1/* 2 * LibXDiff by Davide Libenzi ( File Differential Library ) 3 * Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin 4 * 5 * This library is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU Lesser General Public 7 * License as published by the Free Software Foundation; either 8 * version 2.1 of the License, or (at your option) any later version. 9 * 10 * This library is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * Lesser General Public License for more details. 14 * 15 * You should have received a copy of the GNU Lesser General Public 16 * License along with this library; if not, see 17 * <http://www.gnu.org/licenses/>. 18 * 19 * Davide Libenzi <davidel@xmailserver.org> 20 * 21 */ 22#include"xinclude.h" 23 24/* 25 * The basic idea of patience diff is to find lines that are unique in 26 * both files. These are intuitively the ones that we want to see as 27 * common lines. 28 * 29 * The maximal ordered sequence of such line pairs (where ordered means 30 * that the order in the sequence agrees with the order of the lines in 31 * both files) naturally defines an initial set of common lines. 32 * 33 * Now, the algorithm tries to extend the set of common lines by growing 34 * the line ranges where the files have identical lines. 35 * 36 * Between those common lines, the patience diff algorithm is applied 37 * recursively, until no unique line pairs can be found; these line ranges 38 * are handled by the well-known Myers algorithm. 39 */ 40 41#define NON_UNIQUE ULONG_MAX 42 43/* 44 * This is a hash mapping from line hash to line numbers in the first and 45 * second file. 46 */ 47struct hashmap { 48int nr, alloc; 49struct entry { 50unsigned long hash; 51/* 52 * 0 = unused entry, 1 = first line, 2 = second, etc. 53 * line2 is NON_UNIQUE if the line is not unique 54 * in either the first or the second file. 55 */ 56unsigned long line1, line2; 57/* 58 * "next" & "previous" are used for the longest common 59 * sequence; 60 * initially, "next" reflects only the order in file1. 61 */ 62struct entry *next, *previous; 63 64/* 65 * If 1, this entry can serve as an anchor. See 66 * Documentation/diff-options.txt for more information. 67 */ 68unsigned anchor :1; 69} *entries, *first, *last; 70/* were common records found? */ 71unsigned long has_matches; 72 mmfile_t *file1, *file2; 73 xdfenv_t *env; 74 xpparam_t const*xpp; 75}; 76 77static intis_anchor(xpparam_t const*xpp,const char*line) 78{ 79int i; 80for(i =0; i < xpp->anchors_nr; i++) { 81if(!strncmp(line, xpp->anchors[i],strlen(xpp->anchors[i]))) 82return1; 83} 84return0; 85} 86 87/* The argument "pass" is 1 for the first file, 2 for the second. */ 88static voidinsert_record(xpparam_t const*xpp,int line,struct hashmap *map, 89int pass) 90{ 91 xrecord_t **records = pass ==1? 92 map->env->xdf1.recs : map->env->xdf2.recs; 93 xrecord_t *record = records[line -1], *other; 94/* 95 * After xdl_prepare_env() (or more precisely, due to 96 * xdl_classify_record()), the "ha" member of the records (AKA lines) 97 * is _not_ the hash anymore, but a linearized version of it. In 98 * other words, the "ha" member is guaranteed to start with 0 and 99 * the second record's ha can only be 0 or 1, etc. 100 * 101 * So we multiply ha by 2 in the hope that the hashing was 102 * "unique enough". 103 */ 104int index = (int)((record->ha <<1) % map->alloc); 105 106while(map->entries[index].line1) { 107 other = map->env->xdf1.recs[map->entries[index].line1 -1]; 108if(map->entries[index].hash != record->ha || 109!xdl_recmatch(record->ptr, record->size, 110 other->ptr, other->size, 111 map->xpp->flags)) { 112if(++index >= map->alloc) 113 index =0; 114continue; 115} 116if(pass ==2) 117 map->has_matches =1; 118if(pass ==1|| map->entries[index].line2) 119 map->entries[index].line2 = NON_UNIQUE; 120else 121 map->entries[index].line2 = line; 122return; 123} 124if(pass ==2) 125return; 126 map->entries[index].line1 = line; 127 map->entries[index].hash = record->ha; 128 map->entries[index].anchor =is_anchor(xpp, map->env->xdf1.recs[line -1]->ptr); 129if(!map->first) 130 map->first = map->entries + index; 131if(map->last) { 132 map->last->next = map->entries + index; 133 map->entries[index].previous = map->last; 134} 135 map->last = map->entries + index; 136 map->nr++; 137} 138 139/* 140 * This function has to be called for each recursion into the inter-hunk 141 * parts, as previously non-unique lines can become unique when being 142 * restricted to a smaller part of the files. 143 * 144 * It is assumed that env has been prepared using xdl_prepare(). 145 */ 146static intfill_hashmap(mmfile_t *file1, mmfile_t *file2, 147 xpparam_t const*xpp, xdfenv_t *env, 148struct hashmap *result, 149int line1,int count1,int line2,int count2) 150{ 151 result->file1 = file1; 152 result->file2 = file2; 153 result->xpp = xpp; 154 result->env = env; 155 156/* We know exactly how large we want the hash map */ 157 result->alloc = count1 *2; 158 result->entries = (struct entry *) 159xdl_malloc(result->alloc *sizeof(struct entry)); 160if(!result->entries) 161return-1; 162memset(result->entries,0, result->alloc *sizeof(struct entry)); 163 164/* First, fill with entries from the first file */ 165while(count1--) 166insert_record(xpp, line1++, result,1); 167 168/* Then search for matches in the second file */ 169while(count2--) 170insert_record(xpp, line2++, result,2); 171 172return0; 173} 174 175/* 176 * Find the longest sequence with a smaller last element (meaning a smaller 177 * line2, as we construct the sequence with entries ordered by line1). 178 */ 179static intbinary_search(struct entry **sequence,int longest, 180struct entry *entry) 181{ 182int left = -1, right = longest; 183 184while(left +1< right) { 185int middle = left + (right - left) /2; 186/* by construction, no two entries can be equal */ 187if(sequence[middle]->line2 > entry->line2) 188 right = middle; 189else 190 left = middle; 191} 192/* return the index in "sequence", _not_ the sequence length */ 193return left; 194} 195 196/* 197 * The idea is to start with the list of common unique lines sorted by 198 * the order in file1. For each of these pairs, the longest (partial) 199 * sequence whose last element's line2 is smaller is determined. 200 * 201 * For efficiency, the sequences are kept in a list containing exactly one 202 * item per sequence length: the sequence with the smallest last 203 * element (in terms of line2). 204 */ 205static struct entry *find_longest_common_sequence(struct hashmap *map) 206{ 207struct entry **sequence =xdl_malloc(map->nr *sizeof(struct entry *)); 208int longest =0, i; 209struct entry *entry; 210 211/* 212 * If not -1, this entry in sequence must never be overridden. 213 * Therefore, overriding entries before this has no effect, so 214 * do not do that either. 215 */ 216int anchor_i = -1; 217 218for(entry = map->first; entry; entry = entry->next) { 219if(!entry->line2 || entry->line2 == NON_UNIQUE) 220continue; 221 i =binary_search(sequence, longest, entry); 222 entry->previous = i <0? NULL : sequence[i]; 223++i; 224if(i <= anchor_i) 225continue; 226 sequence[i] = entry; 227if(entry->anchor) { 228 anchor_i = i; 229 longest = anchor_i +1; 230}else if(i == longest) { 231 longest++; 232} 233} 234 235/* No common unique lines were found */ 236if(!longest) { 237xdl_free(sequence); 238return NULL; 239} 240 241/* Iterate starting at the last element, adjusting the "next" members */ 242 entry = sequence[longest -1]; 243 entry->next = NULL; 244while(entry->previous) { 245 entry->previous->next = entry; 246 entry = entry->previous; 247} 248xdl_free(sequence); 249return entry; 250} 251 252static intmatch(struct hashmap *map,int line1,int line2) 253{ 254 xrecord_t *record1 = map->env->xdf1.recs[line1 -1]; 255 xrecord_t *record2 = map->env->xdf2.recs[line2 -1]; 256returnxdl_recmatch(record1->ptr, record1->size, 257 record2->ptr, record2->size, map->xpp->flags); 258} 259 260static intpatience_diff(mmfile_t *file1, mmfile_t *file2, 261 xpparam_t const*xpp, xdfenv_t *env, 262int line1,int count1,int line2,int count2); 263 264static intwalk_common_sequence(struct hashmap *map,struct entry *first, 265int line1,int count1,int line2,int count2) 266{ 267int end1 = line1 + count1, end2 = line2 + count2; 268int next1, next2; 269 270for(;;) { 271/* Try to grow the line ranges of common lines */ 272if(first) { 273 next1 = first->line1; 274 next2 = first->line2; 275while(next1 > line1 && next2 > line2 && 276match(map, next1 -1, next2 -1)) { 277 next1--; 278 next2--; 279} 280}else{ 281 next1 = end1; 282 next2 = end2; 283} 284while(line1 < next1 && line2 < next2 && 285match(map, line1, line2)) { 286 line1++; 287 line2++; 288} 289 290/* Recurse */ 291if(next1 > line1 || next2 > line2) { 292struct hashmap submap; 293 294memset(&submap,0,sizeof(submap)); 295if(patience_diff(map->file1, map->file2, 296 map->xpp, map->env, 297 line1, next1 - line1, 298 line2, next2 - line2)) 299return-1; 300} 301 302if(!first) 303return0; 304 305while(first->next && 306 first->next->line1 == first->line1 +1&& 307 first->next->line2 == first->line2 +1) 308 first = first->next; 309 310 line1 = first->line1 +1; 311 line2 = first->line2 +1; 312 313 first = first->next; 314} 315} 316 317static intfall_back_to_classic_diff(struct hashmap *map, 318int line1,int count1,int line2,int count2) 319{ 320 xpparam_t xpp; 321 xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK; 322 323returnxdl_fall_back_diff(map->env, &xpp, 324 line1, count1, line2, count2); 325} 326 327/* 328 * Recursively find the longest common sequence of unique lines, 329 * and if none was found, ask xdl_do_diff() to do the job. 330 * 331 * This function assumes that env was prepared with xdl_prepare_env(). 332 */ 333static intpatience_diff(mmfile_t *file1, mmfile_t *file2, 334 xpparam_t const*xpp, xdfenv_t *env, 335int line1,int count1,int line2,int count2) 336{ 337struct hashmap map; 338struct entry *first; 339int result =0; 340 341/* trivial case: one side is empty */ 342if(!count1) { 343while(count2--) 344 env->xdf2.rchg[line2++ -1] =1; 345return0; 346}else if(!count2) { 347while(count1--) 348 env->xdf1.rchg[line1++ -1] =1; 349return0; 350} 351 352memset(&map,0,sizeof(map)); 353if(fill_hashmap(file1, file2, xpp, env, &map, 354 line1, count1, line2, count2)) 355return-1; 356 357/* are there any matching lines at all? */ 358if(!map.has_matches) { 359while(count1--) 360 env->xdf1.rchg[line1++ -1] =1; 361while(count2--) 362 env->xdf2.rchg[line2++ -1] =1; 363xdl_free(map.entries); 364return0; 365} 366 367 first =find_longest_common_sequence(&map); 368if(first) 369 result =walk_common_sequence(&map, first, 370 line1, count1, line2, count2); 371else 372 result =fall_back_to_classic_diff(&map, 373 line1, count1, line2, count2); 374 375xdl_free(map.entries); 376return result; 377} 378 379intxdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2, 380 xpparam_t const*xpp, xdfenv_t *env) 381{ 382if(xdl_prepare_env(file1, file2, xpp, env) <0) 383return-1; 384 385/* environment is cleaned up in xdl_diff() */ 386returnpatience_diff(file1, file2, xpp, env, 3871, env->xdf1.nrec,1, env->xdf2.nrec); 388}