Documentation / core-tutorial.txton commit merge-recursive: separate out xdl_merge() interface. (3e5261a)
   1A git core tutorial for developers
   2==================================
   3
   4Introduction
   5------------
   6
   7This is trying to be a short tutorial on setting up and using a git
   8repository, mainly because being hands-on and using explicit examples is
   9often the best way of explaining what is going on.
  10
  11In normal life, most people wouldn't use the "core" git programs
  12directly, but rather script around them to make them more palatable. 
  13Understanding the core git stuff may help some people get those scripts
  14done, though, and it may also be instructive in helping people
  15understand what it is that the higher-level helper scripts are actually
  16doing. 
  17
  18The core git is often called "plumbing", with the prettier user
  19interfaces on top of it called "porcelain". You may not want to use the
  20plumbing directly very often, but it can be good to know what the
  21plumbing does for when the porcelain isn't flushing.
  22
  23The material presented here often goes deep describing how things
  24work internally.  If you are mostly interested in using git as a
  25SCM, you can skip them during your first pass.
  26
  27[NOTE]
  28And those "too deep" descriptions are often marked as Note.
  29
  30[NOTE]
  31If you are already familiar with another version control system,
  32like CVS, you may want to take a look at
  33link:everyday.html[Everyday GIT in 20 commands or so] first
  34before reading this.
  35
  36
  37Creating a git repository
  38-------------------------
  39
  40Creating a new git repository couldn't be easier: all git repositories start
  41out empty, and the only thing you need to do is find yourself a
  42subdirectory that you want to use as a working tree - either an empty
  43one for a totally new project, or an existing working tree that you want
  44to import into git. 
  45
  46For our first example, we're going to start a totally new repository from
  47scratch, with no pre-existing files, and we'll call it `git-tutorial`.
  48To start up, create a subdirectory for it, change into that
  49subdirectory, and initialize the git infrastructure with `git-init`:
  50
  51------------------------------------------------
  52$ mkdir git-tutorial
  53$ cd git-tutorial
  54$ git-init
  55------------------------------------------------
  56
  57to which git will reply
  58
  59----------------
  60Initialized empty Git repository in .git/
  61----------------
  62
  63which is just git's way of saying that you haven't been doing anything
  64strange, and that it will have created a local `.git` directory setup for
  65your new project. You will now have a `.git` directory, and you can
  66inspect that with `ls`. For your new empty project, it should show you
  67three entries, among other things:
  68
  69 - a file called `HEAD`, that has `ref: refs/heads/master` in it.
  70   This is similar to a symbolic link and points at
  71   `refs/heads/master` relative to the `HEAD` file.
  72+
  73Don't worry about the fact that the file that the `HEAD` link points to
  74doesn't even exist yet -- you haven't created the commit that will
  75start your `HEAD` development branch yet.
  76
  77 - a subdirectory called `objects`, which will contain all the
  78   objects of your project. You should never have any real reason to
  79   look at the objects directly, but you might want to know that these
  80   objects are what contains all the real 'data' in your repository.
  81
  82 - a subdirectory called `refs`, which contains references to objects.
  83
  84In particular, the `refs` subdirectory will contain two other
  85subdirectories, named `heads` and `tags` respectively. They do
  86exactly what their names imply: they contain references to any number
  87of different 'heads' of development (aka 'branches'), and to any
  88'tags' that you have created to name specific versions in your
  89repository.
  90
  91One note: the special `master` head is the default branch, which is
  92why the `.git/HEAD` file was created points to it even if it
  93doesn't yet exist. Basically, the `HEAD` link is supposed to always
  94point to the branch you are working on right now, and you always
  95start out expecting to work on the `master` branch.
  96
  97However, this is only a convention, and you can name your branches
  98anything you want, and don't have to ever even 'have' a `master`
  99branch. A number of the git tools will assume that `.git/HEAD` is
 100valid, though.
 101
 102[NOTE]
 103An 'object' is identified by its 160-bit SHA1 hash, aka 'object name',
 104and a reference to an object is always the 40-byte hex
 105representation of that SHA1 name. The files in the `refs`
 106subdirectory are expected to contain these hex references
 107(usually with a final `\'\n\'` at the end), and you should thus
 108expect to see a number of 41-byte files containing these
 109references in these `refs` subdirectories when you actually start
 110populating your tree.
 111
 112[NOTE]
 113An advanced user may want to take a look at the
 114link:repository-layout.html[repository layout] document
 115after finishing this tutorial.
 116
 117You have now created your first git repository. Of course, since it's
 118empty, that's not very useful, so let's start populating it with data.
 119
 120
 121Populating a git repository
 122---------------------------
 123
 124We'll keep this simple and stupid, so we'll start off with populating a
 125few trivial files just to get a feel for it.
 126
 127Start off with just creating any random files that you want to maintain
 128in your git repository. We'll start off with a few bad examples, just to
 129get a feel for how this works:
 130
 131------------------------------------------------
 132$ echo "Hello World" >hello
 133$ echo "Silly example" >example
 134------------------------------------------------
 135
 136you have now created two files in your working tree (aka 'working directory'),
 137but to actually check in your hard work, you will have to go through two steps:
 138
 139 - fill in the 'index' file (aka 'cache') with the information about your
 140   working tree state.
 141
 142 - commit that index file as an object.
 143
 144The first step is trivial: when you want to tell git about any changes
 145to your working tree, you use the `git-update-index` program. That
 146program normally just takes a list of filenames you want to update, but
 147to avoid trivial mistakes, it refuses to add new entries to the index
 148(or remove existing ones) unless you explicitly tell it that you're
 149adding a new entry with the `\--add` flag (or removing an entry with the
 150`\--remove`) flag.
 151
 152So to populate the index with the two files you just created, you can do
 153
 154------------------------------------------------
 155$ git-update-index --add hello example
 156------------------------------------------------
 157
 158and you have now told git to track those two files.
 159
 160In fact, as you did that, if you now look into your object directory,
 161you'll notice that git will have added two new objects to the object
 162database. If you did exactly the steps above, you should now be able to do
 163
 164
 165----------------
 166$ ls .git/objects/??/*
 167----------------
 168
 169and see two files:
 170
 171----------------
 172.git/objects/55/7db03de997c86a4a028e1ebd3a1ceb225be238 
 173.git/objects/f2/4c74a2e500f5ee1332c86b94199f52b1d1d962
 174----------------
 175
 176which correspond with the objects with names of `557db...` and
 177`f24c7...` respectively.
 178
 179If you want to, you can use `git-cat-file` to look at those objects, but
 180you'll have to use the object name, not the filename of the object:
 181
 182----------------
 183$ git-cat-file -t 557db03de997c86a4a028e1ebd3a1ceb225be238
 184----------------
 185
 186where the `-t` tells `git-cat-file` to tell you what the "type" of the
 187object is. git will tell you that you have a "blob" object (i.e., just a
 188regular file), and you can see the contents with
 189
 190----------------
 191$ git-cat-file "blob" 557db03
 192----------------
 193
 194which will print out "Hello World". The object `557db03` is nothing
 195more than the contents of your file `hello`.
 196
 197[NOTE]
 198Don't confuse that object with the file `hello` itself. The
 199object is literally just those specific *contents* of the file, and
 200however much you later change the contents in file `hello`, the object
 201we just looked at will never change. Objects are immutable.
 202
 203[NOTE]
 204The second example demonstrates that you can
 205abbreviate the object name to only the first several
 206hexadecimal digits in most places.
 207
 208Anyway, as we mentioned previously, you normally never actually take a
 209look at the objects themselves, and typing long 40-character hex
 210names is not something you'd normally want to do. The above digression
 211was just to show that `git-update-index` did something magical, and
 212actually saved away the contents of your files into the git object
 213database.
 214
 215Updating the index did something else too: it created a `.git/index`
 216file. This is the index that describes your current working tree, and
 217something you should be very aware of. Again, you normally never worry
 218about the index file itself, but you should be aware of the fact that
 219you have not actually really "checked in" your files into git so far,
 220you've only *told* git about them.
 221
 222However, since git knows about them, you can now start using some of the
 223most basic git commands to manipulate the files or look at their status. 
 224
 225In particular, let's not even check in the two files into git yet, we'll
 226start off by adding another line to `hello` first:
 227
 228------------------------------------------------
 229$ echo "It's a new day for git" >>hello
 230------------------------------------------------
 231
 232and you can now, since you told git about the previous state of `hello`, ask
 233git what has changed in the tree compared to your old index, using the
 234`git-diff-files` command:
 235
 236------------
 237$ git-diff-files
 238------------
 239
 240Oops. That wasn't very readable. It just spit out its own internal
 241version of a `diff`, but that internal version really just tells you
 242that it has noticed that "hello" has been modified, and that the old object
 243contents it had have been replaced with something else.
 244
 245To make it readable, we can tell git-diff-files to output the
 246differences as a patch, using the `-p` flag:
 247
 248------------
 249$ git-diff-files -p
 250diff --git a/hello b/hello
 251index 557db03..263414f 100644
 252--- a/hello
 253+++ b/hello
 254@@ -1 +1,2 @@
 255 Hello World
 256+It's a new day for git
 257----
 258
 259i.e. the diff of the change we caused by adding another line to `hello`.
 260
 261In other words, `git-diff-files` always shows us the difference between
 262what is recorded in the index, and what is currently in the working
 263tree. That's very useful.
 264
 265A common shorthand for `git-diff-files -p` is to just write `git
 266diff`, which will do the same thing.
 267
 268------------
 269$ git diff
 270diff --git a/hello b/hello
 271index 557db03..263414f 100644
 272--- a/hello
 273+++ b/hello
 274@@ -1 +1,2 @@
 275 Hello World
 276+It's a new day for git
 277------------
 278
 279
 280Committing git state
 281--------------------
 282
 283Now, we want to go to the next stage in git, which is to take the files
 284that git knows about in the index, and commit them as a real tree. We do
 285that in two phases: creating a 'tree' object, and committing that 'tree'
 286object as a 'commit' object together with an explanation of what the
 287tree was all about, along with information of how we came to that state.
 288
 289Creating a tree object is trivial, and is done with `git-write-tree`.
 290There are no options or other input: git-write-tree will take the
 291current index state, and write an object that describes that whole
 292index. In other words, we're now tying together all the different
 293filenames with their contents (and their permissions), and we're
 294creating the equivalent of a git "directory" object:
 295
 296------------------------------------------------
 297$ git-write-tree
 298------------------------------------------------
 299
 300and this will just output the name of the resulting tree, in this case
 301(if you have done exactly as I've described) it should be
 302
 303----------------
 3048988da15d077d4829fc51d8544c097def6644dbb
 305----------------
 306
 307which is another incomprehensible object name. Again, if you want to,
 308you can use `git-cat-file -t 8988d\...` to see that this time the object
 309is not a "blob" object, but a "tree" object (you can also use
 310`git-cat-file` to actually output the raw object contents, but you'll see
 311mainly a binary mess, so that's less interesting).
 312
 313However -- normally you'd never use `git-write-tree` on its own, because
 314normally you always commit a tree into a commit object using the
 315`git-commit-tree` command. In fact, it's easier to not actually use
 316`git-write-tree` on its own at all, but to just pass its result in as an
 317argument to `git-commit-tree`.
 318
 319`git-commit-tree` normally takes several arguments -- it wants to know
 320what the 'parent' of a commit was, but since this is the first commit
 321ever in this new repository, and it has no parents, we only need to pass in
 322the object name of the tree. However, `git-commit-tree`
 323also wants to get a commit message
 324on its standard input, and it will write out the resulting object name for the
 325commit to its standard output.
 326
 327And this is where we create the `.git/refs/heads/master` file
 328which is pointed at by `HEAD`. This file is supposed to contain
 329the reference to the top-of-tree of the master branch, and since
 330that's exactly what `git-commit-tree` spits out, we can do this
 331all with a sequence of simple shell commands:
 332
 333------------------------------------------------
 334$ tree=$(git-write-tree)
 335$ commit=$(echo 'Initial commit' | git-commit-tree $tree)
 336$ git-update-ref HEAD $commit
 337------------------------------------------------
 338
 339In this case this creates a totally new commit that is not related to
 340anything else. Normally you do this only *once* for a project ever, and
 341all later commits will be parented on top of an earlier commit.
 342
 343Again, normally you'd never actually do this by hand. There is a
 344helpful script called `git commit` that will do all of this for you. So
 345you could have just written `git commit`
 346instead, and it would have done the above magic scripting for you.
 347
 348
 349Making a change
 350---------------
 351
 352Remember how we did the `git-update-index` on file `hello` and then we
 353changed `hello` afterward, and could compare the new state of `hello` with the
 354state we saved in the index file? 
 355
 356Further, remember how I said that `git-write-tree` writes the contents
 357of the *index* file to the tree, and thus what we just committed was in
 358fact the *original* contents of the file `hello`, not the new ones. We did
 359that on purpose, to show the difference between the index state, and the
 360state in the working tree, and how they don't have to match, even
 361when we commit things.
 362
 363As before, if we do `git-diff-files -p` in our git-tutorial project,
 364we'll still see the same difference we saw last time: the index file
 365hasn't changed by the act of committing anything. However, now that we
 366have committed something, we can also learn to use a new command:
 367`git-diff-index`.
 368
 369Unlike `git-diff-files`, which showed the difference between the index
 370file and the working tree, `git-diff-index` shows the differences
 371between a committed *tree* and either the index file or the working
 372tree. In other words, `git-diff-index` wants a tree to be diffed
 373against, and before we did the commit, we couldn't do that, because we
 374didn't have anything to diff against. 
 375
 376But now we can do
 377
 378----------------
 379$ git-diff-index -p HEAD
 380----------------
 381
 382(where `-p` has the same meaning as it did in `git-diff-files`), and it
 383will show us the same difference, but for a totally different reason. 
 384Now we're comparing the working tree not against the index file,
 385but against the tree we just wrote. It just so happens that those two
 386are obviously the same, so we get the same result.
 387
 388Again, because this is a common operation, you can also just shorthand
 389it with
 390
 391----------------
 392$ git diff HEAD
 393----------------
 394
 395which ends up doing the above for you.
 396
 397In other words, `git-diff-index` normally compares a tree against the
 398working tree, but when given the `\--cached` flag, it is told to
 399instead compare against just the index cache contents, and ignore the
 400current working tree state entirely. Since we just wrote the index
 401file to HEAD, doing `git-diff-index \--cached -p HEAD` should thus return
 402an empty set of differences, and that's exactly what it does. 
 403
 404[NOTE]
 405================
 406`git-diff-index` really always uses the index for its
 407comparisons, and saying that it compares a tree against the working
 408tree is thus not strictly accurate. In particular, the list of
 409files to compare (the "meta-data") *always* comes from the index file,
 410regardless of whether the `\--cached` flag is used or not. The `\--cached`
 411flag really only determines whether the file *contents* to be compared
 412come from the working tree or not.
 413
 414This is not hard to understand, as soon as you realize that git simply
 415never knows (or cares) about files that it is not told about
 416explicitly. git will never go *looking* for files to compare, it
 417expects you to tell it what the files are, and that's what the index
 418is there for.
 419================
 420
 421However, our next step is to commit the *change* we did, and again, to
 422understand what's going on, keep in mind the difference between "working
 423tree contents", "index file" and "committed tree". We have changes
 424in the working tree that we want to commit, and we always have to
 425work through the index file, so the first thing we need to do is to
 426update the index cache:
 427
 428------------------------------------------------
 429$ git-update-index hello
 430------------------------------------------------
 431
 432(note how we didn't need the `\--add` flag this time, since git knew
 433about the file already).
 434
 435Note what happens to the different `git-diff-\*` versions here. After
 436we've updated `hello` in the index, `git-diff-files -p` now shows no
 437differences, but `git-diff-index -p HEAD` still *does* show that the
 438current state is different from the state we committed. In fact, now
 439`git-diff-index` shows the same difference whether we use the `--cached`
 440flag or not, since now the index is coherent with the working tree.
 441
 442Now, since we've updated `hello` in the index, we can commit the new
 443version. We could do it by writing the tree by hand again, and
 444committing the tree (this time we'd have to use the `-p HEAD` flag to
 445tell commit that the HEAD was the *parent* of the new commit, and that
 446this wasn't an initial commit any more), but you've done that once
 447already, so let's just use the helpful script this time:
 448
 449------------------------------------------------
 450$ git commit
 451------------------------------------------------
 452
 453which starts an editor for you to write the commit message and tells you
 454a bit about what you have done.
 455
 456Write whatever message you want, and all the lines that start with '#'
 457will be pruned out, and the rest will be used as the commit message for
 458the change. If you decide you don't want to commit anything after all at
 459this point (you can continue to edit things and update the index), you
 460can just leave an empty message. Otherwise `git commit` will commit
 461the change for you.
 462
 463You've now made your first real git commit. And if you're interested in
 464looking at what `git commit` really does, feel free to investigate:
 465it's a few very simple shell scripts to generate the helpful (?) commit
 466message headers, and a few one-liners that actually do the
 467commit itself (`git-commit`).
 468
 469
 470Inspecting Changes
 471------------------
 472
 473While creating changes is useful, it's even more useful if you can tell
 474later what changed. The most useful command for this is another of the
 475`diff` family, namely `git-diff-tree`.
 476
 477`git-diff-tree` can be given two arbitrary trees, and it will tell you the
 478differences between them. Perhaps even more commonly, though, you can
 479give it just a single commit object, and it will figure out the parent
 480of that commit itself, and show the difference directly. Thus, to get
 481the same diff that we've already seen several times, we can now do
 482
 483----------------
 484$ git-diff-tree -p HEAD
 485----------------
 486
 487(again, `-p` means to show the difference as a human-readable patch),
 488and it will show what the last commit (in `HEAD`) actually changed.
 489
 490[NOTE]
 491============
 492Here is an ASCII art by Jon Loeliger that illustrates how
 493various diff-\* commands compare things.
 494
 495                      diff-tree
 496                       +----+
 497                       |    |
 498                       |    |
 499                       V    V
 500                    +-----------+
 501                    | Object DB |
 502                    |  Backing  |
 503                    |   Store   |
 504                    +-----------+
 505                      ^    ^
 506                      |    |
 507                      |    |  diff-index --cached
 508                      |    |
 509          diff-index  |    V
 510                      |  +-----------+
 511                      |  |   Index   |
 512                      |  |  "cache"  |
 513                      |  +-----------+
 514                      |    ^
 515                      |    |
 516                      |    |  diff-files
 517                      |    |
 518                      V    V
 519                    +-----------+
 520                    |  Working  |
 521                    | Directory |
 522                    +-----------+
 523============
 524
 525More interestingly, you can also give `git-diff-tree` the `--pretty` flag,
 526which tells it to also show the commit message and author and date of the
 527commit, and you can tell it to show a whole series of diffs.
 528Alternatively, you can tell it to be "silent", and not show the diffs at
 529all, but just show the actual commit message.
 530
 531In fact, together with the `git-rev-list` program (which generates a
 532list of revisions), `git-diff-tree` ends up being a veritable fount of
 533changes. A trivial (but very useful) script called `git-whatchanged` is
 534included with git which does exactly this, and shows a log of recent
 535activities.
 536
 537To see the whole history of our pitiful little git-tutorial project, you
 538can do
 539
 540----------------
 541$ git log
 542----------------
 543
 544which shows just the log messages, or if we want to see the log together
 545with the associated patches use the more complex (and much more
 546powerful)
 547
 548----------------
 549$ git-whatchanged -p --root
 550----------------
 551
 552and you will see exactly what has changed in the repository over its
 553short history. 
 554
 555[NOTE]
 556The `\--root` flag is a flag to `git-diff-tree` to tell it to
 557show the initial aka 'root' commit too. Normally you'd probably not
 558want to see the initial import diff, but since the tutorial project
 559was started from scratch and is so small, we use it to make the result
 560a bit more interesting.
 561
 562With that, you should now be having some inkling of what git does, and
 563can explore on your own.
 564
 565[NOTE]
 566Most likely, you are not directly using the core
 567git Plumbing commands, but using Porcelain like Cogito on top
 568of it. Cogito works a bit differently and you usually do not
 569have to run `git-update-index` yourself for changed files (you
 570do tell underlying git about additions and removals via
 571`cg-add` and `cg-rm` commands). Just before you make a commit
 572with `cg-commit`, Cogito figures out which files you modified,
 573and runs `git-update-index` on them for you.
 574
 575
 576Tagging a version
 577-----------------
 578
 579In git, there are two kinds of tags, a "light" one, and an "annotated tag".
 580
 581A "light" tag is technically nothing more than a branch, except we put
 582it in the `.git/refs/tags/` subdirectory instead of calling it a `head`.
 583So the simplest form of tag involves nothing more than
 584
 585------------------------------------------------
 586$ git tag my-first-tag
 587------------------------------------------------
 588
 589which just writes the current `HEAD` into the `.git/refs/tags/my-first-tag`
 590file, after which point you can then use this symbolic name for that
 591particular state. You can, for example, do
 592
 593----------------
 594$ git diff my-first-tag
 595----------------
 596
 597to diff your current state against that tag (which at this point will
 598obviously be an empty diff, but if you continue to develop and commit
 599stuff, you can use your tag as an "anchor-point" to see what has changed
 600since you tagged it.
 601
 602An "annotated tag" is actually a real git object, and contains not only a
 603pointer to the state you want to tag, but also a small tag name and
 604message, along with optionally a PGP signature that says that yes,
 605you really did
 606that tag. You create these annotated tags with either the `-a` or
 607`-s` flag to `git tag`:
 608
 609----------------
 610$ git tag -s <tagname>
 611----------------
 612
 613which will sign the current `HEAD` (but you can also give it another
 614argument that specifies the thing to tag, i.e., you could have tagged the
 615current `mybranch` point by using `git tag <tagname> mybranch`).
 616
 617You normally only do signed tags for major releases or things
 618like that, while the light-weight tags are useful for any marking you
 619want to do -- any time you decide that you want to remember a certain
 620point, just create a private tag for it, and you have a nice symbolic
 621name for the state at that point.
 622
 623
 624Copying repositories
 625--------------------
 626
 627git repositories are normally totally self-sufficient and relocatable.
 628Unlike CVS, for example, there is no separate notion of
 629"repository" and "working tree". A git repository normally *is* the
 630working tree, with the local git information hidden in the `.git`
 631subdirectory. There is nothing else. What you see is what you got.
 632
 633[NOTE]
 634You can tell git to split the git internal information from
 635the directory that it tracks, but we'll ignore that for now: it's not
 636how normal projects work, and it's really only meant for special uses.
 637So the mental model of "the git information is always tied directly to
 638the working tree that it describes" may not be technically 100%
 639accurate, but it's a good model for all normal use.
 640
 641This has two implications: 
 642
 643 - if you grow bored with the tutorial repository you created (or you've
 644   made a mistake and want to start all over), you can just do simple
 645+
 646----------------
 647$ rm -rf git-tutorial
 648----------------
 649+
 650and it will be gone. There's no external repository, and there's no
 651history outside the project you created.
 652
 653 - if you want to move or duplicate a git repository, you can do so. There
 654   is `git clone` command, but if all you want to do is just to
 655   create a copy of your repository (with all the full history that
 656   went along with it), you can do so with a regular
 657   `cp -a git-tutorial new-git-tutorial`.
 658+
 659Note that when you've moved or copied a git repository, your git index
 660file (which caches various information, notably some of the "stat"
 661information for the files involved) will likely need to be refreshed.
 662So after you do a `cp -a` to create a new copy, you'll want to do
 663+
 664----------------
 665$ git-update-index --refresh
 666----------------
 667+
 668in the new repository to make sure that the index file is up-to-date.
 669
 670Note that the second point is true even across machines. You can
 671duplicate a remote git repository with *any* regular copy mechanism, be it
 672`scp`, `rsync` or `wget`.
 673
 674When copying a remote repository, you'll want to at a minimum update the
 675index cache when you do this, and especially with other peoples'
 676repositories you often want to make sure that the index cache is in some
 677known state (you don't know *what* they've done and not yet checked in),
 678so usually you'll precede the `git-update-index` with a
 679
 680----------------
 681$ git-read-tree --reset HEAD
 682$ git-update-index --refresh
 683----------------
 684
 685which will force a total index re-build from the tree pointed to by `HEAD`.
 686It resets the index contents to `HEAD`, and then the `git-update-index`
 687makes sure to match up all index entries with the checked-out files.
 688If the original repository had uncommitted changes in its
 689working tree, `git-update-index --refresh` notices them and
 690tells you they need to be updated.
 691
 692The above can also be written as simply
 693
 694----------------
 695$ git reset
 696----------------
 697
 698and in fact a lot of the common git command combinations can be scripted
 699with the `git xyz` interfaces.  You can learn things by just looking
 700at what the various git scripts do.  For example, `git reset` is the
 701above two lines implemented in `git-reset`, but some things like
 702`git status` and `git commit` are slightly more complex scripts around
 703the basic git commands.
 704
 705Many (most?) public remote repositories will not contain any of
 706the checked out files or even an index file, and will *only* contain the
 707actual core git files. Such a repository usually doesn't even have the
 708`.git` subdirectory, but has all the git files directly in the
 709repository. 
 710
 711To create your own local live copy of such a "raw" git repository, you'd
 712first create your own subdirectory for the project, and then copy the
 713raw repository contents into the `.git` directory. For example, to
 714create your own copy of the git repository, you'd do the following
 715
 716----------------
 717$ mkdir my-git
 718$ cd my-git
 719$ rsync -rL rsync://rsync.kernel.org/pub/scm/git/git.git/ .git
 720----------------
 721
 722followed by 
 723
 724----------------
 725$ git-read-tree HEAD
 726----------------
 727
 728to populate the index. However, now you have populated the index, and
 729you have all the git internal files, but you will notice that you don't
 730actually have any of the working tree files to work on. To get
 731those, you'd check them out with
 732
 733----------------
 734$ git-checkout-index -u -a
 735----------------
 736
 737where the `-u` flag means that you want the checkout to keep the index
 738up-to-date (so that you don't have to refresh it afterward), and the
 739`-a` flag means "check out all files" (if you have a stale copy or an
 740older version of a checked out tree you may also need to add the `-f`
 741flag first, to tell git-checkout-index to *force* overwriting of any old
 742files). 
 743
 744Again, this can all be simplified with
 745
 746----------------
 747$ git clone rsync://rsync.kernel.org/pub/scm/git/git.git/ my-git
 748$ cd my-git
 749$ git checkout
 750----------------
 751
 752which will end up doing all of the above for you.
 753
 754You have now successfully copied somebody else's (mine) remote
 755repository, and checked it out. 
 756
 757
 758Creating a new branch
 759---------------------
 760
 761Branches in git are really nothing more than pointers into the git
 762object database from within the `.git/refs/` subdirectory, and as we
 763already discussed, the `HEAD` branch is nothing but a symlink to one of
 764these object pointers. 
 765
 766You can at any time create a new branch by just picking an arbitrary
 767point in the project history, and just writing the SHA1 name of that
 768object into a file under `.git/refs/heads/`. You can use any filename you
 769want (and indeed, subdirectories), but the convention is that the
 770"normal" branch is called `master`. That's just a convention, though,
 771and nothing enforces it. 
 772
 773To show that as an example, let's go back to the git-tutorial repository we
 774used earlier, and create a branch in it. You do that by simply just
 775saying that you want to check out a new branch:
 776
 777------------
 778$ git checkout -b mybranch
 779------------
 780
 781will create a new branch based at the current `HEAD` position, and switch
 782to it. 
 783
 784[NOTE]
 785================================================
 786If you make the decision to start your new branch at some
 787other point in the history than the current `HEAD`, you can do so by
 788just telling `git checkout` what the base of the checkout would be.
 789In other words, if you have an earlier tag or branch, you'd just do
 790
 791------------
 792$ git checkout -b mybranch earlier-commit
 793------------
 794
 795and it would create the new branch `mybranch` at the earlier commit,
 796and check out the state at that time.
 797================================================
 798
 799You can always just jump back to your original `master` branch by doing
 800
 801------------
 802$ git checkout master
 803------------
 804
 805(or any other branch-name, for that matter) and if you forget which
 806branch you happen to be on, a simple
 807
 808------------
 809$ cat .git/HEAD
 810------------
 811
 812will tell you where it's pointing.  To get the list of branches
 813you have, you can say
 814
 815------------
 816$ git branch
 817------------
 818
 819which is nothing more than a simple script around `ls .git/refs/heads`.
 820There will be asterisk in front of the branch you are currently on.
 821
 822Sometimes you may wish to create a new branch _without_ actually
 823checking it out and switching to it. If so, just use the command
 824
 825------------
 826$ git branch <branchname> [startingpoint]
 827------------
 828
 829which will simply _create_ the branch, but will not do anything further. 
 830You can then later -- once you decide that you want to actually develop
 831on that branch -- switch to that branch with a regular `git checkout`
 832with the branchname as the argument.
 833
 834
 835Merging two branches
 836--------------------
 837
 838One of the ideas of having a branch is that you do some (possibly
 839experimental) work in it, and eventually merge it back to the main
 840branch. So assuming you created the above `mybranch` that started out
 841being the same as the original `master` branch, let's make sure we're in
 842that branch, and do some work there.
 843
 844------------------------------------------------
 845$ git checkout mybranch
 846$ echo "Work, work, work" >>hello
 847$ git commit -m 'Some work.' -i hello
 848------------------------------------------------
 849
 850Here, we just added another line to `hello`, and we used a shorthand for
 851doing both `git-update-index hello` and `git commit` by just giving the
 852filename directly to `git commit`, with an `-i` flag (it tells
 853git to 'include' that file in addition to what you have done to
 854the index file so far when making the commit).  The `-m` flag is to give the
 855commit log message from the command line.
 856
 857Now, to make it a bit more interesting, let's assume that somebody else
 858does some work in the original branch, and simulate that by going back
 859to the master branch, and editing the same file differently there:
 860
 861------------
 862$ git checkout master
 863------------
 864
 865Here, take a moment to look at the contents of `hello`, and notice how they
 866don't contain the work we just did in `mybranch` -- because that work
 867hasn't happened in the `master` branch at all. Then do
 868
 869------------
 870$ echo "Play, play, play" >>hello
 871$ echo "Lots of fun" >>example
 872$ git commit -m 'Some fun.' -i hello example
 873------------
 874
 875since the master branch is obviously in a much better mood.
 876
 877Now, you've got two branches, and you decide that you want to merge the
 878work done. Before we do that, let's introduce a cool graphical tool that
 879helps you view what's going on:
 880
 881----------------
 882$ gitk --all
 883----------------
 884
 885will show you graphically both of your branches (that's what the `\--all`
 886means: normally it will just show you your current `HEAD`) and their
 887histories. You can also see exactly how they came to be from a common
 888source. 
 889
 890Anyway, let's exit `gitk` (`^Q` or the File menu), and decide that we want
 891to merge the work we did on the `mybranch` branch into the `master`
 892branch (which is currently our `HEAD` too). To do that, there's a nice
 893script called `git merge`, which wants to know which branches you want
 894to resolve and what the merge is all about:
 895
 896------------
 897$ git merge "Merge work in mybranch" HEAD mybranch
 898------------
 899
 900where the first argument is going to be used as the commit message if
 901the merge can be resolved automatically.
 902
 903Now, in this case we've intentionally created a situation where the
 904merge will need to be fixed up by hand, though, so git will do as much
 905of it as it can automatically (which in this case is just merge the `example`
 906file, which had no differences in the `mybranch` branch), and say:
 907
 908----------------
 909        Auto-merging hello 
 910        CONFLICT (content): Merge conflict in hello 
 911        Automatic merge failed; fix up by hand
 912----------------
 913
 914It tells you that it did an "Automatic merge", which
 915failed due to conflicts in `hello`.
 916
 917Not to worry. It left the (trivial) conflict in `hello` in the same form you
 918should already be well used to if you've ever used CVS, so let's just
 919open `hello` in our editor (whatever that may be), and fix it up somehow.
 920I'd suggest just making it so that `hello` contains all four lines:
 921
 922------------
 923Hello World
 924It's a new day for git
 925Play, play, play
 926Work, work, work
 927------------
 928
 929and once you're happy with your manual merge, just do a
 930
 931------------
 932$ git commit -i hello
 933------------
 934
 935which will very loudly warn you that you're now committing a merge
 936(which is correct, so never mind), and you can write a small merge
 937message about your adventures in git-merge-land.
 938
 939After you're done, start up `gitk \--all` to see graphically what the
 940history looks like. Notice that `mybranch` still exists, and you can
 941switch to it, and continue to work with it if you want to. The
 942`mybranch` branch will not contain the merge, but next time you merge it
 943from the `master` branch, git will know how you merged it, so you'll not
 944have to do _that_ merge again.
 945
 946Another useful tool, especially if you do not always work in X-Window
 947environment, is `git show-branch`.
 948
 949------------------------------------------------
 950$ git show-branch --topo-order master mybranch
 951* [master] Merge work in mybranch
 952 ! [mybranch] Some work.
 953--
 954-  [master] Merge work in mybranch
 955*+ [mybranch] Some work.
 956------------------------------------------------
 957
 958The first two lines indicate that it is showing the two branches
 959and the first line of the commit log message from their
 960top-of-the-tree commits, you are currently on `master` branch
 961(notice the asterisk `\*` character), and the first column for
 962the later output lines is used to show commits contained in the
 963`master` branch, and the second column for the `mybranch`
 964branch. Three commits are shown along with their log messages.
 965All of them have non blank characters in the first column (`*`
 966shows an ordinary commit on the current branch, `.` is a merge commit), which
 967means they are now part of the `master` branch. Only the "Some
 968work" commit has the plus `+` character in the second column,
 969because `mybranch` has not been merged to incorporate these
 970commits from the master branch.  The string inside brackets
 971before the commit log message is a short name you can use to
 972name the commit.  In the above example, 'master' and 'mybranch'
 973are branch heads.  'master~1' is the first parent of 'master'
 974branch head.  Please see 'git-rev-parse' documentation if you
 975see more complex cases.
 976
 977Now, let's pretend you are the one who did all the work in
 978`mybranch`, and the fruit of your hard work has finally been merged
 979to the `master` branch. Let's go back to `mybranch`, and run
 980`git merge` to get the "upstream changes" back to your branch.
 981
 982------------
 983$ git checkout mybranch
 984$ git merge "Merge upstream changes." HEAD master
 985------------
 986
 987This outputs something like this (the actual commit object names
 988would be different)
 989
 990----------------
 991Updating from ae3a2da... to a80b4aa....
 992Fast forward
 993 example |    1 +
 994 hello   |    1 +
 995 2 files changed, 2 insertions(+), 0 deletions(-)
 996----------------
 997
 998Because your branch did not contain anything more than what are
 999already merged into the `master` branch, the merge operation did
1000not actually do a merge. Instead, it just updated the top of
1001the tree of your branch to that of the `master` branch. This is
1002often called 'fast forward' merge.
1003
1004You can run `gitk \--all` again to see how the commit ancestry
1005looks like, or run `show-branch`, which tells you this.
1006
1007------------------------------------------------
1008$ git show-branch master mybranch
1009! [master] Merge work in mybranch
1010 * [mybranch] Merge work in mybranch
1011--
1012-- [master] Merge work in mybranch
1013------------------------------------------------
1014
1015
1016Merging external work
1017---------------------
1018
1019It's usually much more common that you merge with somebody else than
1020merging with your own branches, so it's worth pointing out that git
1021makes that very easy too, and in fact, it's not that different from
1022doing a `git merge`. In fact, a remote merge ends up being nothing
1023more than "fetch the work from a remote repository into a temporary tag"
1024followed by a `git merge`.
1025
1026Fetching from a remote repository is done by, unsurprisingly,
1027`git fetch`:
1028
1029----------------
1030$ git fetch <remote-repository>
1031----------------
1032
1033One of the following transports can be used to name the
1034repository to download from:
1035
1036Rsync::
1037        `rsync://remote.machine/path/to/repo.git/`
1038+
1039Rsync transport is usable for both uploading and downloading,
1040but is completely unaware of what git does, and can produce
1041unexpected results when you download from the public repository
1042while the repository owner is uploading into it via `rsync`
1043transport.  Most notably, it could update the files under
1044`refs/` which holds the object name of the topmost commits
1045before uploading the files in `objects/` -- the downloader would
1046obtain head commit object name while that object itself is still
1047not available in the repository.  For this reason, it is
1048considered deprecated.
1049
1050SSH::
1051        `remote.machine:/path/to/repo.git/` or
1052+
1053`ssh://remote.machine/path/to/repo.git/`
1054+
1055This transport can be used for both uploading and downloading,
1056and requires you to have a log-in privilege over `ssh` to the
1057remote machine.  It finds out the set of objects the other side
1058lacks by exchanging the head commits both ends have and
1059transfers (close to) minimum set of objects.  It is by far the
1060most efficient way to exchange git objects between repositories.
1061
1062Local directory::
1063        `/path/to/repo.git/`
1064+
1065This transport is the same as SSH transport but uses `sh` to run
1066both ends on the local machine instead of running other end on
1067the remote machine via `ssh`.
1068
1069git Native::
1070        `git://remote.machine/path/to/repo.git/`
1071+
1072This transport was designed for anonymous downloading.  Like SSH
1073transport, it finds out the set of objects the downstream side
1074lacks and transfers (close to) minimum set of objects.
1075
1076HTTP(S)::
1077        `http://remote.machine/path/to/repo.git/`
1078+
1079Downloader from http and https URL
1080first obtains the topmost commit object name from the remote site
1081by looking at the specified refname under `repo.git/refs/` directory,
1082and then tries to obtain the
1083commit object by downloading from `repo.git/objects/xx/xxx\...`
1084using the object name of that commit object.  Then it reads the
1085commit object to find out its parent commits and the associate
1086tree object; it repeats this process until it gets all the
1087necessary objects.  Because of this behavior, they are
1088sometimes also called 'commit walkers'.
1089+
1090The 'commit walkers' are sometimes also called 'dumb
1091transports', because they do not require any git aware smart
1092server like git Native transport does.  Any stock HTTP server
1093that does not even support directory index would suffice.  But
1094you must prepare your repository with `git-update-server-info`
1095to help dumb transport downloaders.
1096+
1097There are (confusingly enough) `git-ssh-fetch` and `git-ssh-upload`
1098programs, which are 'commit walkers'; they outlived their
1099usefulness when git Native and SSH transports were introduced,
1100and not used by `git pull` or `git push` scripts.
1101
1102Once you fetch from the remote repository, you `merge` that
1103with your current branch.
1104
1105However -- it's such a common thing to `fetch` and then
1106immediately `merge`, that it's called `git pull`, and you can
1107simply do
1108
1109----------------
1110$ git pull <remote-repository>
1111----------------
1112
1113and optionally give a branch-name for the remote end as a second
1114argument.
1115
1116[NOTE]
1117You could do without using any branches at all, by
1118keeping as many local repositories as you would like to have
1119branches, and merging between them with `git pull`, just like
1120you merge between branches. The advantage of this approach is
1121that it lets you keep a set of files for each `branch` checked
1122out and you may find it easier to switch back and forth if you
1123juggle multiple lines of development simultaneously. Of
1124course, you will pay the price of more disk usage to hold
1125multiple working trees, but disk space is cheap these days.
1126
1127It is likely that you will be pulling from the same remote
1128repository from time to time. As a short hand, you can store
1129the remote repository URL in the local repository's config file
1130like this:
1131
1132------------------------------------------------
1133$ git config remote.linus.url http://www.kernel.org/pub/scm/git/git.git/
1134------------------------------------------------
1135
1136and use the "linus" keyword with `git pull` instead of the full URL.
1137
1138Examples.
1139
1140. `git pull linus`
1141. `git pull linus tag v0.99.1`
1142
1143the above are equivalent to:
1144
1145. `git pull http://www.kernel.org/pub/scm/git/git.git/ HEAD`
1146. `git pull http://www.kernel.org/pub/scm/git/git.git/ tag v0.99.1`
1147
1148
1149How does the merge work?
1150------------------------
1151
1152We said this tutorial shows what plumbing does to help you cope
1153with the porcelain that isn't flushing, but we so far did not
1154talk about how the merge really works.  If you are following
1155this tutorial the first time, I'd suggest to skip to "Publishing
1156your work" section and come back here later.
1157
1158OK, still with me?  To give us an example to look at, let's go
1159back to the earlier repository with "hello" and "example" file,
1160and bring ourselves back to the pre-merge state:
1161
1162------------
1163$ git show-branch --more=3 master mybranch
1164! [master] Merge work in mybranch
1165 * [mybranch] Merge work in mybranch
1166--
1167-- [master] Merge work in mybranch
1168+* [master^2] Some work.
1169+* [master^] Some fun.
1170------------
1171
1172Remember, before running `git merge`, our `master` head was at
1173"Some fun." commit, while our `mybranch` head was at "Some
1174work." commit.
1175
1176------------
1177$ git checkout mybranch
1178$ git reset --hard master^2
1179$ git checkout master
1180$ git reset --hard master^
1181------------
1182
1183After rewinding, the commit structure should look like this:
1184
1185------------
1186$ git show-branch
1187* [master] Some fun.
1188 ! [mybranch] Some work.
1189--
1190 + [mybranch] Some work.
1191*  [master] Some fun.
1192*+ [mybranch^] New day.
1193------------
1194
1195Now we are ready to experiment with the merge by hand.
1196
1197`git merge` command, when merging two branches, uses 3-way merge
1198algorithm.  First, it finds the common ancestor between them.
1199The command it uses is `git-merge-base`:
1200
1201------------
1202$ mb=$(git-merge-base HEAD mybranch)
1203------------
1204
1205The command writes the commit object name of the common ancestor
1206to the standard output, so we captured its output to a variable,
1207because we will be using it in the next step.  BTW, the common
1208ancestor commit is the "New day." commit in this case.  You can
1209tell it by:
1210
1211------------
1212$ git-name-rev $mb
1213my-first-tag
1214------------
1215
1216After finding out a common ancestor commit, the second step is
1217this:
1218
1219------------
1220$ git-read-tree -m -u $mb HEAD mybranch
1221------------
1222
1223This is the same `git-read-tree` command we have already seen,
1224but it takes three trees, unlike previous examples.  This reads
1225the contents of each tree into different 'stage' in the index
1226file (the first tree goes to stage 1, the second stage 2,
1227etc.).  After reading three trees into three stages, the paths
1228that are the same in all three stages are 'collapsed' into stage
12290.  Also paths that are the same in two of three stages are
1230collapsed into stage 0, taking the SHA1 from either stage 2 or
1231stage 3, whichever is different from stage 1 (i.e. only one side
1232changed from the common ancestor).
1233
1234After 'collapsing' operation, paths that are different in three
1235trees are left in non-zero stages.  At this point, you can
1236inspect the index file with this command:
1237
1238------------
1239$ git-ls-files --stage
1240100644 7f8b141b65fdcee47321e399a2598a235a032422 0       example
1241100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1       hello
1242100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2       hello
1243100644 cc44c73eb783565da5831b4d820c962954019b69 3       hello
1244------------
1245
1246In our example of only two files, we did not have unchanged
1247files so only 'example' resulted in collapsing, but in real-life
1248large projects, only small number of files change in one commit,
1249and this 'collapsing' tends to trivially merge most of the paths
1250fairly quickly, leaving only a handful the real changes in non-zero
1251stages.
1252
1253To look at only non-zero stages, use `\--unmerged` flag:
1254
1255------------
1256$ git-ls-files --unmerged
1257100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1       hello
1258100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2       hello
1259100644 cc44c73eb783565da5831b4d820c962954019b69 3       hello
1260------------
1261
1262The next step of merging is to merge these three versions of the
1263file, using 3-way merge.  This is done by giving
1264`git-merge-one-file` command as one of the arguments to
1265`git-merge-index` command:
1266
1267------------
1268$ git-merge-index git-merge-one-file hello
1269Auto-merging hello.
1270merge: warning: conflicts during merge
1271ERROR: Merge conflict in hello.
1272fatal: merge program failed
1273------------
1274
1275`git-merge-one-file` script is called with parameters to
1276describe those three versions, and is responsible to leave the
1277merge results in the working tree.
1278It is a fairly straightforward shell script, and
1279eventually calls `merge` program from RCS suite to perform a
1280file-level 3-way merge.  In this case, `merge` detects
1281conflicts, and the merge result with conflict marks is left in
1282the working tree..  This can be seen if you run `ls-files
1283--stage` again at this point:
1284
1285------------
1286$ git-ls-files --stage
1287100644 7f8b141b65fdcee47321e399a2598a235a032422 0       example
1288100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1       hello
1289100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2       hello
1290100644 cc44c73eb783565da5831b4d820c962954019b69 3       hello
1291------------
1292
1293This is the state of the index file and the working file after
1294`git merge` returns control back to you, leaving the conflicting
1295merge for you to resolve.  Notice that the path `hello` is still
1296unmerged, and what you see with `git diff` at this point is
1297differences since stage 2 (i.e. your version).
1298
1299
1300Publishing your work
1301--------------------
1302
1303So, we can use somebody else's work from a remote repository, but
1304how can *you* prepare a repository to let other people pull from
1305it?
1306
1307Your do your real work in your working tree that has your
1308primary repository hanging under it as its `.git` subdirectory.
1309You *could* make that repository accessible remotely and ask
1310people to pull from it, but in practice that is not the way
1311things are usually done. A recommended way is to have a public
1312repository, make it reachable by other people, and when the
1313changes you made in your primary working tree are in good shape,
1314update the public repository from it. This is often called
1315'pushing'.
1316
1317[NOTE]
1318This public repository could further be mirrored, and that is
1319how git repositories at `kernel.org` are managed.
1320
1321Publishing the changes from your local (private) repository to
1322your remote (public) repository requires a write privilege on
1323the remote machine. You need to have an SSH account there to
1324run a single command, `git-receive-pack`.
1325
1326First, you need to create an empty repository on the remote
1327machine that will house your public repository. This empty
1328repository will be populated and be kept up-to-date by pushing
1329into it later. Obviously, this repository creation needs to be
1330done only once.
1331
1332[NOTE]
1333`git push` uses a pair of programs,
1334`git-send-pack` on your local machine, and `git-receive-pack`
1335on the remote machine. The communication between the two over
1336the network internally uses an SSH connection.
1337
1338Your private repository's git directory is usually `.git`, but
1339your public repository is often named after the project name,
1340i.e. `<project>.git`. Let's create such a public repository for
1341project `my-git`. After logging into the remote machine, create
1342an empty directory:
1343
1344------------
1345$ mkdir my-git.git
1346------------
1347
1348Then, make that directory into a git repository by running
1349`git init`, but this time, since its name is not the usual
1350`.git`, we do things slightly differently:
1351
1352------------
1353$ GIT_DIR=my-git.git git-init
1354------------
1355
1356Make sure this directory is available for others you want your
1357changes to be pulled by via the transport of your choice. Also
1358you need to make sure that you have the `git-receive-pack`
1359program on the `$PATH`.
1360
1361[NOTE]
1362Many installations of sshd do not invoke your shell as the login
1363shell when you directly run programs; what this means is that if
1364your login shell is `bash`, only `.bashrc` is read and not
1365`.bash_profile`. As a workaround, make sure `.bashrc` sets up
1366`$PATH` so that you can run `git-receive-pack` program.
1367
1368[NOTE]
1369If you plan to publish this repository to be accessed over http,
1370you should do `chmod +x my-git.git/hooks/post-update` at this
1371point.  This makes sure that every time you push into this
1372repository, `git-update-server-info` is run.
1373
1374Your "public repository" is now ready to accept your changes.
1375Come back to the machine you have your private repository. From
1376there, run this command:
1377
1378------------
1379$ git push <public-host>:/path/to/my-git.git master
1380------------
1381
1382This synchronizes your public repository to match the named
1383branch head (i.e. `master` in this case) and objects reachable
1384from them in your current repository.
1385
1386As a real example, this is how I update my public git
1387repository. Kernel.org mirror network takes care of the
1388propagation to other publicly visible machines:
1389
1390------------
1391$ git push master.kernel.org:/pub/scm/git/git.git/ 
1392------------
1393
1394
1395Packing your repository
1396-----------------------
1397
1398Earlier, we saw that one file under `.git/objects/??/` directory
1399is stored for each git object you create. This representation
1400is efficient to create atomically and safely, but
1401not so convenient to transport over the network. Since git objects are
1402immutable once they are created, there is a way to optimize the
1403storage by "packing them together". The command
1404
1405------------
1406$ git repack
1407------------
1408
1409will do it for you. If you followed the tutorial examples, you
1410would have accumulated about 17 objects in `.git/objects/??/`
1411directories by now. `git repack` tells you how many objects it
1412packed, and stores the packed file in `.git/objects/pack`
1413directory.
1414
1415[NOTE]
1416You will see two files, `pack-\*.pack` and `pack-\*.idx`,
1417in `.git/objects/pack` directory. They are closely related to
1418each other, and if you ever copy them by hand to a different
1419repository for whatever reason, you should make sure you copy
1420them together. The former holds all the data from the objects
1421in the pack, and the latter holds the index for random
1422access.
1423
1424If you are paranoid, running `git-verify-pack` command would
1425detect if you have a corrupt pack, but do not worry too much.
1426Our programs are always perfect ;-).
1427
1428Once you have packed objects, you do not need to leave the
1429unpacked objects that are contained in the pack file anymore.
1430
1431------------
1432$ git prune-packed
1433------------
1434
1435would remove them for you.
1436
1437You can try running `find .git/objects -type f` before and after
1438you run `git prune-packed` if you are curious.  Also `git
1439count-objects` would tell you how many unpacked objects are in
1440your repository and how much space they are consuming.
1441
1442[NOTE]
1443`git pull` is slightly cumbersome for HTTP transport, as a
1444packed repository may contain relatively few objects in a
1445relatively large pack. If you expect many HTTP pulls from your
1446public repository you might want to repack & prune often, or
1447never.
1448
1449If you run `git repack` again at this point, it will say
1450"Nothing to pack". Once you continue your development and
1451accumulate the changes, running `git repack` again will create a
1452new pack, that contains objects created since you packed your
1453repository the last time. We recommend that you pack your project
1454soon after the initial import (unless you are starting your
1455project from scratch), and then run `git repack` every once in a
1456while, depending on how active your project is.
1457
1458When a repository is synchronized via `git push` and `git pull`
1459objects packed in the source repository are usually stored
1460unpacked in the destination, unless rsync transport is used.
1461While this allows you to use different packing strategies on
1462both ends, it also means you may need to repack both
1463repositories every once in a while.
1464
1465
1466Working with Others
1467-------------------
1468
1469Although git is a truly distributed system, it is often
1470convenient to organize your project with an informal hierarchy
1471of developers. Linux kernel development is run this way. There
1472is a nice illustration (page 17, "Merges to Mainline") in
1473link:http://tinyurl.com/a2jdg[Randy Dunlap's presentation].
1474
1475It should be stressed that this hierarchy is purely *informal*.
1476There is nothing fundamental in git that enforces the "chain of
1477patch flow" this hierarchy implies. You do not have to pull
1478from only one remote repository.
1479
1480A recommended workflow for a "project lead" goes like this:
1481
14821. Prepare your primary repository on your local machine. Your
1483   work is done there.
1484
14852. Prepare a public repository accessible to others.
1486+
1487If other people are pulling from your repository over dumb
1488transport protocols (HTTP), you need to keep this repository
1489'dumb transport friendly'.  After `git init`,
1490`$GIT_DIR/hooks/post-update` copied from the standard templates
1491would contain a call to `git-update-server-info` but the
1492`post-update` hook itself is disabled by default -- enable it
1493with `chmod +x post-update`.  This makes sure `git-update-server-info`
1494keeps the necessary files up-to-date.
1495
14963. Push into the public repository from your primary
1497   repository.
1498
14994. `git repack` the public repository. This establishes a big
1500   pack that contains the initial set of objects as the
1501   baseline, and possibly `git prune` if the transport
1502   used for pulling from your repository supports packed
1503   repositories.
1504
15055. Keep working in your primary repository. Your changes
1506   include modifications of your own, patches you receive via
1507   e-mails, and merges resulting from pulling the "public"
1508   repositories of your "subsystem maintainers".
1509+
1510You can repack this private repository whenever you feel like.
1511
15126. Push your changes to the public repository, and announce it
1513   to the public.
1514
15157. Every once in a while, "git repack" the public repository.
1516   Go back to step 5. and continue working.
1517
1518
1519A recommended work cycle for a "subsystem maintainer" who works
1520on that project and has an own "public repository" goes like this:
1521
15221. Prepare your work repository, by `git clone` the public
1523   repository of the "project lead". The URL used for the
1524   initial cloning is stored in the remote.origin.url
1525   configuration variable.
1526
15272. Prepare a public repository accessible to others, just like
1528   the "project lead" person does.
1529
15303. Copy over the packed files from "project lead" public
1531   repository to your public repository, unless the "project
1532   lead" repository lives on the same machine as yours.  In the
1533   latter case, you can use `objects/info/alternates` file to
1534   point at the repository you are borrowing from.
1535
15364. Push into the public repository from your primary
1537   repository. Run `git repack`, and possibly `git prune` if the
1538   transport used for pulling from your repository supports
1539   packed repositories.
1540
15415. Keep working in your primary repository. Your changes
1542   include modifications of your own, patches you receive via
1543   e-mails, and merges resulting from pulling the "public"
1544   repositories of your "project lead" and possibly your
1545   "sub-subsystem maintainers".
1546+
1547You can repack this private repository whenever you feel
1548like.
1549
15506. Push your changes to your public repository, and ask your
1551   "project lead" and possibly your "sub-subsystem
1552   maintainers" to pull from it.
1553
15547. Every once in a while, `git repack` the public repository.
1555   Go back to step 5. and continue working.
1556
1557
1558A recommended work cycle for an "individual developer" who does
1559not have a "public" repository is somewhat different. It goes
1560like this:
1561
15621. Prepare your work repository, by `git clone` the public
1563   repository of the "project lead" (or a "subsystem
1564   maintainer", if you work on a subsystem). The URL used for
1565   the initial cloning is stored in the remote.origin.url
1566   configuration variable.
1567
15682. Do your work in your repository on 'master' branch.
1569
15703. Run `git fetch origin` from the public repository of your
1571   upstream every once in a while. This does only the first
1572   half of `git pull` but does not merge. The head of the
1573   public repository is stored in `.git/refs/remotes/origin/master`.
1574
15754. Use `git cherry origin` to see which ones of your patches
1576   were accepted, and/or use `git rebase origin` to port your
1577   unmerged changes forward to the updated upstream.
1578
15795. Use `git format-patch origin` to prepare patches for e-mail
1580   submission to your upstream and send it out. Go back to
1581   step 2. and continue.
1582
1583
1584Working with Others, Shared Repository Style
1585--------------------------------------------
1586
1587If you are coming from CVS background, the style of cooperation
1588suggested in the previous section may be new to you. You do not
1589have to worry. git supports "shared public repository" style of
1590cooperation you are probably more familiar with as well.
1591
1592See link:cvs-migration.html[git for CVS users] for the details.
1593
1594Bundling your work together
1595---------------------------
1596
1597It is likely that you will be working on more than one thing at
1598a time.  It is easy to manage those more-or-less independent tasks
1599using branches with git.
1600
1601We have already seen how branches work previously,
1602with "fun and work" example using two branches.  The idea is the
1603same if there are more than two branches.  Let's say you started
1604out from "master" head, and have some new code in the "master"
1605branch, and two independent fixes in the "commit-fix" and
1606"diff-fix" branches:
1607
1608------------
1609$ git show-branch
1610! [commit-fix] Fix commit message normalization.
1611 ! [diff-fix] Fix rename detection.
1612  * [master] Release candidate #1
1613---
1614 +  [diff-fix] Fix rename detection.
1615 +  [diff-fix~1] Better common substring algorithm.
1616+   [commit-fix] Fix commit message normalization.
1617  * [master] Release candidate #1
1618++* [diff-fix~2] Pretty-print messages.
1619------------
1620
1621Both fixes are tested well, and at this point, you want to merge
1622in both of them.  You could merge in 'diff-fix' first and then
1623'commit-fix' next, like this:
1624
1625------------
1626$ git merge 'Merge fix in diff-fix' master diff-fix
1627$ git merge 'Merge fix in commit-fix' master commit-fix
1628------------
1629
1630Which would result in:
1631
1632------------
1633$ git show-branch
1634! [commit-fix] Fix commit message normalization.
1635 ! [diff-fix] Fix rename detection.
1636  * [master] Merge fix in commit-fix
1637---
1638  - [master] Merge fix in commit-fix
1639+ * [commit-fix] Fix commit message normalization.
1640  - [master~1] Merge fix in diff-fix
1641 +* [diff-fix] Fix rename detection.
1642 +* [diff-fix~1] Better common substring algorithm.
1643  * [master~2] Release candidate #1
1644++* [master~3] Pretty-print messages.
1645------------
1646
1647However, there is no particular reason to merge in one branch
1648first and the other next, when what you have are a set of truly
1649independent changes (if the order mattered, then they are not
1650independent by definition).  You could instead merge those two
1651branches into the current branch at once.  First let's undo what
1652we just did and start over.  We would want to get the master
1653branch before these two merges by resetting it to 'master~2':
1654
1655------------
1656$ git reset --hard master~2
1657------------
1658
1659You can make sure 'git show-branch' matches the state before
1660those two 'git merge' you just did.  Then, instead of running
1661two 'git merge' commands in a row, you would merge these two
1662branch heads (this is known as 'making an Octopus'):
1663
1664------------
1665$ git merge commit-fix diff-fix
1666$ git show-branch
1667! [commit-fix] Fix commit message normalization.
1668 ! [diff-fix] Fix rename detection.
1669  * [master] Octopus merge of branches 'diff-fix' and 'commit-fix'
1670---
1671  - [master] Octopus merge of branches 'diff-fix' and 'commit-fix'
1672+ * [commit-fix] Fix commit message normalization.
1673 +* [diff-fix] Fix rename detection.
1674 +* [diff-fix~1] Better common substring algorithm.
1675  * [master~1] Release candidate #1
1676++* [master~2] Pretty-print messages.
1677------------
1678
1679Note that you should not do Octopus because you can.  An octopus
1680is a valid thing to do and often makes it easier to view the
1681commit history if you are merging more than two independent
1682changes at the same time.  However, if you have merge conflicts
1683with any of the branches you are merging in and need to hand
1684resolve, that is an indication that the development happened in
1685those branches were not independent after all, and you should
1686merge two at a time, documenting how you resolved the conflicts,
1687and the reason why you preferred changes made in one side over
1688the other.  Otherwise it would make the project history harder
1689to follow, not easier.
1690
1691[ to be continued.. cvsimports ]