refs / ref-cache.con commit t4205: sort log output in a hash-independent way (2a73022)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
   8{
   9        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  10        dir->entries[dir->nr++] = entry;
  11        /* optimize for the case that entries are added in order */
  12        if (dir->nr == 1 ||
  13            (dir->nr == dir->sorted + 1 &&
  14             strcmp(dir->entries[dir->nr - 2]->name,
  15                    dir->entries[dir->nr - 1]->name) < 0))
  16                dir->sorted = dir->nr;
  17}
  18
  19struct ref_dir *get_ref_dir(struct ref_entry *entry)
  20{
  21        struct ref_dir *dir;
  22        assert(entry->flag & REF_DIR);
  23        dir = &entry->u.subdir;
  24        if (entry->flag & REF_INCOMPLETE) {
  25                if (!dir->cache->fill_ref_dir)
  26                        die("BUG: incomplete ref_store without fill_ref_dir function");
  27
  28                dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
  29                entry->flag &= ~REF_INCOMPLETE;
  30        }
  31        return dir;
  32}
  33
  34struct ref_entry *create_ref_entry(const char *refname,
  35                                   const struct object_id *oid, int flag)
  36{
  37        struct ref_entry *ref;
  38
  39        FLEX_ALLOC_STR(ref, name, refname);
  40        oidcpy(&ref->u.value.oid, oid);
  41        ref->flag = flag;
  42        return ref;
  43}
  44
  45struct ref_cache *create_ref_cache(struct ref_store *refs,
  46                                   fill_ref_dir_fn *fill_ref_dir)
  47{
  48        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  49
  50        ret->ref_store = refs;
  51        ret->fill_ref_dir = fill_ref_dir;
  52        ret->root = create_dir_entry(ret, "", 0, 1);
  53        return ret;
  54}
  55
  56static void clear_ref_dir(struct ref_dir *dir);
  57
  58static void free_ref_entry(struct ref_entry *entry)
  59{
  60        if (entry->flag & REF_DIR) {
  61                /*
  62                 * Do not use get_ref_dir() here, as that might
  63                 * trigger the reading of loose refs.
  64                 */
  65                clear_ref_dir(&entry->u.subdir);
  66        }
  67        free(entry);
  68}
  69
  70void free_ref_cache(struct ref_cache *cache)
  71{
  72        free_ref_entry(cache->root);
  73        free(cache);
  74}
  75
  76/*
  77 * Clear and free all entries in dir, recursively.
  78 */
  79static void clear_ref_dir(struct ref_dir *dir)
  80{
  81        int i;
  82        for (i = 0; i < dir->nr; i++)
  83                free_ref_entry(dir->entries[i]);
  84        FREE_AND_NULL(dir->entries);
  85        dir->sorted = dir->nr = dir->alloc = 0;
  86}
  87
  88struct ref_entry *create_dir_entry(struct ref_cache *cache,
  89                                   const char *dirname, size_t len,
  90                                   int incomplete)
  91{
  92        struct ref_entry *direntry;
  93
  94        FLEX_ALLOC_MEM(direntry, name, dirname, len);
  95        direntry->u.subdir.cache = cache;
  96        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
  97        return direntry;
  98}
  99
 100static int ref_entry_cmp(const void *a, const void *b)
 101{
 102        struct ref_entry *one = *(struct ref_entry **)a;
 103        struct ref_entry *two = *(struct ref_entry **)b;
 104        return strcmp(one->name, two->name);
 105}
 106
 107static void sort_ref_dir(struct ref_dir *dir);
 108
 109struct string_slice {
 110        size_t len;
 111        const char *str;
 112};
 113
 114static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 115{
 116        const struct string_slice *key = key_;
 117        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 118        int cmp = strncmp(key->str, ent->name, key->len);
 119        if (cmp)
 120                return cmp;
 121        return '\0' - (unsigned char)ent->name[key->len];
 122}
 123
 124int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 125{
 126        struct ref_entry **r;
 127        struct string_slice key;
 128
 129        if (refname == NULL || !dir->nr)
 130                return -1;
 131
 132        sort_ref_dir(dir);
 133        key.len = len;
 134        key.str = refname;
 135        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 136                    ref_entry_cmp_sslice);
 137
 138        if (r == NULL)
 139                return -1;
 140
 141        return r - dir->entries;
 142}
 143
 144/*
 145 * Search for a directory entry directly within dir (without
 146 * recursing).  Sort dir if necessary.  subdirname must be a directory
 147 * name (i.e., end in '/').  If mkdir is set, then create the
 148 * directory if it is missing; otherwise, return NULL if the desired
 149 * directory cannot be found.  dir must already be complete.
 150 */
 151static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 152                                         const char *subdirname, size_t len,
 153                                         int mkdir)
 154{
 155        int entry_index = search_ref_dir(dir, subdirname, len);
 156        struct ref_entry *entry;
 157        if (entry_index == -1) {
 158                if (!mkdir)
 159                        return NULL;
 160                /*
 161                 * Since dir is complete, the absence of a subdir
 162                 * means that the subdir really doesn't exist;
 163                 * therefore, create an empty record for it but mark
 164                 * the record complete.
 165                 */
 166                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 167                add_entry_to_dir(dir, entry);
 168        } else {
 169                entry = dir->entries[entry_index];
 170        }
 171        return get_ref_dir(entry);
 172}
 173
 174/*
 175 * If refname is a reference name, find the ref_dir within the dir
 176 * tree that should hold refname. If refname is a directory name
 177 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
 178 * represent the top-level directory and must already be complete.
 179 * Sort ref_dirs and recurse into subdirectories as necessary. If
 180 * mkdir is set, then create any missing directories; otherwise,
 181 * return NULL if the desired directory cannot be found.
 182 */
 183static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 184                                           const char *refname, int mkdir)
 185{
 186        const char *slash;
 187        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 188                size_t dirnamelen = slash - refname + 1;
 189                struct ref_dir *subdir;
 190                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 191                if (!subdir) {
 192                        dir = NULL;
 193                        break;
 194                }
 195                dir = subdir;
 196        }
 197
 198        return dir;
 199}
 200
 201struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 202{
 203        int entry_index;
 204        struct ref_entry *entry;
 205        dir = find_containing_dir(dir, refname, 0);
 206        if (!dir)
 207                return NULL;
 208        entry_index = search_ref_dir(dir, refname, strlen(refname));
 209        if (entry_index == -1)
 210                return NULL;
 211        entry = dir->entries[entry_index];
 212        return (entry->flag & REF_DIR) ? NULL : entry;
 213}
 214
 215int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 216{
 217        int refname_len = strlen(refname);
 218        int entry_index;
 219        struct ref_entry *entry;
 220        int is_dir = refname[refname_len - 1] == '/';
 221        if (is_dir) {
 222                /*
 223                 * refname represents a reference directory.  Remove
 224                 * the trailing slash; otherwise we will get the
 225                 * directory *representing* refname rather than the
 226                 * one *containing* it.
 227                 */
 228                char *dirname = xmemdupz(refname, refname_len - 1);
 229                dir = find_containing_dir(dir, dirname, 0);
 230                free(dirname);
 231        } else {
 232                dir = find_containing_dir(dir, refname, 0);
 233        }
 234        if (!dir)
 235                return -1;
 236        entry_index = search_ref_dir(dir, refname, refname_len);
 237        if (entry_index == -1)
 238                return -1;
 239        entry = dir->entries[entry_index];
 240
 241        MOVE_ARRAY(&dir->entries[entry_index],
 242                   &dir->entries[entry_index + 1], dir->nr - entry_index - 1);
 243        dir->nr--;
 244        if (dir->sorted > entry_index)
 245                dir->sorted--;
 246        free_ref_entry(entry);
 247        return dir->nr;
 248}
 249
 250int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 251{
 252        dir = find_containing_dir(dir, ref->name, 1);
 253        if (!dir)
 254                return -1;
 255        add_entry_to_dir(dir, ref);
 256        return 0;
 257}
 258
 259/*
 260 * Emit a warning and return true iff ref1 and ref2 have the same name
 261 * and the same oid. Die if they have the same name but different
 262 * oids.
 263 */
 264static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 265{
 266        if (strcmp(ref1->name, ref2->name))
 267                return 0;
 268
 269        /* Duplicate name; make sure that they don't conflict: */
 270
 271        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 272                /* This is impossible by construction */
 273                die("Reference directory conflict: %s", ref1->name);
 274
 275        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 276                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 277
 278        warning("Duplicated ref: %s", ref1->name);
 279        return 1;
 280}
 281
 282/*
 283 * Sort the entries in dir non-recursively (if they are not already
 284 * sorted) and remove any duplicate entries.
 285 */
 286static void sort_ref_dir(struct ref_dir *dir)
 287{
 288        int i, j;
 289        struct ref_entry *last = NULL;
 290
 291        /*
 292         * This check also prevents passing a zero-length array to qsort(),
 293         * which is a problem on some platforms.
 294         */
 295        if (dir->sorted == dir->nr)
 296                return;
 297
 298        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 299
 300        /* Remove any duplicates: */
 301        for (i = 0, j = 0; j < dir->nr; j++) {
 302                struct ref_entry *entry = dir->entries[j];
 303                if (last && is_dup_ref(last, entry))
 304                        free_ref_entry(entry);
 305                else
 306                        last = dir->entries[i++] = entry;
 307        }
 308        dir->sorted = dir->nr = i;
 309}
 310
 311enum prefix_state {
 312        /* All refs within the directory would match prefix: */
 313        PREFIX_CONTAINS_DIR,
 314
 315        /* Some, but not all, refs within the directory might match prefix: */
 316        PREFIX_WITHIN_DIR,
 317
 318        /* No refs within the directory could possibly match prefix: */
 319        PREFIX_EXCLUDES_DIR
 320};
 321
 322/*
 323 * Return a `prefix_state` constant describing the relationship
 324 * between the directory with the specified `dirname` and `prefix`.
 325 */
 326static enum prefix_state overlaps_prefix(const char *dirname,
 327                                         const char *prefix)
 328{
 329        while (*prefix && *dirname == *prefix) {
 330                dirname++;
 331                prefix++;
 332        }
 333        if (!*prefix)
 334                return PREFIX_CONTAINS_DIR;
 335        else if (!*dirname)
 336                return PREFIX_WITHIN_DIR;
 337        else
 338                return PREFIX_EXCLUDES_DIR;
 339}
 340
 341/*
 342 * Load all of the refs from `dir` (recursively) that could possibly
 343 * contain references matching `prefix` into our in-memory cache. If
 344 * `prefix` is NULL, prime unconditionally.
 345 */
 346static void prime_ref_dir(struct ref_dir *dir, const char *prefix)
 347{
 348        /*
 349         * The hard work of loading loose refs is done by get_ref_dir(), so we
 350         * just need to recurse through all of the sub-directories. We do not
 351         * even need to care about sorting, as traversal order does not matter
 352         * to us.
 353         */
 354        int i;
 355        for (i = 0; i < dir->nr; i++) {
 356                struct ref_entry *entry = dir->entries[i];
 357                if (!(entry->flag & REF_DIR)) {
 358                        /* Not a directory; no need to recurse. */
 359                } else if (!prefix) {
 360                        /* Recurse in any case: */
 361                        prime_ref_dir(get_ref_dir(entry), NULL);
 362                } else {
 363                        switch (overlaps_prefix(entry->name, prefix)) {
 364                        case PREFIX_CONTAINS_DIR:
 365                                /*
 366                                 * Recurse, and from here down we
 367                                 * don't have to check the prefix
 368                                 * anymore:
 369                                 */
 370                                prime_ref_dir(get_ref_dir(entry), NULL);
 371                                break;
 372                        case PREFIX_WITHIN_DIR:
 373                                prime_ref_dir(get_ref_dir(entry), prefix);
 374                                break;
 375                        case PREFIX_EXCLUDES_DIR:
 376                                /* No need to prime this directory. */
 377                                break;
 378                        }
 379                }
 380        }
 381}
 382
 383/*
 384 * A level in the reference hierarchy that is currently being iterated
 385 * through.
 386 */
 387struct cache_ref_iterator_level {
 388        /*
 389         * The ref_dir being iterated over at this level. The ref_dir
 390         * is sorted before being stored here.
 391         */
 392        struct ref_dir *dir;
 393
 394        enum prefix_state prefix_state;
 395
 396        /*
 397         * The index of the current entry within dir (which might
 398         * itself be a directory). If index == -1, then the iteration
 399         * hasn't yet begun. If index == dir->nr, then the iteration
 400         * through this level is over.
 401         */
 402        int index;
 403};
 404
 405/*
 406 * Represent an iteration through a ref_dir in the memory cache. The
 407 * iteration recurses through subdirectories.
 408 */
 409struct cache_ref_iterator {
 410        struct ref_iterator base;
 411
 412        /*
 413         * The number of levels currently on the stack. This is always
 414         * at least 1, because when it becomes zero the iteration is
 415         * ended and this struct is freed.
 416         */
 417        size_t levels_nr;
 418
 419        /* The number of levels that have been allocated on the stack */
 420        size_t levels_alloc;
 421
 422        /*
 423         * Only include references with this prefix in the iteration.
 424         * The prefix is matched textually, without regard for path
 425         * component boundaries.
 426         */
 427        const char *prefix;
 428
 429        /*
 430         * A stack of levels. levels[0] is the uppermost level that is
 431         * being iterated over in this iteration. (This is not
 432         * necessary the top level in the references hierarchy. If we
 433         * are iterating through a subtree, then levels[0] will hold
 434         * the ref_dir for that subtree, and subsequent levels will go
 435         * on from there.)
 436         */
 437        struct cache_ref_iterator_level *levels;
 438};
 439
 440static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 441{
 442        struct cache_ref_iterator *iter =
 443                (struct cache_ref_iterator *)ref_iterator;
 444
 445        while (1) {
 446                struct cache_ref_iterator_level *level =
 447                        &iter->levels[iter->levels_nr - 1];
 448                struct ref_dir *dir = level->dir;
 449                struct ref_entry *entry;
 450                enum prefix_state entry_prefix_state;
 451
 452                if (level->index == -1)
 453                        sort_ref_dir(dir);
 454
 455                if (++level->index == level->dir->nr) {
 456                        /* This level is exhausted; pop up a level */
 457                        if (--iter->levels_nr == 0)
 458                                return ref_iterator_abort(ref_iterator);
 459
 460                        continue;
 461                }
 462
 463                entry = dir->entries[level->index];
 464
 465                if (level->prefix_state == PREFIX_WITHIN_DIR) {
 466                        entry_prefix_state = overlaps_prefix(entry->name, iter->prefix);
 467                        if (entry_prefix_state == PREFIX_EXCLUDES_DIR)
 468                                continue;
 469                } else {
 470                        entry_prefix_state = level->prefix_state;
 471                }
 472
 473                if (entry->flag & REF_DIR) {
 474                        /* push down a level */
 475                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 476                                   iter->levels_alloc);
 477
 478                        level = &iter->levels[iter->levels_nr++];
 479                        level->dir = get_ref_dir(entry);
 480                        level->prefix_state = entry_prefix_state;
 481                        level->index = -1;
 482                } else {
 483                        iter->base.refname = entry->name;
 484                        iter->base.oid = &entry->u.value.oid;
 485                        iter->base.flags = entry->flag;
 486                        return ITER_OK;
 487                }
 488        }
 489}
 490
 491static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 492                                   struct object_id *peeled)
 493{
 494        return peel_object(ref_iterator->oid, peeled);
 495}
 496
 497static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 498{
 499        struct cache_ref_iterator *iter =
 500                (struct cache_ref_iterator *)ref_iterator;
 501
 502        free((char *)iter->prefix);
 503        free(iter->levels);
 504        base_ref_iterator_free(ref_iterator);
 505        return ITER_DONE;
 506}
 507
 508static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 509        cache_ref_iterator_advance,
 510        cache_ref_iterator_peel,
 511        cache_ref_iterator_abort
 512};
 513
 514struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
 515                                              const char *prefix,
 516                                              int prime_dir)
 517{
 518        struct ref_dir *dir;
 519        struct cache_ref_iterator *iter;
 520        struct ref_iterator *ref_iterator;
 521        struct cache_ref_iterator_level *level;
 522
 523        dir = get_ref_dir(cache->root);
 524        if (prefix && *prefix)
 525                dir = find_containing_dir(dir, prefix, 0);
 526        if (!dir)
 527                /* There's nothing to iterate over. */
 528                return empty_ref_iterator_begin();
 529
 530        if (prime_dir)
 531                prime_ref_dir(dir, prefix);
 532
 533        iter = xcalloc(1, sizeof(*iter));
 534        ref_iterator = &iter->base;
 535        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable, 1);
 536        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 537
 538        iter->levels_nr = 1;
 539        level = &iter->levels[0];
 540        level->index = -1;
 541        level->dir = dir;
 542
 543        if (prefix && *prefix) {
 544                iter->prefix = xstrdup(prefix);
 545                level->prefix_state = PREFIX_WITHIN_DIR;
 546        } else {
 547                level->prefix_state = PREFIX_CONTAINS_DIR;
 548        }
 549
 550        return ref_iterator;
 551}