1#include "cache.h"
2#include "run-command.h"
3#include "exec-cmd.h"
4#include "sigchain.h"
5#include "argv-array.h"
6#include "thread-utils.h"
7#include "strbuf.h"
8#include "string-list.h"
9#include "quote.h"
10
11void child_process_init(struct child_process *child)
12{
13 memset(child, 0, sizeof(*child));
14 argv_array_init(&child->args);
15 argv_array_init(&child->env_array);
16}
17
18void child_process_clear(struct child_process *child)
19{
20 argv_array_clear(&child->args);
21 argv_array_clear(&child->env_array);
22}
23
24struct child_to_clean {
25 pid_t pid;
26 struct child_process *process;
27 struct child_to_clean *next;
28};
29static struct child_to_clean *children_to_clean;
30static int installed_child_cleanup_handler;
31
32static void cleanup_children(int sig, int in_signal)
33{
34 struct child_to_clean *children_to_wait_for = NULL;
35
36 while (children_to_clean) {
37 struct child_to_clean *p = children_to_clean;
38 children_to_clean = p->next;
39
40 if (p->process && !in_signal) {
41 struct child_process *process = p->process;
42 if (process->clean_on_exit_handler) {
43 trace_printf(
44 "trace: run_command: running exit handler for pid %"
45 PRIuMAX, (uintmax_t)p->pid
46 );
47 process->clean_on_exit_handler(process);
48 }
49 }
50
51 kill(p->pid, sig);
52
53 if (p->process && p->process->wait_after_clean) {
54 p->next = children_to_wait_for;
55 children_to_wait_for = p;
56 } else {
57 if (!in_signal)
58 free(p);
59 }
60 }
61
62 while (children_to_wait_for) {
63 struct child_to_clean *p = children_to_wait_for;
64 children_to_wait_for = p->next;
65
66 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
67 ; /* spin waiting for process exit or error */
68
69 if (!in_signal)
70 free(p);
71 }
72}
73
74static void cleanup_children_on_signal(int sig)
75{
76 cleanup_children(sig, 1);
77 sigchain_pop(sig);
78 raise(sig);
79}
80
81static void cleanup_children_on_exit(void)
82{
83 cleanup_children(SIGTERM, 0);
84}
85
86static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
87{
88 struct child_to_clean *p = xmalloc(sizeof(*p));
89 p->pid = pid;
90 p->process = process;
91 p->next = children_to_clean;
92 children_to_clean = p;
93
94 if (!installed_child_cleanup_handler) {
95 atexit(cleanup_children_on_exit);
96 sigchain_push_common(cleanup_children_on_signal);
97 installed_child_cleanup_handler = 1;
98 }
99}
100
101static void clear_child_for_cleanup(pid_t pid)
102{
103 struct child_to_clean **pp;
104
105 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
106 struct child_to_clean *clean_me = *pp;
107
108 if (clean_me->pid == pid) {
109 *pp = clean_me->next;
110 free(clean_me);
111 return;
112 }
113 }
114}
115
116static inline void close_pair(int fd[2])
117{
118 close(fd[0]);
119 close(fd[1]);
120}
121
122int is_executable(const char *name)
123{
124 struct stat st;
125
126 if (stat(name, &st) || /* stat, not lstat */
127 !S_ISREG(st.st_mode))
128 return 0;
129
130#if defined(GIT_WINDOWS_NATIVE)
131 /*
132 * On Windows there is no executable bit. The file extension
133 * indicates whether it can be run as an executable, and Git
134 * has special-handling to detect scripts and launch them
135 * through the indicated script interpreter. We test for the
136 * file extension first because virus scanners may make
137 * it quite expensive to open many files.
138 */
139 if (ends_with(name, ".exe"))
140 return S_IXUSR;
141
142{
143 /*
144 * Now that we know it does not have an executable extension,
145 * peek into the file instead.
146 */
147 char buf[3] = { 0 };
148 int n;
149 int fd = open(name, O_RDONLY);
150 st.st_mode &= ~S_IXUSR;
151 if (fd >= 0) {
152 n = read(fd, buf, 2);
153 if (n == 2)
154 /* look for a she-bang */
155 if (!strcmp(buf, "#!"))
156 st.st_mode |= S_IXUSR;
157 close(fd);
158 }
159}
160#endif
161 return st.st_mode & S_IXUSR;
162}
163
164/*
165 * Search $PATH for a command. This emulates the path search that
166 * execvp would perform, without actually executing the command so it
167 * can be used before fork() to prepare to run a command using
168 * execve() or after execvp() to diagnose why it failed.
169 *
170 * The caller should ensure that file contains no directory
171 * separators.
172 *
173 * Returns the path to the command, as found in $PATH or NULL if the
174 * command could not be found. The caller inherits ownership of the memory
175 * used to store the resultant path.
176 *
177 * This should not be used on Windows, where the $PATH search rules
178 * are more complicated (e.g., a search for "foo" should find
179 * "foo.exe").
180 */
181static char *locate_in_PATH(const char *file)
182{
183 const char *p = getenv("PATH");
184 struct strbuf buf = STRBUF_INIT;
185
186 if (!p || !*p)
187 return NULL;
188
189 while (1) {
190 const char *end = strchrnul(p, ':');
191
192 strbuf_reset(&buf);
193
194 /* POSIX specifies an empty entry as the current directory. */
195 if (end != p) {
196 strbuf_add(&buf, p, end - p);
197 strbuf_addch(&buf, '/');
198 }
199 strbuf_addstr(&buf, file);
200
201 if (is_executable(buf.buf))
202 return strbuf_detach(&buf, NULL);
203
204 if (!*end)
205 break;
206 p = end + 1;
207 }
208
209 strbuf_release(&buf);
210 return NULL;
211}
212
213static int exists_in_PATH(const char *file)
214{
215 char *r = locate_in_PATH(file);
216 free(r);
217 return r != NULL;
218}
219
220int sane_execvp(const char *file, char * const argv[])
221{
222 if (!execvp(file, argv))
223 return 0; /* cannot happen ;-) */
224
225 /*
226 * When a command can't be found because one of the directories
227 * listed in $PATH is unsearchable, execvp reports EACCES, but
228 * careful usability testing (read: analysis of occasional bug
229 * reports) reveals that "No such file or directory" is more
230 * intuitive.
231 *
232 * We avoid commands with "/", because execvp will not do $PATH
233 * lookups in that case.
234 *
235 * The reassignment of EACCES to errno looks like a no-op below,
236 * but we need to protect against exists_in_PATH overwriting errno.
237 */
238 if (errno == EACCES && !strchr(file, '/'))
239 errno = exists_in_PATH(file) ? EACCES : ENOENT;
240 else if (errno == ENOTDIR && !strchr(file, '/'))
241 errno = ENOENT;
242 return -1;
243}
244
245static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
246{
247 if (!argv[0])
248 BUG("shell command is empty");
249
250 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
251#ifndef GIT_WINDOWS_NATIVE
252 argv_array_push(out, SHELL_PATH);
253#else
254 argv_array_push(out, "sh");
255#endif
256 argv_array_push(out, "-c");
257
258 /*
259 * If we have no extra arguments, we do not even need to
260 * bother with the "$@" magic.
261 */
262 if (!argv[1])
263 argv_array_push(out, argv[0]);
264 else
265 argv_array_pushf(out, "%s \"$@\"", argv[0]);
266 }
267
268 argv_array_pushv(out, argv);
269 return out->argv;
270}
271
272#ifndef GIT_WINDOWS_NATIVE
273static int child_notifier = -1;
274
275enum child_errcode {
276 CHILD_ERR_CHDIR,
277 CHILD_ERR_DUP2,
278 CHILD_ERR_CLOSE,
279 CHILD_ERR_SIGPROCMASK,
280 CHILD_ERR_ENOENT,
281 CHILD_ERR_SILENT,
282 CHILD_ERR_ERRNO
283};
284
285struct child_err {
286 enum child_errcode err;
287 int syserr; /* errno */
288};
289
290static void child_die(enum child_errcode err)
291{
292 struct child_err buf;
293
294 buf.err = err;
295 buf.syserr = errno;
296
297 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
298 xwrite(child_notifier, &buf, sizeof(buf));
299 _exit(1);
300}
301
302static void child_dup2(int fd, int to)
303{
304 if (dup2(fd, to) < 0)
305 child_die(CHILD_ERR_DUP2);
306}
307
308static void child_close(int fd)
309{
310 if (close(fd))
311 child_die(CHILD_ERR_CLOSE);
312}
313
314static void child_close_pair(int fd[2])
315{
316 child_close(fd[0]);
317 child_close(fd[1]);
318}
319
320/*
321 * parent will make it look like the child spewed a fatal error and died
322 * this is needed to prevent changes to t0061.
323 */
324static void fake_fatal(const char *err, va_list params)
325{
326 vreportf("fatal: ", err, params);
327}
328
329static void child_error_fn(const char *err, va_list params)
330{
331 const char msg[] = "error() should not be called in child\n";
332 xwrite(2, msg, sizeof(msg) - 1);
333}
334
335static void child_warn_fn(const char *err, va_list params)
336{
337 const char msg[] = "warn() should not be called in child\n";
338 xwrite(2, msg, sizeof(msg) - 1);
339}
340
341static void NORETURN child_die_fn(const char *err, va_list params)
342{
343 const char msg[] = "die() should not be called in child\n";
344 xwrite(2, msg, sizeof(msg) - 1);
345 _exit(2);
346}
347
348/* this runs in the parent process */
349static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
350{
351 static void (*old_errfn)(const char *err, va_list params);
352
353 old_errfn = get_error_routine();
354 set_error_routine(fake_fatal);
355 errno = cerr->syserr;
356
357 switch (cerr->err) {
358 case CHILD_ERR_CHDIR:
359 error_errno("exec '%s': cd to '%s' failed",
360 cmd->argv[0], cmd->dir);
361 break;
362 case CHILD_ERR_DUP2:
363 error_errno("dup2() in child failed");
364 break;
365 case CHILD_ERR_CLOSE:
366 error_errno("close() in child failed");
367 break;
368 case CHILD_ERR_SIGPROCMASK:
369 error_errno("sigprocmask failed restoring signals");
370 break;
371 case CHILD_ERR_ENOENT:
372 error_errno("cannot run %s", cmd->argv[0]);
373 break;
374 case CHILD_ERR_SILENT:
375 break;
376 case CHILD_ERR_ERRNO:
377 error_errno("cannot exec '%s'", cmd->argv[0]);
378 break;
379 }
380 set_error_routine(old_errfn);
381}
382
383static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
384{
385 if (!cmd->argv[0])
386 BUG("command is empty");
387
388 /*
389 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
390 * attempt to interpret the command with 'sh'.
391 */
392 argv_array_push(out, SHELL_PATH);
393
394 if (cmd->git_cmd) {
395 argv_array_push(out, "git");
396 argv_array_pushv(out, cmd->argv);
397 } else if (cmd->use_shell) {
398 prepare_shell_cmd(out, cmd->argv);
399 } else {
400 argv_array_pushv(out, cmd->argv);
401 }
402
403 /*
404 * If there are no '/' characters in the command then perform a path
405 * lookup and use the resolved path as the command to exec. If there
406 * are '/' characters, we have exec attempt to invoke the command
407 * directly.
408 */
409 if (!strchr(out->argv[1], '/')) {
410 char *program = locate_in_PATH(out->argv[1]);
411 if (program) {
412 free((char *)out->argv[1]);
413 out->argv[1] = program;
414 } else {
415 argv_array_clear(out);
416 errno = ENOENT;
417 return -1;
418 }
419 }
420
421 return 0;
422}
423
424static char **prep_childenv(const char *const *deltaenv)
425{
426 extern char **environ;
427 char **childenv;
428 struct string_list env = STRING_LIST_INIT_DUP;
429 struct strbuf key = STRBUF_INIT;
430 const char *const *p;
431 int i;
432
433 /* Construct a sorted string list consisting of the current environ */
434 for (p = (const char *const *) environ; p && *p; p++) {
435 const char *equals = strchr(*p, '=');
436
437 if (equals) {
438 strbuf_reset(&key);
439 strbuf_add(&key, *p, equals - *p);
440 string_list_append(&env, key.buf)->util = (void *) *p;
441 } else {
442 string_list_append(&env, *p)->util = (void *) *p;
443 }
444 }
445 string_list_sort(&env);
446
447 /* Merge in 'deltaenv' with the current environ */
448 for (p = deltaenv; p && *p; p++) {
449 const char *equals = strchr(*p, '=');
450
451 if (equals) {
452 /* ('key=value'), insert or replace entry */
453 strbuf_reset(&key);
454 strbuf_add(&key, *p, equals - *p);
455 string_list_insert(&env, key.buf)->util = (void *) *p;
456 } else {
457 /* otherwise ('key') remove existing entry */
458 string_list_remove(&env, *p, 0);
459 }
460 }
461
462 /* Create an array of 'char *' to be used as the childenv */
463 ALLOC_ARRAY(childenv, env.nr + 1);
464 for (i = 0; i < env.nr; i++)
465 childenv[i] = env.items[i].util;
466 childenv[env.nr] = NULL;
467
468 string_list_clear(&env, 0);
469 strbuf_release(&key);
470 return childenv;
471}
472
473struct atfork_state {
474#ifndef NO_PTHREADS
475 int cs;
476#endif
477 sigset_t old;
478};
479
480#define CHECK_BUG(err, msg) \
481 do { \
482 int e = (err); \
483 if (e) \
484 BUG("%s: %s", msg, strerror(e)); \
485 } while(0)
486
487static void atfork_prepare(struct atfork_state *as)
488{
489 sigset_t all;
490
491 if (sigfillset(&all))
492 die_errno("sigfillset");
493#ifdef NO_PTHREADS
494 if (sigprocmask(SIG_SETMASK, &all, &as->old))
495 die_errno("sigprocmask");
496#else
497 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
498 "blocking all signals");
499 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
500 "disabling cancellation");
501#endif
502}
503
504static void atfork_parent(struct atfork_state *as)
505{
506#ifdef NO_PTHREADS
507 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
508 die_errno("sigprocmask");
509#else
510 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
511 "re-enabling cancellation");
512 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
513 "restoring signal mask");
514#endif
515}
516#endif /* GIT_WINDOWS_NATIVE */
517
518static inline void set_cloexec(int fd)
519{
520 int flags = fcntl(fd, F_GETFD);
521 if (flags >= 0)
522 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
523}
524
525static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
526{
527 int status, code = -1;
528 pid_t waiting;
529 int failed_errno = 0;
530
531 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
532 ; /* nothing */
533 if (in_signal)
534 return 0;
535
536 if (waiting < 0) {
537 failed_errno = errno;
538 error_errno("waitpid for %s failed", argv0);
539 } else if (waiting != pid) {
540 error("waitpid is confused (%s)", argv0);
541 } else if (WIFSIGNALED(status)) {
542 code = WTERMSIG(status);
543 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
544 error("%s died of signal %d", argv0, code);
545 /*
546 * This return value is chosen so that code & 0xff
547 * mimics the exit code that a POSIX shell would report for
548 * a program that died from this signal.
549 */
550 code += 128;
551 } else if (WIFEXITED(status)) {
552 code = WEXITSTATUS(status);
553 } else {
554 error("waitpid is confused (%s)", argv0);
555 }
556
557 clear_child_for_cleanup(pid);
558
559 errno = failed_errno;
560 return code;
561}
562
563static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
564{
565 struct string_list envs = STRING_LIST_INIT_DUP;
566 const char *const *e;
567 int i;
568 int printed_unset = 0;
569
570 /* Last one wins, see run-command.c:prep_childenv() for context */
571 for (e = deltaenv; e && *e; e++) {
572 struct strbuf key = STRBUF_INIT;
573 char *equals = strchr(*e, '=');
574
575 if (equals) {
576 strbuf_add(&key, *e, equals - *e);
577 string_list_insert(&envs, key.buf)->util = equals + 1;
578 } else {
579 string_list_insert(&envs, *e)->util = NULL;
580 }
581 strbuf_release(&key);
582 }
583
584 /* "unset X Y...;" */
585 for (i = 0; i < envs.nr; i++) {
586 const char *var = envs.items[i].string;
587 const char *val = envs.items[i].util;
588
589 if (val || !getenv(var))
590 continue;
591
592 if (!printed_unset) {
593 strbuf_addstr(dst, " unset");
594 printed_unset = 1;
595 }
596 strbuf_addf(dst, " %s", var);
597 }
598 if (printed_unset)
599 strbuf_addch(dst, ';');
600
601 /* ... followed by "A=B C=D ..." */
602 for (i = 0; i < envs.nr; i++) {
603 const char *var = envs.items[i].string;
604 const char *val = envs.items[i].util;
605 const char *oldval;
606
607 if (!val)
608 continue;
609
610 oldval = getenv(var);
611 if (oldval && !strcmp(val, oldval))
612 continue;
613
614 strbuf_addf(dst, " %s=", var);
615 sq_quote_buf_pretty(dst, val);
616 }
617 string_list_clear(&envs, 0);
618}
619
620static void trace_run_command(const struct child_process *cp)
621{
622 struct strbuf buf = STRBUF_INIT;
623
624 if (!trace_want(&trace_default_key))
625 return;
626
627 strbuf_addstr(&buf, "trace: run_command:");
628 if (cp->dir) {
629 strbuf_addstr(&buf, " cd ");
630 sq_quote_buf_pretty(&buf, cp->dir);
631 strbuf_addch(&buf, ';');
632 }
633 /*
634 * The caller is responsible for initializing cp->env from
635 * cp->env_array if needed. We only check one place.
636 */
637 if (cp->env)
638 trace_add_env(&buf, cp->env);
639 if (cp->git_cmd)
640 strbuf_addstr(&buf, " git");
641 sq_quote_argv_pretty(&buf, cp->argv);
642
643 trace_printf("%s", buf.buf);
644 strbuf_release(&buf);
645}
646
647int start_command(struct child_process *cmd)
648{
649 int need_in, need_out, need_err;
650 int fdin[2], fdout[2], fderr[2];
651 int failed_errno;
652 char *str;
653
654 if (!cmd->argv)
655 cmd->argv = cmd->args.argv;
656 if (!cmd->env)
657 cmd->env = cmd->env_array.argv;
658
659 /*
660 * In case of errors we must keep the promise to close FDs
661 * that have been passed in via ->in and ->out.
662 */
663
664 need_in = !cmd->no_stdin && cmd->in < 0;
665 if (need_in) {
666 if (pipe(fdin) < 0) {
667 failed_errno = errno;
668 if (cmd->out > 0)
669 close(cmd->out);
670 str = "standard input";
671 goto fail_pipe;
672 }
673 cmd->in = fdin[1];
674 }
675
676 need_out = !cmd->no_stdout
677 && !cmd->stdout_to_stderr
678 && cmd->out < 0;
679 if (need_out) {
680 if (pipe(fdout) < 0) {
681 failed_errno = errno;
682 if (need_in)
683 close_pair(fdin);
684 else if (cmd->in)
685 close(cmd->in);
686 str = "standard output";
687 goto fail_pipe;
688 }
689 cmd->out = fdout[0];
690 }
691
692 need_err = !cmd->no_stderr && cmd->err < 0;
693 if (need_err) {
694 if (pipe(fderr) < 0) {
695 failed_errno = errno;
696 if (need_in)
697 close_pair(fdin);
698 else if (cmd->in)
699 close(cmd->in);
700 if (need_out)
701 close_pair(fdout);
702 else if (cmd->out)
703 close(cmd->out);
704 str = "standard error";
705fail_pipe:
706 error("cannot create %s pipe for %s: %s",
707 str, cmd->argv[0], strerror(failed_errno));
708 child_process_clear(cmd);
709 errno = failed_errno;
710 return -1;
711 }
712 cmd->err = fderr[0];
713 }
714
715 trace_run_command(cmd);
716
717 fflush(NULL);
718
719#ifndef GIT_WINDOWS_NATIVE
720{
721 int notify_pipe[2];
722 int null_fd = -1;
723 char **childenv;
724 struct argv_array argv = ARGV_ARRAY_INIT;
725 struct child_err cerr;
726 struct atfork_state as;
727
728 if (prepare_cmd(&argv, cmd) < 0) {
729 failed_errno = errno;
730 cmd->pid = -1;
731 goto end_of_spawn;
732 }
733
734 if (pipe(notify_pipe))
735 notify_pipe[0] = notify_pipe[1] = -1;
736
737 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
738 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
739 if (null_fd < 0)
740 die_errno(_("open /dev/null failed"));
741 set_cloexec(null_fd);
742 }
743
744 childenv = prep_childenv(cmd->env);
745 atfork_prepare(&as);
746
747 /*
748 * NOTE: In order to prevent deadlocking when using threads special
749 * care should be taken with the function calls made in between the
750 * fork() and exec() calls. No calls should be made to functions which
751 * require acquiring a lock (e.g. malloc) as the lock could have been
752 * held by another thread at the time of forking, causing the lock to
753 * never be released in the child process. This means only
754 * Async-Signal-Safe functions are permitted in the child.
755 */
756 cmd->pid = fork();
757 failed_errno = errno;
758 if (!cmd->pid) {
759 int sig;
760 /*
761 * Ensure the default die/error/warn routines do not get
762 * called, they can take stdio locks and malloc.
763 */
764 set_die_routine(child_die_fn);
765 set_error_routine(child_error_fn);
766 set_warn_routine(child_warn_fn);
767
768 close(notify_pipe[0]);
769 set_cloexec(notify_pipe[1]);
770 child_notifier = notify_pipe[1];
771
772 if (cmd->no_stdin)
773 child_dup2(null_fd, 0);
774 else if (need_in) {
775 child_dup2(fdin[0], 0);
776 child_close_pair(fdin);
777 } else if (cmd->in) {
778 child_dup2(cmd->in, 0);
779 child_close(cmd->in);
780 }
781
782 if (cmd->no_stderr)
783 child_dup2(null_fd, 2);
784 else if (need_err) {
785 child_dup2(fderr[1], 2);
786 child_close_pair(fderr);
787 } else if (cmd->err > 1) {
788 child_dup2(cmd->err, 2);
789 child_close(cmd->err);
790 }
791
792 if (cmd->no_stdout)
793 child_dup2(null_fd, 1);
794 else if (cmd->stdout_to_stderr)
795 child_dup2(2, 1);
796 else if (need_out) {
797 child_dup2(fdout[1], 1);
798 child_close_pair(fdout);
799 } else if (cmd->out > 1) {
800 child_dup2(cmd->out, 1);
801 child_close(cmd->out);
802 }
803
804 if (cmd->dir && chdir(cmd->dir))
805 child_die(CHILD_ERR_CHDIR);
806
807 /*
808 * restore default signal handlers here, in case
809 * we catch a signal right before execve below
810 */
811 for (sig = 1; sig < NSIG; sig++) {
812 /* ignored signals get reset to SIG_DFL on execve */
813 if (signal(sig, SIG_DFL) == SIG_IGN)
814 signal(sig, SIG_IGN);
815 }
816
817 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
818 child_die(CHILD_ERR_SIGPROCMASK);
819
820 /*
821 * Attempt to exec using the command and arguments starting at
822 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
823 * be used in the event exec failed with ENOEXEC at which point
824 * we will try to interpret the command using 'sh'.
825 */
826 execve(argv.argv[1], (char *const *) argv.argv + 1,
827 (char *const *) childenv);
828 if (errno == ENOEXEC)
829 execve(argv.argv[0], (char *const *) argv.argv,
830 (char *const *) childenv);
831
832 if (errno == ENOENT) {
833 if (cmd->silent_exec_failure)
834 child_die(CHILD_ERR_SILENT);
835 child_die(CHILD_ERR_ENOENT);
836 } else {
837 child_die(CHILD_ERR_ERRNO);
838 }
839 }
840 atfork_parent(&as);
841 if (cmd->pid < 0)
842 error_errno("cannot fork() for %s", cmd->argv[0]);
843 else if (cmd->clean_on_exit)
844 mark_child_for_cleanup(cmd->pid, cmd);
845
846 /*
847 * Wait for child's exec. If the exec succeeds (or if fork()
848 * failed), EOF is seen immediately by the parent. Otherwise, the
849 * child process sends a child_err struct.
850 * Note that use of this infrastructure is completely advisory,
851 * therefore, we keep error checks minimal.
852 */
853 close(notify_pipe[1]);
854 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
855 /*
856 * At this point we know that fork() succeeded, but exec()
857 * failed. Errors have been reported to our stderr.
858 */
859 wait_or_whine(cmd->pid, cmd->argv[0], 0);
860 child_err_spew(cmd, &cerr);
861 failed_errno = errno;
862 cmd->pid = -1;
863 }
864 close(notify_pipe[0]);
865
866 if (null_fd >= 0)
867 close(null_fd);
868 argv_array_clear(&argv);
869 free(childenv);
870}
871end_of_spawn:
872
873#else
874{
875 int fhin = 0, fhout = 1, fherr = 2;
876 const char **sargv = cmd->argv;
877 struct argv_array nargv = ARGV_ARRAY_INIT;
878
879 if (cmd->no_stdin)
880 fhin = open("/dev/null", O_RDWR);
881 else if (need_in)
882 fhin = dup(fdin[0]);
883 else if (cmd->in)
884 fhin = dup(cmd->in);
885
886 if (cmd->no_stderr)
887 fherr = open("/dev/null", O_RDWR);
888 else if (need_err)
889 fherr = dup(fderr[1]);
890 else if (cmd->err > 2)
891 fherr = dup(cmd->err);
892
893 if (cmd->no_stdout)
894 fhout = open("/dev/null", O_RDWR);
895 else if (cmd->stdout_to_stderr)
896 fhout = dup(fherr);
897 else if (need_out)
898 fhout = dup(fdout[1]);
899 else if (cmd->out > 1)
900 fhout = dup(cmd->out);
901
902 if (cmd->git_cmd)
903 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
904 else if (cmd->use_shell)
905 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
906
907 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
908 cmd->dir, fhin, fhout, fherr);
909 failed_errno = errno;
910 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
911 error_errno("cannot spawn %s", cmd->argv[0]);
912 if (cmd->clean_on_exit && cmd->pid >= 0)
913 mark_child_for_cleanup(cmd->pid, cmd);
914
915 argv_array_clear(&nargv);
916 cmd->argv = sargv;
917 if (fhin != 0)
918 close(fhin);
919 if (fhout != 1)
920 close(fhout);
921 if (fherr != 2)
922 close(fherr);
923}
924#endif
925
926 if (cmd->pid < 0) {
927 if (need_in)
928 close_pair(fdin);
929 else if (cmd->in)
930 close(cmd->in);
931 if (need_out)
932 close_pair(fdout);
933 else if (cmd->out)
934 close(cmd->out);
935 if (need_err)
936 close_pair(fderr);
937 else if (cmd->err)
938 close(cmd->err);
939 child_process_clear(cmd);
940 errno = failed_errno;
941 return -1;
942 }
943
944 if (need_in)
945 close(fdin[0]);
946 else if (cmd->in)
947 close(cmd->in);
948
949 if (need_out)
950 close(fdout[1]);
951 else if (cmd->out)
952 close(cmd->out);
953
954 if (need_err)
955 close(fderr[1]);
956 else if (cmd->err)
957 close(cmd->err);
958
959 return 0;
960}
961
962int finish_command(struct child_process *cmd)
963{
964 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
965 child_process_clear(cmd);
966 return ret;
967}
968
969int finish_command_in_signal(struct child_process *cmd)
970{
971 return wait_or_whine(cmd->pid, cmd->argv[0], 1);
972}
973
974
975int run_command(struct child_process *cmd)
976{
977 int code;
978
979 if (cmd->out < 0 || cmd->err < 0)
980 BUG("run_command with a pipe can cause deadlock");
981
982 code = start_command(cmd);
983 if (code)
984 return code;
985 return finish_command(cmd);
986}
987
988int run_command_v_opt(const char **argv, int opt)
989{
990 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
991}
992
993int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
994{
995 struct child_process cmd = CHILD_PROCESS_INIT;
996 cmd.argv = argv;
997 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
998 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
999 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1000 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1001 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1002 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1003 cmd.dir = dir;
1004 cmd.env = env;
1005 return run_command(&cmd);
1006}
1007
1008#ifndef NO_PTHREADS
1009static pthread_t main_thread;
1010static int main_thread_set;
1011static pthread_key_t async_key;
1012static pthread_key_t async_die_counter;
1013
1014static void *run_thread(void *data)
1015{
1016 struct async *async = data;
1017 intptr_t ret;
1018
1019 if (async->isolate_sigpipe) {
1020 sigset_t mask;
1021 sigemptyset(&mask);
1022 sigaddset(&mask, SIGPIPE);
1023 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1024 ret = error("unable to block SIGPIPE in async thread");
1025 return (void *)ret;
1026 }
1027 }
1028
1029 pthread_setspecific(async_key, async);
1030 ret = async->proc(async->proc_in, async->proc_out, async->data);
1031 return (void *)ret;
1032}
1033
1034static NORETURN void die_async(const char *err, va_list params)
1035{
1036 vreportf("fatal: ", err, params);
1037
1038 if (in_async()) {
1039 struct async *async = pthread_getspecific(async_key);
1040 if (async->proc_in >= 0)
1041 close(async->proc_in);
1042 if (async->proc_out >= 0)
1043 close(async->proc_out);
1044 pthread_exit((void *)128);
1045 }
1046
1047 exit(128);
1048}
1049
1050static int async_die_is_recursing(void)
1051{
1052 void *ret = pthread_getspecific(async_die_counter);
1053 pthread_setspecific(async_die_counter, (void *)1);
1054 return ret != NULL;
1055}
1056
1057int in_async(void)
1058{
1059 if (!main_thread_set)
1060 return 0; /* no asyncs started yet */
1061 return !pthread_equal(main_thread, pthread_self());
1062}
1063
1064static void NORETURN async_exit(int code)
1065{
1066 pthread_exit((void *)(intptr_t)code);
1067}
1068
1069#else
1070
1071static struct {
1072 void (**handlers)(void);
1073 size_t nr;
1074 size_t alloc;
1075} git_atexit_hdlrs;
1076
1077static int git_atexit_installed;
1078
1079static void git_atexit_dispatch(void)
1080{
1081 size_t i;
1082
1083 for (i=git_atexit_hdlrs.nr ; i ; i--)
1084 git_atexit_hdlrs.handlers[i-1]();
1085}
1086
1087static void git_atexit_clear(void)
1088{
1089 free(git_atexit_hdlrs.handlers);
1090 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1091 git_atexit_installed = 0;
1092}
1093
1094#undef atexit
1095int git_atexit(void (*handler)(void))
1096{
1097 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1098 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1099 if (!git_atexit_installed) {
1100 if (atexit(&git_atexit_dispatch))
1101 return -1;
1102 git_atexit_installed = 1;
1103 }
1104 return 0;
1105}
1106#define atexit git_atexit
1107
1108static int process_is_async;
1109int in_async(void)
1110{
1111 return process_is_async;
1112}
1113
1114static void NORETURN async_exit(int code)
1115{
1116 exit(code);
1117}
1118
1119#endif
1120
1121void check_pipe(int err)
1122{
1123 if (err == EPIPE) {
1124 if (in_async())
1125 async_exit(141);
1126
1127 signal(SIGPIPE, SIG_DFL);
1128 raise(SIGPIPE);
1129 /* Should never happen, but just in case... */
1130 exit(141);
1131 }
1132}
1133
1134int start_async(struct async *async)
1135{
1136 int need_in, need_out;
1137 int fdin[2], fdout[2];
1138 int proc_in, proc_out;
1139
1140 need_in = async->in < 0;
1141 if (need_in) {
1142 if (pipe(fdin) < 0) {
1143 if (async->out > 0)
1144 close(async->out);
1145 return error_errno("cannot create pipe");
1146 }
1147 async->in = fdin[1];
1148 }
1149
1150 need_out = async->out < 0;
1151 if (need_out) {
1152 if (pipe(fdout) < 0) {
1153 if (need_in)
1154 close_pair(fdin);
1155 else if (async->in)
1156 close(async->in);
1157 return error_errno("cannot create pipe");
1158 }
1159 async->out = fdout[0];
1160 }
1161
1162 if (need_in)
1163 proc_in = fdin[0];
1164 else if (async->in)
1165 proc_in = async->in;
1166 else
1167 proc_in = -1;
1168
1169 if (need_out)
1170 proc_out = fdout[1];
1171 else if (async->out)
1172 proc_out = async->out;
1173 else
1174 proc_out = -1;
1175
1176#ifdef NO_PTHREADS
1177 /* Flush stdio before fork() to avoid cloning buffers */
1178 fflush(NULL);
1179
1180 async->pid = fork();
1181 if (async->pid < 0) {
1182 error_errno("fork (async) failed");
1183 goto error;
1184 }
1185 if (!async->pid) {
1186 if (need_in)
1187 close(fdin[1]);
1188 if (need_out)
1189 close(fdout[0]);
1190 git_atexit_clear();
1191 process_is_async = 1;
1192 exit(!!async->proc(proc_in, proc_out, async->data));
1193 }
1194
1195 mark_child_for_cleanup(async->pid, NULL);
1196
1197 if (need_in)
1198 close(fdin[0]);
1199 else if (async->in)
1200 close(async->in);
1201
1202 if (need_out)
1203 close(fdout[1]);
1204 else if (async->out)
1205 close(async->out);
1206#else
1207 if (!main_thread_set) {
1208 /*
1209 * We assume that the first time that start_async is called
1210 * it is from the main thread.
1211 */
1212 main_thread_set = 1;
1213 main_thread = pthread_self();
1214 pthread_key_create(&async_key, NULL);
1215 pthread_key_create(&async_die_counter, NULL);
1216 set_die_routine(die_async);
1217 set_die_is_recursing_routine(async_die_is_recursing);
1218 }
1219
1220 if (proc_in >= 0)
1221 set_cloexec(proc_in);
1222 if (proc_out >= 0)
1223 set_cloexec(proc_out);
1224 async->proc_in = proc_in;
1225 async->proc_out = proc_out;
1226 {
1227 int err = pthread_create(&async->tid, NULL, run_thread, async);
1228 if (err) {
1229 error_errno("cannot create thread");
1230 goto error;
1231 }
1232 }
1233#endif
1234 return 0;
1235
1236error:
1237 if (need_in)
1238 close_pair(fdin);
1239 else if (async->in)
1240 close(async->in);
1241
1242 if (need_out)
1243 close_pair(fdout);
1244 else if (async->out)
1245 close(async->out);
1246 return -1;
1247}
1248
1249int finish_async(struct async *async)
1250{
1251#ifdef NO_PTHREADS
1252 return wait_or_whine(async->pid, "child process", 0);
1253#else
1254 void *ret = (void *)(intptr_t)(-1);
1255
1256 if (pthread_join(async->tid, &ret))
1257 error("pthread_join failed");
1258 return (int)(intptr_t)ret;
1259#endif
1260}
1261
1262const char *find_hook(const char *name)
1263{
1264 static struct strbuf path = STRBUF_INIT;
1265
1266 strbuf_reset(&path);
1267 strbuf_git_path(&path, "hooks/%s", name);
1268 if (access(path.buf, X_OK) < 0) {
1269 int err = errno;
1270
1271#ifdef STRIP_EXTENSION
1272 strbuf_addstr(&path, STRIP_EXTENSION);
1273 if (access(path.buf, X_OK) >= 0)
1274 return path.buf;
1275 if (errno == EACCES)
1276 err = errno;
1277#endif
1278
1279 if (err == EACCES && advice_ignored_hook) {
1280 static struct string_list advise_given = STRING_LIST_INIT_DUP;
1281
1282 if (!string_list_lookup(&advise_given, name)) {
1283 string_list_insert(&advise_given, name);
1284 advise(_("The '%s' hook was ignored because "
1285 "it's not set as executable.\n"
1286 "You can disable this warning with "
1287 "`git config advice.ignoredHook false`."),
1288 path.buf);
1289 }
1290 }
1291 return NULL;
1292 }
1293 return path.buf;
1294}
1295
1296int run_hook_ve(const char *const *env, const char *name, va_list args)
1297{
1298 struct child_process hook = CHILD_PROCESS_INIT;
1299 const char *p;
1300
1301 p = find_hook(name);
1302 if (!p)
1303 return 0;
1304
1305 argv_array_push(&hook.args, p);
1306 while ((p = va_arg(args, const char *)))
1307 argv_array_push(&hook.args, p);
1308 hook.env = env;
1309 hook.no_stdin = 1;
1310 hook.stdout_to_stderr = 1;
1311
1312 return run_command(&hook);
1313}
1314
1315int run_hook_le(const char *const *env, const char *name, ...)
1316{
1317 va_list args;
1318 int ret;
1319
1320 va_start(args, name);
1321 ret = run_hook_ve(env, name, args);
1322 va_end(args);
1323
1324 return ret;
1325}
1326
1327struct io_pump {
1328 /* initialized by caller */
1329 int fd;
1330 int type; /* POLLOUT or POLLIN */
1331 union {
1332 struct {
1333 const char *buf;
1334 size_t len;
1335 } out;
1336 struct {
1337 struct strbuf *buf;
1338 size_t hint;
1339 } in;
1340 } u;
1341
1342 /* returned by pump_io */
1343 int error; /* 0 for success, otherwise errno */
1344
1345 /* internal use */
1346 struct pollfd *pfd;
1347};
1348
1349static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1350{
1351 int pollsize = 0;
1352 int i;
1353
1354 for (i = 0; i < nr; i++) {
1355 struct io_pump *io = &slots[i];
1356 if (io->fd < 0)
1357 continue;
1358 pfd[pollsize].fd = io->fd;
1359 pfd[pollsize].events = io->type;
1360 io->pfd = &pfd[pollsize++];
1361 }
1362
1363 if (!pollsize)
1364 return 0;
1365
1366 if (poll(pfd, pollsize, -1) < 0) {
1367 if (errno == EINTR)
1368 return 1;
1369 die_errno("poll failed");
1370 }
1371
1372 for (i = 0; i < nr; i++) {
1373 struct io_pump *io = &slots[i];
1374
1375 if (io->fd < 0)
1376 continue;
1377
1378 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1379 continue;
1380
1381 if (io->type == POLLOUT) {
1382 ssize_t len = xwrite(io->fd,
1383 io->u.out.buf, io->u.out.len);
1384 if (len < 0) {
1385 io->error = errno;
1386 close(io->fd);
1387 io->fd = -1;
1388 } else {
1389 io->u.out.buf += len;
1390 io->u.out.len -= len;
1391 if (!io->u.out.len) {
1392 close(io->fd);
1393 io->fd = -1;
1394 }
1395 }
1396 }
1397
1398 if (io->type == POLLIN) {
1399 ssize_t len = strbuf_read_once(io->u.in.buf,
1400 io->fd, io->u.in.hint);
1401 if (len < 0)
1402 io->error = errno;
1403 if (len <= 0) {
1404 close(io->fd);
1405 io->fd = -1;
1406 }
1407 }
1408 }
1409
1410 return 1;
1411}
1412
1413static int pump_io(struct io_pump *slots, int nr)
1414{
1415 struct pollfd *pfd;
1416 int i;
1417
1418 for (i = 0; i < nr; i++)
1419 slots[i].error = 0;
1420
1421 ALLOC_ARRAY(pfd, nr);
1422 while (pump_io_round(slots, nr, pfd))
1423 ; /* nothing */
1424 free(pfd);
1425
1426 /* There may be multiple errno values, so just pick the first. */
1427 for (i = 0; i < nr; i++) {
1428 if (slots[i].error) {
1429 errno = slots[i].error;
1430 return -1;
1431 }
1432 }
1433 return 0;
1434}
1435
1436
1437int pipe_command(struct child_process *cmd,
1438 const char *in, size_t in_len,
1439 struct strbuf *out, size_t out_hint,
1440 struct strbuf *err, size_t err_hint)
1441{
1442 struct io_pump io[3];
1443 int nr = 0;
1444
1445 if (in)
1446 cmd->in = -1;
1447 if (out)
1448 cmd->out = -1;
1449 if (err)
1450 cmd->err = -1;
1451
1452 if (start_command(cmd) < 0)
1453 return -1;
1454
1455 if (in) {
1456 io[nr].fd = cmd->in;
1457 io[nr].type = POLLOUT;
1458 io[nr].u.out.buf = in;
1459 io[nr].u.out.len = in_len;
1460 nr++;
1461 }
1462 if (out) {
1463 io[nr].fd = cmd->out;
1464 io[nr].type = POLLIN;
1465 io[nr].u.in.buf = out;
1466 io[nr].u.in.hint = out_hint;
1467 nr++;
1468 }
1469 if (err) {
1470 io[nr].fd = cmd->err;
1471 io[nr].type = POLLIN;
1472 io[nr].u.in.buf = err;
1473 io[nr].u.in.hint = err_hint;
1474 nr++;
1475 }
1476
1477 if (pump_io(io, nr) < 0) {
1478 finish_command(cmd); /* throw away exit code */
1479 return -1;
1480 }
1481
1482 return finish_command(cmd);
1483}
1484
1485enum child_state {
1486 GIT_CP_FREE,
1487 GIT_CP_WORKING,
1488 GIT_CP_WAIT_CLEANUP,
1489};
1490
1491struct parallel_processes {
1492 void *data;
1493
1494 int max_processes;
1495 int nr_processes;
1496
1497 get_next_task_fn get_next_task;
1498 start_failure_fn start_failure;
1499 task_finished_fn task_finished;
1500
1501 struct {
1502 enum child_state state;
1503 struct child_process process;
1504 struct strbuf err;
1505 void *data;
1506 } *children;
1507 /*
1508 * The struct pollfd is logically part of *children,
1509 * but the system call expects it as its own array.
1510 */
1511 struct pollfd *pfd;
1512
1513 unsigned shutdown : 1;
1514
1515 int output_owner;
1516 struct strbuf buffered_output; /* of finished children */
1517};
1518
1519static int default_start_failure(struct strbuf *out,
1520 void *pp_cb,
1521 void *pp_task_cb)
1522{
1523 return 0;
1524}
1525
1526static int default_task_finished(int result,
1527 struct strbuf *out,
1528 void *pp_cb,
1529 void *pp_task_cb)
1530{
1531 return 0;
1532}
1533
1534static void kill_children(struct parallel_processes *pp, int signo)
1535{
1536 int i, n = pp->max_processes;
1537
1538 for (i = 0; i < n; i++)
1539 if (pp->children[i].state == GIT_CP_WORKING)
1540 kill(pp->children[i].process.pid, signo);
1541}
1542
1543static struct parallel_processes *pp_for_signal;
1544
1545static void handle_children_on_signal(int signo)
1546{
1547 kill_children(pp_for_signal, signo);
1548 sigchain_pop(signo);
1549 raise(signo);
1550}
1551
1552static void pp_init(struct parallel_processes *pp,
1553 int n,
1554 get_next_task_fn get_next_task,
1555 start_failure_fn start_failure,
1556 task_finished_fn task_finished,
1557 void *data)
1558{
1559 int i;
1560
1561 if (n < 1)
1562 n = online_cpus();
1563
1564 pp->max_processes = n;
1565
1566 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1567
1568 pp->data = data;
1569 if (!get_next_task)
1570 BUG("you need to specify a get_next_task function");
1571 pp->get_next_task = get_next_task;
1572
1573 pp->start_failure = start_failure ? start_failure : default_start_failure;
1574 pp->task_finished = task_finished ? task_finished : default_task_finished;
1575
1576 pp->nr_processes = 0;
1577 pp->output_owner = 0;
1578 pp->shutdown = 0;
1579 pp->children = xcalloc(n, sizeof(*pp->children));
1580 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1581 strbuf_init(&pp->buffered_output, 0);
1582
1583 for (i = 0; i < n; i++) {
1584 strbuf_init(&pp->children[i].err, 0);
1585 child_process_init(&pp->children[i].process);
1586 pp->pfd[i].events = POLLIN | POLLHUP;
1587 pp->pfd[i].fd = -1;
1588 }
1589
1590 pp_for_signal = pp;
1591 sigchain_push_common(handle_children_on_signal);
1592}
1593
1594static void pp_cleanup(struct parallel_processes *pp)
1595{
1596 int i;
1597
1598 trace_printf("run_processes_parallel: done");
1599 for (i = 0; i < pp->max_processes; i++) {
1600 strbuf_release(&pp->children[i].err);
1601 child_process_clear(&pp->children[i].process);
1602 }
1603
1604 free(pp->children);
1605 free(pp->pfd);
1606
1607 /*
1608 * When get_next_task added messages to the buffer in its last
1609 * iteration, the buffered output is non empty.
1610 */
1611 strbuf_write(&pp->buffered_output, stderr);
1612 strbuf_release(&pp->buffered_output);
1613
1614 sigchain_pop_common();
1615}
1616
1617/* returns
1618 * 0 if a new task was started.
1619 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1620 * problem with starting a new command)
1621 * <0 no new job was started, user wishes to shutdown early. Use negative code
1622 * to signal the children.
1623 */
1624static int pp_start_one(struct parallel_processes *pp)
1625{
1626 int i, code;
1627
1628 for (i = 0; i < pp->max_processes; i++)
1629 if (pp->children[i].state == GIT_CP_FREE)
1630 break;
1631 if (i == pp->max_processes)
1632 BUG("bookkeeping is hard");
1633
1634 code = pp->get_next_task(&pp->children[i].process,
1635 &pp->children[i].err,
1636 pp->data,
1637 &pp->children[i].data);
1638 if (!code) {
1639 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1640 strbuf_reset(&pp->children[i].err);
1641 return 1;
1642 }
1643 pp->children[i].process.err = -1;
1644 pp->children[i].process.stdout_to_stderr = 1;
1645 pp->children[i].process.no_stdin = 1;
1646
1647 if (start_command(&pp->children[i].process)) {
1648 code = pp->start_failure(&pp->children[i].err,
1649 pp->data,
1650 pp->children[i].data);
1651 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1652 strbuf_reset(&pp->children[i].err);
1653 if (code)
1654 pp->shutdown = 1;
1655 return code;
1656 }
1657
1658 pp->nr_processes++;
1659 pp->children[i].state = GIT_CP_WORKING;
1660 pp->pfd[i].fd = pp->children[i].process.err;
1661 return 0;
1662}
1663
1664static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1665{
1666 int i;
1667
1668 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1669 if (errno == EINTR)
1670 continue;
1671 pp_cleanup(pp);
1672 die_errno("poll");
1673 }
1674
1675 /* Buffer output from all pipes. */
1676 for (i = 0; i < pp->max_processes; i++) {
1677 if (pp->children[i].state == GIT_CP_WORKING &&
1678 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1679 int n = strbuf_read_once(&pp->children[i].err,
1680 pp->children[i].process.err, 0);
1681 if (n == 0) {
1682 close(pp->children[i].process.err);
1683 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1684 } else if (n < 0)
1685 if (errno != EAGAIN)
1686 die_errno("read");
1687 }
1688 }
1689}
1690
1691static void pp_output(struct parallel_processes *pp)
1692{
1693 int i = pp->output_owner;
1694 if (pp->children[i].state == GIT_CP_WORKING &&
1695 pp->children[i].err.len) {
1696 strbuf_write(&pp->children[i].err, stderr);
1697 strbuf_reset(&pp->children[i].err);
1698 }
1699}
1700
1701static int pp_collect_finished(struct parallel_processes *pp)
1702{
1703 int i, code;
1704 int n = pp->max_processes;
1705 int result = 0;
1706
1707 while (pp->nr_processes > 0) {
1708 for (i = 0; i < pp->max_processes; i++)
1709 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1710 break;
1711 if (i == pp->max_processes)
1712 break;
1713
1714 code = finish_command(&pp->children[i].process);
1715
1716 code = pp->task_finished(code,
1717 &pp->children[i].err, pp->data,
1718 pp->children[i].data);
1719
1720 if (code)
1721 result = code;
1722 if (code < 0)
1723 break;
1724
1725 pp->nr_processes--;
1726 pp->children[i].state = GIT_CP_FREE;
1727 pp->pfd[i].fd = -1;
1728 child_process_init(&pp->children[i].process);
1729
1730 if (i != pp->output_owner) {
1731 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1732 strbuf_reset(&pp->children[i].err);
1733 } else {
1734 strbuf_write(&pp->children[i].err, stderr);
1735 strbuf_reset(&pp->children[i].err);
1736
1737 /* Output all other finished child processes */
1738 strbuf_write(&pp->buffered_output, stderr);
1739 strbuf_reset(&pp->buffered_output);
1740
1741 /*
1742 * Pick next process to output live.
1743 * NEEDSWORK:
1744 * For now we pick it randomly by doing a round
1745 * robin. Later we may want to pick the one with
1746 * the most output or the longest or shortest
1747 * running process time.
1748 */
1749 for (i = 0; i < n; i++)
1750 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1751 break;
1752 pp->output_owner = (pp->output_owner + i) % n;
1753 }
1754 }
1755 return result;
1756}
1757
1758int run_processes_parallel(int n,
1759 get_next_task_fn get_next_task,
1760 start_failure_fn start_failure,
1761 task_finished_fn task_finished,
1762 void *pp_cb)
1763{
1764 int i, code;
1765 int output_timeout = 100;
1766 int spawn_cap = 4;
1767 struct parallel_processes pp;
1768
1769 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1770 while (1) {
1771 for (i = 0;
1772 i < spawn_cap && !pp.shutdown &&
1773 pp.nr_processes < pp.max_processes;
1774 i++) {
1775 code = pp_start_one(&pp);
1776 if (!code)
1777 continue;
1778 if (code < 0) {
1779 pp.shutdown = 1;
1780 kill_children(&pp, -code);
1781 }
1782 break;
1783 }
1784 if (!pp.nr_processes)
1785 break;
1786 pp_buffer_stderr(&pp, output_timeout);
1787 pp_output(&pp);
1788 code = pp_collect_finished(&pp);
1789 if (code) {
1790 pp.shutdown = 1;
1791 if (code < 0)
1792 kill_children(&pp, -code);
1793 }
1794 }
1795
1796 pp_cleanup(&pp);
1797 return 0;
1798}