xdiff / xdiffi.con commit cvsserver: factor out git-log parsing logic (2c3af7e)
   1/*
   2 *  LibXDiff by Davide Libenzi ( File Differential Library )
   3 *  Copyright (C) 2003  Davide Libenzi
   4 *
   5 *  This library is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU Lesser General Public
   7 *  License as published by the Free Software Foundation; either
   8 *  version 2.1 of the License, or (at your option) any later version.
   9 *
  10 *  This library is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 *  Lesser General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU Lesser General Public
  16 *  License along with this library; if not, write to the Free Software
  17 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18 *
  19 *  Davide Libenzi <davidel@xmailserver.org>
  20 *
  21 */
  22
  23#include "xinclude.h"
  24
  25
  26
  27#define XDL_MAX_COST_MIN 256
  28#define XDL_HEUR_MIN_COST 256
  29#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
  30#define XDL_SNAKE_CNT 20
  31#define XDL_K_HEUR 4
  32
  33
  34
  35typedef struct s_xdpsplit {
  36        long i1, i2;
  37        int min_lo, min_hi;
  38} xdpsplit_t;
  39
  40
  41
  42
  43static long xdl_split(unsigned long const *ha1, long off1, long lim1,
  44                      unsigned long const *ha2, long off2, long lim2,
  45                      long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
  46                      xdalgoenv_t *xenv);
  47static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
  48
  49
  50
  51
  52
  53/*
  54 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
  55 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
  56 * the forward diagonal starting from (off1, off2) and the backward diagonal
  57 * starting from (lim1, lim2). If the K values on the same diagonal crosses
  58 * returns the furthest point of reach. We might end up having to expensive
  59 * cases using this algorithm is full, so a little bit of heuristic is needed
  60 * to cut the search and to return a suboptimal point.
  61 */
  62static long xdl_split(unsigned long const *ha1, long off1, long lim1,
  63                      unsigned long const *ha2, long off2, long lim2,
  64                      long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
  65                      xdalgoenv_t *xenv) {
  66        long dmin = off1 - lim2, dmax = lim1 - off2;
  67        long fmid = off1 - off2, bmid = lim1 - lim2;
  68        long odd = (fmid - bmid) & 1;
  69        long fmin = fmid, fmax = fmid;
  70        long bmin = bmid, bmax = bmid;
  71        long ec, d, i1, i2, prev1, best, dd, v, k;
  72
  73        /*
  74         * Set initial diagonal values for both forward and backward path.
  75         */
  76        kvdf[fmid] = off1;
  77        kvdb[bmid] = lim1;
  78
  79        for (ec = 1;; ec++) {
  80                int got_snake = 0;
  81
  82                /*
  83                 * We need to extent the diagonal "domain" by one. If the next
  84                 * values exits the box boundaries we need to change it in the
  85                 * opposite direction because (max - min) must be a power of two.
  86                 * Also we initialize the external K value to -1 so that we can
  87                 * avoid extra conditions check inside the core loop.
  88                 */
  89                if (fmin > dmin)
  90                        kvdf[--fmin - 1] = -1;
  91                else
  92                        ++fmin;
  93                if (fmax < dmax)
  94                        kvdf[++fmax + 1] = -1;
  95                else
  96                        --fmax;
  97
  98                for (d = fmax; d >= fmin; d -= 2) {
  99                        if (kvdf[d - 1] >= kvdf[d + 1])
 100                                i1 = kvdf[d - 1] + 1;
 101                        else
 102                                i1 = kvdf[d + 1];
 103                        prev1 = i1;
 104                        i2 = i1 - d;
 105                        for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
 106                        if (i1 - prev1 > xenv->snake_cnt)
 107                                got_snake = 1;
 108                        kvdf[d] = i1;
 109                        if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
 110                                spl->i1 = i1;
 111                                spl->i2 = i2;
 112                                spl->min_lo = spl->min_hi = 1;
 113                                return ec;
 114                        }
 115                }
 116
 117                /*
 118                 * We need to extent the diagonal "domain" by one. If the next
 119                 * values exits the box boundaries we need to change it in the
 120                 * opposite direction because (max - min) must be a power of two.
 121                 * Also we initialize the external K value to -1 so that we can
 122                 * avoid extra conditions check inside the core loop.
 123                 */
 124                if (bmin > dmin)
 125                        kvdb[--bmin - 1] = XDL_LINE_MAX;
 126                else
 127                        ++bmin;
 128                if (bmax < dmax)
 129                        kvdb[++bmax + 1] = XDL_LINE_MAX;
 130                else
 131                        --bmax;
 132
 133                for (d = bmax; d >= bmin; d -= 2) {
 134                        if (kvdb[d - 1] < kvdb[d + 1])
 135                                i1 = kvdb[d - 1];
 136                        else
 137                                i1 = kvdb[d + 1] - 1;
 138                        prev1 = i1;
 139                        i2 = i1 - d;
 140                        for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
 141                        if (prev1 - i1 > xenv->snake_cnt)
 142                                got_snake = 1;
 143                        kvdb[d] = i1;
 144                        if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
 145                                spl->i1 = i1;
 146                                spl->i2 = i2;
 147                                spl->min_lo = spl->min_hi = 1;
 148                                return ec;
 149                        }
 150                }
 151
 152                if (need_min)
 153                        continue;
 154
 155                /*
 156                 * If the edit cost is above the heuristic trigger and if
 157                 * we got a good snake, we sample current diagonals to see
 158                 * if some of the, have reached an "interesting" path. Our
 159                 * measure is a function of the distance from the diagonal
 160                 * corner (i1 + i2) penalized with the distance from the
 161                 * mid diagonal itself. If this value is above the current
 162                 * edit cost times a magic factor (XDL_K_HEUR) we consider
 163                 * it interesting.
 164                 */
 165                if (got_snake && ec > xenv->heur_min) {
 166                        for (best = 0, d = fmax; d >= fmin; d -= 2) {
 167                                dd = d > fmid ? d - fmid: fmid - d;
 168                                i1 = kvdf[d];
 169                                i2 = i1 - d;
 170                                v = (i1 - off1) + (i2 - off2) - dd;
 171
 172                                if (v > XDL_K_HEUR * ec && v > best &&
 173                                    off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
 174                                    off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
 175                                        for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
 176                                                if (k == xenv->snake_cnt) {
 177                                                        best = v;
 178                                                        spl->i1 = i1;
 179                                                        spl->i2 = i2;
 180                                                        break;
 181                                                }
 182                                }
 183                        }
 184                        if (best > 0) {
 185                                spl->min_lo = 1;
 186                                spl->min_hi = 0;
 187                                return ec;
 188                        }
 189
 190                        for (best = 0, d = bmax; d >= bmin; d -= 2) {
 191                                dd = d > bmid ? d - bmid: bmid - d;
 192                                i1 = kvdb[d];
 193                                i2 = i1 - d;
 194                                v = (lim1 - i1) + (lim2 - i2) - dd;
 195
 196                                if (v > XDL_K_HEUR * ec && v > best &&
 197                                    off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
 198                                    off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
 199                                        for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
 200                                                if (k == xenv->snake_cnt - 1) {
 201                                                        best = v;
 202                                                        spl->i1 = i1;
 203                                                        spl->i2 = i2;
 204                                                        break;
 205                                                }
 206                                }
 207                        }
 208                        if (best > 0) {
 209                                spl->min_lo = 0;
 210                                spl->min_hi = 1;
 211                                return ec;
 212                        }
 213                }
 214
 215                /*
 216                 * Enough is enough. We spent too much time here and now we collect
 217                 * the furthest reaching path using the (i1 + i2) measure.
 218                 */
 219                if (ec >= xenv->mxcost) {
 220                        long fbest, fbest1, bbest, bbest1;
 221
 222                        fbest = fbest1 = -1;
 223                        for (d = fmax; d >= fmin; d -= 2) {
 224                                i1 = XDL_MIN(kvdf[d], lim1);
 225                                i2 = i1 - d;
 226                                if (lim2 < i2)
 227                                        i1 = lim2 + d, i2 = lim2;
 228                                if (fbest < i1 + i2) {
 229                                        fbest = i1 + i2;
 230                                        fbest1 = i1;
 231                                }
 232                        }
 233
 234                        bbest = bbest1 = XDL_LINE_MAX;
 235                        for (d = bmax; d >= bmin; d -= 2) {
 236                                i1 = XDL_MAX(off1, kvdb[d]);
 237                                i2 = i1 - d;
 238                                if (i2 < off2)
 239                                        i1 = off2 + d, i2 = off2;
 240                                if (i1 + i2 < bbest) {
 241                                        bbest = i1 + i2;
 242                                        bbest1 = i1;
 243                                }
 244                        }
 245
 246                        if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
 247                                spl->i1 = fbest1;
 248                                spl->i2 = fbest - fbest1;
 249                                spl->min_lo = 1;
 250                                spl->min_hi = 0;
 251                        } else {
 252                                spl->i1 = bbest1;
 253                                spl->i2 = bbest - bbest1;
 254                                spl->min_lo = 0;
 255                                spl->min_hi = 1;
 256                        }
 257                        return ec;
 258                }
 259        }
 260}
 261
 262
 263/*
 264 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
 265 * the box splitting function. Note that the real job (marking changed lines)
 266 * is done in the two boundary reaching checks.
 267 */
 268int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
 269                 diffdata_t *dd2, long off2, long lim2,
 270                 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
 271        unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
 272
 273        /*
 274         * Shrink the box by walking through each diagonal snake (SW and NE).
 275         */
 276        for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
 277        for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
 278
 279        /*
 280         * If one dimension is empty, then all records on the other one must
 281         * be obviously changed.
 282         */
 283        if (off1 == lim1) {
 284                char *rchg2 = dd2->rchg;
 285                long *rindex2 = dd2->rindex;
 286
 287                for (; off2 < lim2; off2++)
 288                        rchg2[rindex2[off2]] = 1;
 289        } else if (off2 == lim2) {
 290                char *rchg1 = dd1->rchg;
 291                long *rindex1 = dd1->rindex;
 292
 293                for (; off1 < lim1; off1++)
 294                        rchg1[rindex1[off1]] = 1;
 295        } else {
 296                xdpsplit_t spl;
 297                spl.i1 = spl.i2 = 0;
 298
 299                /*
 300                 * Divide ...
 301                 */
 302                if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
 303                              need_min, &spl, xenv) < 0) {
 304
 305                        return -1;
 306                }
 307
 308                /*
 309                 * ... et Impera.
 310                 */
 311                if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
 312                                 kvdf, kvdb, spl.min_lo, xenv) < 0 ||
 313                    xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
 314                                 kvdf, kvdb, spl.min_hi, xenv) < 0) {
 315
 316                        return -1;
 317                }
 318        }
 319
 320        return 0;
 321}
 322
 323
 324int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
 325                xdfenv_t *xe) {
 326        long ndiags;
 327        long *kvd, *kvdf, *kvdb;
 328        xdalgoenv_t xenv;
 329        diffdata_t dd1, dd2;
 330
 331        if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
 332                return xdl_do_patience_diff(mf1, mf2, xpp, xe);
 333
 334        if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
 335                return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
 336
 337        if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
 338
 339                return -1;
 340        }
 341
 342        /*
 343         * Allocate and setup K vectors to be used by the differential algorithm.
 344         * One is to store the forward path and one to store the backward path.
 345         */
 346        ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
 347        if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
 348
 349                xdl_free_env(xe);
 350                return -1;
 351        }
 352        kvdf = kvd;
 353        kvdb = kvdf + ndiags;
 354        kvdf += xe->xdf2.nreff + 1;
 355        kvdb += xe->xdf2.nreff + 1;
 356
 357        xenv.mxcost = xdl_bogosqrt(ndiags);
 358        if (xenv.mxcost < XDL_MAX_COST_MIN)
 359                xenv.mxcost = XDL_MAX_COST_MIN;
 360        xenv.snake_cnt = XDL_SNAKE_CNT;
 361        xenv.heur_min = XDL_HEUR_MIN_COST;
 362
 363        dd1.nrec = xe->xdf1.nreff;
 364        dd1.ha = xe->xdf1.ha;
 365        dd1.rchg = xe->xdf1.rchg;
 366        dd1.rindex = xe->xdf1.rindex;
 367        dd2.nrec = xe->xdf2.nreff;
 368        dd2.ha = xe->xdf2.ha;
 369        dd2.rchg = xe->xdf2.rchg;
 370        dd2.rindex = xe->xdf2.rindex;
 371
 372        if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
 373                         kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
 374
 375                xdl_free(kvd);
 376                xdl_free_env(xe);
 377                return -1;
 378        }
 379
 380        xdl_free(kvd);
 381
 382        return 0;
 383}
 384
 385
 386static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
 387        xdchange_t *xch;
 388
 389        if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
 390                return NULL;
 391
 392        xch->next = xscr;
 393        xch->i1 = i1;
 394        xch->i2 = i2;
 395        xch->chg1 = chg1;
 396        xch->chg2 = chg2;
 397
 398        return xch;
 399}
 400
 401
 402int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
 403        long ix, ixo, ixs, ixref, grpsiz, nrec = xdf->nrec;
 404        char *rchg = xdf->rchg, *rchgo = xdfo->rchg;
 405        xrecord_t **recs = xdf->recs;
 406
 407        /*
 408         * This is the same of what GNU diff does. Move back and forward
 409         * change groups for a consistent and pretty diff output. This also
 410         * helps in finding joinable change groups and reduce the diff size.
 411         */
 412        for (ix = ixo = 0;;) {
 413                /*
 414                 * Find the first changed line in the to-be-compacted file.
 415                 * We need to keep track of both indexes, so if we find a
 416                 * changed lines group on the other file, while scanning the
 417                 * to-be-compacted file, we need to skip it properly. Note
 418                 * that loops that are testing for changed lines on rchg* do
 419                 * not need index bounding since the array is prepared with
 420                 * a zero at position -1 and N.
 421                 */
 422                for (; ix < nrec && !rchg[ix]; ix++)
 423                        while (rchgo[ixo++]);
 424                if (ix == nrec)
 425                        break;
 426
 427                /*
 428                 * Record the start of a changed-group in the to-be-compacted file
 429                 * and find the end of it, on both to-be-compacted and other file
 430                 * indexes (ix and ixo).
 431                 */
 432                ixs = ix;
 433                for (ix++; rchg[ix]; ix++);
 434                for (; rchgo[ixo]; ixo++);
 435
 436                do {
 437                        grpsiz = ix - ixs;
 438
 439                        /*
 440                         * If the line before the current change group, is equal to
 441                         * the last line of the current change group, shift backward
 442                         * the group.
 443                         */
 444                        while (ixs > 0 && recs[ixs - 1]->ha == recs[ix - 1]->ha &&
 445                               xdl_recmatch(recs[ixs - 1]->ptr, recs[ixs - 1]->size, recs[ix - 1]->ptr, recs[ix - 1]->size, flags)) {
 446                                rchg[--ixs] = 1;
 447                                rchg[--ix] = 0;
 448
 449                                /*
 450                                 * This change might have joined two change groups,
 451                                 * so we try to take this scenario in account by moving
 452                                 * the start index accordingly (and so the other-file
 453                                 * end-of-group index).
 454                                 */
 455                                for (; rchg[ixs - 1]; ixs--);
 456                                while (rchgo[--ixo]);
 457                        }
 458
 459                        /*
 460                         * Record the end-of-group position in case we are matched
 461                         * with a group of changes in the other file (that is, the
 462                         * change record before the end-of-group index in the other
 463                         * file is set).
 464                         */
 465                        ixref = rchgo[ixo - 1] ? ix: nrec;
 466
 467                        /*
 468                         * If the first line of the current change group, is equal to
 469                         * the line next of the current change group, shift forward
 470                         * the group.
 471                         */
 472                        while (ix < nrec && recs[ixs]->ha == recs[ix]->ha &&
 473                               xdl_recmatch(recs[ixs]->ptr, recs[ixs]->size, recs[ix]->ptr, recs[ix]->size, flags)) {
 474                                rchg[ixs++] = 0;
 475                                rchg[ix++] = 1;
 476
 477                                /*
 478                                 * This change might have joined two change groups,
 479                                 * so we try to take this scenario in account by moving
 480                                 * the start index accordingly (and so the other-file
 481                                 * end-of-group index). Keep tracking the reference
 482                                 * index in case we are shifting together with a
 483                                 * corresponding group of changes in the other file.
 484                                 */
 485                                for (; rchg[ix]; ix++);
 486                                while (rchgo[++ixo])
 487                                        ixref = ix;
 488                        }
 489                } while (grpsiz != ix - ixs);
 490
 491                /*
 492                 * Try to move back the possibly merged group of changes, to match
 493                 * the recorded postion in the other file.
 494                 */
 495                while (ixref < ix) {
 496                        rchg[--ixs] = 1;
 497                        rchg[--ix] = 0;
 498                        while (rchgo[--ixo]);
 499                }
 500        }
 501
 502        return 0;
 503}
 504
 505
 506int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
 507        xdchange_t *cscr = NULL, *xch;
 508        char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
 509        long i1, i2, l1, l2;
 510
 511        /*
 512         * Trivial. Collects "groups" of changes and creates an edit script.
 513         */
 514        for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
 515                if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
 516                        for (l1 = i1; rchg1[i1 - 1]; i1--);
 517                        for (l2 = i2; rchg2[i2 - 1]; i2--);
 518
 519                        if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
 520                                xdl_free_script(cscr);
 521                                return -1;
 522                        }
 523                        cscr = xch;
 524                }
 525
 526        *xscr = cscr;
 527
 528        return 0;
 529}
 530
 531
 532void xdl_free_script(xdchange_t *xscr) {
 533        xdchange_t *xch;
 534
 535        while ((xch = xscr) != NULL) {
 536                xscr = xscr->next;
 537                xdl_free(xch);
 538        }
 539}
 540
 541static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb,
 542                              xdemitconf_t const *xecfg)
 543{
 544        xdchange_t *xch, *xche;
 545
 546        for (xch = xscr; xch; xch = xche->next) {
 547                xche = xdl_get_hunk(xch, xecfg);
 548                if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
 549                                     xch->i2, xche->i2 + xche->chg2 - xch->i2,
 550                                     ecb->priv) < 0)
 551                        return -1;
 552        }
 553        return 0;
 554}
 555
 556int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
 557             xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
 558        xdchange_t *xscr;
 559        xdfenv_t xe;
 560        emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
 561
 562        if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
 563
 564                return -1;
 565        }
 566        if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
 567            xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
 568            xdl_build_script(&xe, &xscr) < 0) {
 569
 570                xdl_free_env(&xe);
 571                return -1;
 572        }
 573        if (xscr) {
 574                if (ef(&xe, xscr, ecb, xecfg) < 0) {
 575
 576                        xdl_free_script(xscr);
 577                        xdl_free_env(&xe);
 578                        return -1;
 579                }
 580                xdl_free_script(xscr);
 581        }
 582        xdl_free_env(&xe);
 583
 584        return 0;
 585}