is a valid reference name.
 563 *
 564 * WARNING: refname might be used as part of a filename, so it is
 565 * important from a security standpoint that it be safe in the sense
 566 * of refname_is_safe(). Moreover, for symrefs this function sets
 567 * referent to whatever the repository says, which might not be a
 568 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 569 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 570 *
 571 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 572 * and return -1. If the ref exists but is neither a symbolic ref nor
 573 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 574 * EINVAL, and return -1. If there is another error reading the ref,
 575 * set errno appropriately and return -1.
 576 *
 577 * Backend-specific flags might be set in type as well, regardless of
 578 * outcome.
 579 *
 580 * It is OK for refname to point into referent. If so:
 581 *
 582 * - if the function succeeds with REF_ISSYMREF, referent will be
 583 *   overwritten and the memory formerly pointed to by it might be
 584 *   changed or even freed.
 585 *
 586 * - in all other cases, referent will be untouched, and therefore
 587 *   refname will still be valid and unchanged.
 588 */
 589typedef int read_raw_ref_fn(struct ref_store *ref_store,
 590                            const char *refname, unsigned char *sha1,
 591                            struct strbuf *referent, unsigned int *type);
 592
 593struct ref_storage_be {
 594        struct ref_storage_be *next;
 595        const char *name;
 596        ref_store_init_fn *init;
 597        ref_init_db_fn *init_db;
 598        ref_transaction_commit_fn *transaction_commit;
 599        ref_transaction_commit_fn *initial_transaction_commit;
 600
 601        pack_refs_fn *pack_refs;
 602        peel_ref_fn *peel_ref;
 603        create_symref_fn *create_symref;
 604        delete_refs_fn *delete_refs;
 605        rename_ref_fn *rename_ref;
 606
 607        ref_iterator_begin_fn *iterator_begin;
 608        read_raw_ref_fn *read_raw_ref;
 609
 610        reflog_iterator_begin_fn *reflog_iterator_begin;
 611        for_each_reflog_ent_fn *for_each_reflog_ent;
 612        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 613        reflog_exists_fn *reflog_exists;
 614        create_reflog_fn *create_reflog;
 615        delete_reflog_fn *delete_reflog;
 616        reflog_expire_fn *reflog_expire;
 617};
 618
 619extern struct ref_storage_be refs_be_files;
 620
 621/*
 622 * A representation of the reference store for the main repository or
 623 * a submodule. The ref_store instances for submodules are kept in a
 624 * linked list.
 625 */
 626struct ref_store {
 627        /* The backend describing this ref_store's storage scheme: */
 628        const struct ref_storage_be *be;
 629};
 630
 631/*
 632 * Fill in the generic part of refs and add it to our collection of
 633 * reference stores.
 634 */
 635void base_ref_store_init(struct ref_store *refs,
 636                         const struct ref_storage_be *be);
 637
 638#endif /* REFS_REFS_INTERNAL_H */