notes.con commit Merge branch 'sb/maint-octopus' (3259ada)
   1#include "cache.h"
   2#include "commit.h"
   3#include "notes.h"
   4#include "refs.h"
   5#include "utf8.h"
   6#include "strbuf.h"
   7#include "tree-walk.h"
   8
   9/*
  10 * Use a non-balancing simple 16-tree structure with struct int_node as
  11 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  12 * 16-array of pointers to its children.
  13 * The bottom 2 bits of each pointer is used to identify the pointer type
  14 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  15 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  16 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  17 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  18 *
  19 * The root node is a statically allocated struct int_node.
  20 */
  21struct int_node {
  22        void *a[16];
  23};
  24
  25/*
  26 * Leaf nodes come in two variants, note entries and subtree entries,
  27 * distinguished by the LSb of the leaf node pointer (see above).
  28 * As a note entry, the key is the SHA1 of the referenced commit, and the
  29 * value is the SHA1 of the note object.
  30 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  31 * referenced commit, using the last byte of the key to store the length of
  32 * the prefix. The value is the SHA1 of the tree object containing the notes
  33 * subtree.
  34 */
  35struct leaf_node {
  36        unsigned char key_sha1[20];
  37        unsigned char val_sha1[20];
  38};
  39
  40#define PTR_TYPE_NULL     0
  41#define PTR_TYPE_INTERNAL 1
  42#define PTR_TYPE_NOTE     2
  43#define PTR_TYPE_SUBTREE  3
  44
  45#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  46#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  47#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  48
  49#define GET_NIBBLE(n, sha1) (((sha1[n >> 1]) >> ((~n & 0x01) << 2)) & 0x0f)
  50
  51#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  52        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  53
  54static struct int_node root_node;
  55
  56static int initialized;
  57
  58static void load_subtree(struct leaf_node *subtree, struct int_node *node,
  59                unsigned int n);
  60
  61/*
  62 * Search the tree until the appropriate location for the given key is found:
  63 * 1. Start at the root node, with n = 0
  64 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  65 *    subtree entry and remove it; restart search at the current level.
  66 * 3. Use the nth nibble of the key as an index into a:
  67 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  68 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  69 *      restart search at the current level.
  70 *    - Otherwise, we have found one of the following:
  71 *      - a subtree entry which does not match the key
  72 *      - a note entry which may or may not match the key
  73 *      - an unused leaf node (NULL)
  74 *      In any case, set *tree and *n, and return pointer to the tree location.
  75 */
  76static void **note_tree_search(struct int_node **tree,
  77                unsigned char *n, const unsigned char *key_sha1)
  78{
  79        struct leaf_node *l;
  80        unsigned char i;
  81        void *p = (*tree)->a[0];
  82
  83        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
  84                l = (struct leaf_node *) CLR_PTR_TYPE(p);
  85                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
  86                        /* unpack tree and resume search */
  87                        (*tree)->a[0] = NULL;
  88                        load_subtree(l, *tree, *n);
  89                        free(l);
  90                        return note_tree_search(tree, n, key_sha1);
  91                }
  92        }
  93
  94        i = GET_NIBBLE(*n, key_sha1);
  95        p = (*tree)->a[i];
  96        switch(GET_PTR_TYPE(p)) {
  97        case PTR_TYPE_INTERNAL:
  98                *tree = CLR_PTR_TYPE(p);
  99                (*n)++;
 100                return note_tree_search(tree, n, key_sha1);
 101        case PTR_TYPE_SUBTREE:
 102                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 103                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 104                        /* unpack tree and resume search */
 105                        (*tree)->a[i] = NULL;
 106                        load_subtree(l, *tree, *n);
 107                        free(l);
 108                        return note_tree_search(tree, n, key_sha1);
 109                }
 110                /* fall through */
 111        default:
 112                return &((*tree)->a[i]);
 113        }
 114}
 115
 116/*
 117 * To find a leaf_node:
 118 * Search to the tree location appropriate for the given key:
 119 * If a note entry with matching key, return the note entry, else return NULL.
 120 */
 121static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
 122                const unsigned char *key_sha1)
 123{
 124        void **p = note_tree_search(&tree, &n, key_sha1);
 125        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 126                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 127                if (!hashcmp(key_sha1, l->key_sha1))
 128                        return l;
 129        }
 130        return NULL;
 131}
 132
 133/* Create a new blob object by concatenating the two given blob objects */
 134static int concatenate_notes(unsigned char *cur_sha1,
 135                const unsigned char *new_sha1)
 136{
 137        char *cur_msg, *new_msg, *buf;
 138        unsigned long cur_len, new_len, buf_len;
 139        enum object_type cur_type, new_type;
 140        int ret;
 141
 142        /* read in both note blob objects */
 143        new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 144        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 145                free(new_msg);
 146                return 0;
 147        }
 148        cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 149        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 150                free(cur_msg);
 151                free(new_msg);
 152                hashcpy(cur_sha1, new_sha1);
 153                return 0;
 154        }
 155
 156        /* we will separate the notes by a newline anyway */
 157        if (cur_msg[cur_len - 1] == '\n')
 158                cur_len--;
 159
 160        /* concatenate cur_msg and new_msg into buf */
 161        buf_len = cur_len + 1 + new_len;
 162        buf = (char *) xmalloc(buf_len);
 163        memcpy(buf, cur_msg, cur_len);
 164        buf[cur_len] = '\n';
 165        memcpy(buf + cur_len + 1, new_msg, new_len);
 166
 167        free(cur_msg);
 168        free(new_msg);
 169
 170        /* create a new blob object from buf */
 171        ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
 172        free(buf);
 173        return ret;
 174}
 175
 176/*
 177 * To insert a leaf_node:
 178 * Search to the tree location appropriate for the given leaf_node's key:
 179 * - If location is unused (NULL), store the tweaked pointer directly there
 180 * - If location holds a note entry that matches the note-to-be-inserted, then
 181 *   concatenate the two notes.
 182 * - If location holds a note entry that matches the subtree-to-be-inserted,
 183 *   then unpack the subtree-to-be-inserted into the location.
 184 * - If location holds a matching subtree entry, unpack the subtree at that
 185 *   location, and restart the insert operation from that level.
 186 * - Else, create a new int_node, holding both the node-at-location and the
 187 *   node-to-be-inserted, and store the new int_node into the location.
 188 */
 189static void note_tree_insert(struct int_node *tree, unsigned char n,
 190                struct leaf_node *entry, unsigned char type)
 191{
 192        struct int_node *new_node;
 193        struct leaf_node *l;
 194        void **p = note_tree_search(&tree, &n, entry->key_sha1);
 195
 196        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 197        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 198        switch(GET_PTR_TYPE(*p)) {
 199        case PTR_TYPE_NULL:
 200                assert(!*p);
 201                *p = SET_PTR_TYPE(entry, type);
 202                return;
 203        case PTR_TYPE_NOTE:
 204                switch (type) {
 205                case PTR_TYPE_NOTE:
 206                        if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 207                                /* skip concatenation if l == entry */
 208                                if (!hashcmp(l->val_sha1, entry->val_sha1))
 209                                        return;
 210
 211                                if (concatenate_notes(l->val_sha1,
 212                                                entry->val_sha1))
 213                                        die("failed to concatenate note %s "
 214                                            "into note %s for commit %s",
 215                                            sha1_to_hex(entry->val_sha1),
 216                                            sha1_to_hex(l->val_sha1),
 217                                            sha1_to_hex(l->key_sha1));
 218                                free(entry);
 219                                return;
 220                        }
 221                        break;
 222                case PTR_TYPE_SUBTREE:
 223                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 224                                                    entry->key_sha1)) {
 225                                /* unpack 'entry' */
 226                                load_subtree(entry, tree, n);
 227                                free(entry);
 228                                return;
 229                        }
 230                        break;
 231                }
 232                break;
 233        case PTR_TYPE_SUBTREE:
 234                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 235                        /* unpack 'l' and restart insert */
 236                        *p = NULL;
 237                        load_subtree(l, tree, n);
 238                        free(l);
 239                        note_tree_insert(tree, n, entry, type);
 240                        return;
 241                }
 242                break;
 243        }
 244
 245        /* non-matching leaf_node */
 246        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 247               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 248        new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
 249        note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
 250        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 251        note_tree_insert(new_node, n + 1, entry, type);
 252}
 253
 254/* Free the entire notes data contained in the given tree */
 255static void note_tree_free(struct int_node *tree)
 256{
 257        unsigned int i;
 258        for (i = 0; i < 16; i++) {
 259                void *p = tree->a[i];
 260                switch(GET_PTR_TYPE(p)) {
 261                case PTR_TYPE_INTERNAL:
 262                        note_tree_free(CLR_PTR_TYPE(p));
 263                        /* fall through */
 264                case PTR_TYPE_NOTE:
 265                case PTR_TYPE_SUBTREE:
 266                        free(CLR_PTR_TYPE(p));
 267                }
 268        }
 269}
 270
 271/*
 272 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 273 * - hex      - Partial SHA1 segment in ASCII hex format
 274 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 275 * - sha1     - Partial SHA1 value is written here
 276 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 277 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format).
 278 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 279 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 280 */
 281static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 282                unsigned char *sha1, unsigned int sha1_len)
 283{
 284        unsigned int i, len = hex_len >> 1;
 285        if (hex_len % 2 != 0 || len > sha1_len)
 286                return -1;
 287        for (i = 0; i < len; i++) {
 288                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 289                if (val & ~0xff)
 290                        return -1;
 291                *sha1++ = val;
 292                hex += 2;
 293        }
 294        for (; i < sha1_len; i++)
 295                *sha1++ = 0;
 296        return len;
 297}
 298
 299static void load_subtree(struct leaf_node *subtree, struct int_node *node,
 300                unsigned int n)
 301{
 302        unsigned char commit_sha1[20];
 303        unsigned int prefix_len;
 304        void *buf;
 305        struct tree_desc desc;
 306        struct name_entry entry;
 307
 308        buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 309        if (!buf)
 310                die("Could not read %s for notes-index",
 311                     sha1_to_hex(subtree->val_sha1));
 312
 313        prefix_len = subtree->key_sha1[19];
 314        assert(prefix_len * 2 >= n);
 315        memcpy(commit_sha1, subtree->key_sha1, prefix_len);
 316        while (tree_entry(&desc, &entry)) {
 317                int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
 318                                commit_sha1 + prefix_len, 20 - prefix_len);
 319                if (len < 0)
 320                        continue; /* entry.path is not a SHA1 sum. Skip */
 321                len += prefix_len;
 322
 323                /*
 324                 * If commit SHA1 is complete (len == 20), assume note object
 325                 * If commit SHA1 is incomplete (len < 20), assume note subtree
 326                 */
 327                if (len <= 20) {
 328                        unsigned char type = PTR_TYPE_NOTE;
 329                        struct leaf_node *l = (struct leaf_node *)
 330                                xcalloc(sizeof(struct leaf_node), 1);
 331                        hashcpy(l->key_sha1, commit_sha1);
 332                        hashcpy(l->val_sha1, entry.sha1);
 333                        if (len < 20) {
 334                                if (!S_ISDIR(entry.mode))
 335                                        continue; /* entry cannot be subtree */
 336                                l->key_sha1[19] = (unsigned char) len;
 337                                type = PTR_TYPE_SUBTREE;
 338                        }
 339                        note_tree_insert(node, n, l, type);
 340                }
 341        }
 342        free(buf);
 343}
 344
 345static void initialize_notes(const char *notes_ref_name)
 346{
 347        unsigned char sha1[20], commit_sha1[20];
 348        unsigned mode;
 349        struct leaf_node root_tree;
 350
 351        if (!notes_ref_name || read_ref(notes_ref_name, commit_sha1) ||
 352            get_tree_entry(commit_sha1, "", sha1, &mode))
 353                return;
 354
 355        hashclr(root_tree.key_sha1);
 356        hashcpy(root_tree.val_sha1, sha1);
 357        load_subtree(&root_tree, &root_node, 0);
 358}
 359
 360static unsigned char *lookup_notes(const unsigned char *commit_sha1)
 361{
 362        struct leaf_node *found = note_tree_find(&root_node, 0, commit_sha1);
 363        if (found)
 364                return found->val_sha1;
 365        return NULL;
 366}
 367
 368void free_notes(void)
 369{
 370        note_tree_free(&root_node);
 371        memset(&root_node, 0, sizeof(struct int_node));
 372        initialized = 0;
 373}
 374
 375void get_commit_notes(const struct commit *commit, struct strbuf *sb,
 376                const char *output_encoding, int flags)
 377{
 378        static const char utf8[] = "utf-8";
 379        unsigned char *sha1;
 380        char *msg, *msg_p;
 381        unsigned long linelen, msglen;
 382        enum object_type type;
 383
 384        if (!initialized) {
 385                const char *env = getenv(GIT_NOTES_REF_ENVIRONMENT);
 386                if (env)
 387                        notes_ref_name = getenv(GIT_NOTES_REF_ENVIRONMENT);
 388                else if (!notes_ref_name)
 389                        notes_ref_name = GIT_NOTES_DEFAULT_REF;
 390                initialize_notes(notes_ref_name);
 391                initialized = 1;
 392        }
 393
 394        sha1 = lookup_notes(commit->object.sha1);
 395        if (!sha1)
 396                return;
 397
 398        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
 399                        type != OBJ_BLOB) {
 400                free(msg);
 401                return;
 402        }
 403
 404        if (output_encoding && *output_encoding &&
 405                        strcmp(utf8, output_encoding)) {
 406                char *reencoded = reencode_string(msg, output_encoding, utf8);
 407                if (reencoded) {
 408                        free(msg);
 409                        msg = reencoded;
 410                        msglen = strlen(msg);
 411                }
 412        }
 413
 414        /* we will end the annotation by a newline anyway */
 415        if (msglen && msg[msglen - 1] == '\n')
 416                msglen--;
 417
 418        if (flags & NOTES_SHOW_HEADER)
 419                strbuf_addstr(sb, "\nNotes:\n");
 420
 421        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
 422                linelen = strchrnul(msg_p, '\n') - msg_p;
 423
 424                if (flags & NOTES_INDENT)
 425                        strbuf_addstr(sb, "    ");
 426                strbuf_add(sb, msg_p, linelen);
 427                strbuf_addch(sb, '\n');
 428        }
 429
 430        free(msg);
 431}