cache-tree.con commit close_lock_file(): exit (successfully) if file is already closed (419f0c0)
   1#include "cache.h"
   2#include "tree.h"
   3#include "tree-walk.h"
   4#include "cache-tree.h"
   5
   6#ifndef DEBUG
   7#define DEBUG 0
   8#endif
   9
  10struct cache_tree *cache_tree(void)
  11{
  12        struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
  13        it->entry_count = -1;
  14        return it;
  15}
  16
  17void cache_tree_free(struct cache_tree **it_p)
  18{
  19        int i;
  20        struct cache_tree *it = *it_p;
  21
  22        if (!it)
  23                return;
  24        for (i = 0; i < it->subtree_nr; i++)
  25                if (it->down[i]) {
  26                        cache_tree_free(&it->down[i]->cache_tree);
  27                        free(it->down[i]);
  28                }
  29        free(it->down);
  30        free(it);
  31        *it_p = NULL;
  32}
  33
  34static int subtree_name_cmp(const char *one, int onelen,
  35                            const char *two, int twolen)
  36{
  37        if (onelen < twolen)
  38                return -1;
  39        if (twolen < onelen)
  40                return 1;
  41        return memcmp(one, two, onelen);
  42}
  43
  44static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
  45{
  46        struct cache_tree_sub **down = it->down;
  47        int lo, hi;
  48        lo = 0;
  49        hi = it->subtree_nr;
  50        while (lo < hi) {
  51                int mi = (lo + hi) / 2;
  52                struct cache_tree_sub *mdl = down[mi];
  53                int cmp = subtree_name_cmp(path, pathlen,
  54                                           mdl->name, mdl->namelen);
  55                if (!cmp)
  56                        return mi;
  57                if (cmp < 0)
  58                        hi = mi;
  59                else
  60                        lo = mi + 1;
  61        }
  62        return -lo-1;
  63}
  64
  65static struct cache_tree_sub *find_subtree(struct cache_tree *it,
  66                                           const char *path,
  67                                           int pathlen,
  68                                           int create)
  69{
  70        struct cache_tree_sub *down;
  71        int pos = subtree_pos(it, path, pathlen);
  72        if (0 <= pos)
  73                return it->down[pos];
  74        if (!create)
  75                return NULL;
  76
  77        pos = -pos-1;
  78        ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
  79        it->subtree_nr++;
  80
  81        down = xmalloc(sizeof(*down) + pathlen + 1);
  82        down->cache_tree = NULL;
  83        down->namelen = pathlen;
  84        memcpy(down->name, path, pathlen);
  85        down->name[pathlen] = 0;
  86
  87        if (pos < it->subtree_nr)
  88                memmove(it->down + pos + 1,
  89                        it->down + pos,
  90                        sizeof(down) * (it->subtree_nr - pos - 1));
  91        it->down[pos] = down;
  92        return down;
  93}
  94
  95struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
  96{
  97        int pathlen = strlen(path);
  98        return find_subtree(it, path, pathlen, 1);
  99}
 100
 101static int do_invalidate_path(struct cache_tree *it, const char *path)
 102{
 103        /* a/b/c
 104         * ==> invalidate self
 105         * ==> find "a", have it invalidate "b/c"
 106         * a
 107         * ==> invalidate self
 108         * ==> if "a" exists as a subtree, remove it.
 109         */
 110        const char *slash;
 111        int namelen;
 112        struct cache_tree_sub *down;
 113
 114#if DEBUG
 115        fprintf(stderr, "cache-tree invalidate <%s>\n", path);
 116#endif
 117
 118        if (!it)
 119                return 0;
 120        slash = strchrnul(path, '/');
 121        namelen = slash - path;
 122        it->entry_count = -1;
 123        if (!*slash) {
 124                int pos;
 125                pos = subtree_pos(it, path, namelen);
 126                if (0 <= pos) {
 127                        cache_tree_free(&it->down[pos]->cache_tree);
 128                        free(it->down[pos]);
 129                        /* 0 1 2 3 4 5
 130                         *       ^     ^subtree_nr = 6
 131                         *       pos
 132                         * move 4 and 5 up one place (2 entries)
 133                         * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
 134                         */
 135                        memmove(it->down+pos, it->down+pos+1,
 136                                sizeof(struct cache_tree_sub *) *
 137                                (it->subtree_nr - pos - 1));
 138                        it->subtree_nr--;
 139                }
 140                return 1;
 141        }
 142        down = find_subtree(it, path, namelen, 0);
 143        if (down)
 144                do_invalidate_path(down->cache_tree, slash + 1);
 145        return 1;
 146}
 147
 148void cache_tree_invalidate_path(struct index_state *istate, const char *path)
 149{
 150        if (do_invalidate_path(istate->cache_tree, path))
 151                istate->cache_changed |= CACHE_TREE_CHANGED;
 152}
 153
 154static int verify_cache(struct cache_entry **cache,
 155                        int entries, int flags)
 156{
 157        int i, funny;
 158        int silent = flags & WRITE_TREE_SILENT;
 159
 160        /* Verify that the tree is merged */
 161        funny = 0;
 162        for (i = 0; i < entries; i++) {
 163                const struct cache_entry *ce = cache[i];
 164                if (ce_stage(ce)) {
 165                        if (silent)
 166                                return -1;
 167                        if (10 < ++funny) {
 168                                fprintf(stderr, "...\n");
 169                                break;
 170                        }
 171                        fprintf(stderr, "%s: unmerged (%s)\n",
 172                                ce->name, sha1_to_hex(ce->sha1));
 173                }
 174        }
 175        if (funny)
 176                return -1;
 177
 178        /* Also verify that the cache does not have path and path/file
 179         * at the same time.  At this point we know the cache has only
 180         * stage 0 entries.
 181         */
 182        funny = 0;
 183        for (i = 0; i < entries - 1; i++) {
 184                /* path/file always comes after path because of the way
 185                 * the cache is sorted.  Also path can appear only once,
 186                 * which means conflicting one would immediately follow.
 187                 */
 188                const char *this_name = cache[i]->name;
 189                const char *next_name = cache[i+1]->name;
 190                int this_len = strlen(this_name);
 191                if (this_len < strlen(next_name) &&
 192                    strncmp(this_name, next_name, this_len) == 0 &&
 193                    next_name[this_len] == '/') {
 194                        if (10 < ++funny) {
 195                                fprintf(stderr, "...\n");
 196                                break;
 197                        }
 198                        fprintf(stderr, "You have both %s and %s\n",
 199                                this_name, next_name);
 200                }
 201        }
 202        if (funny)
 203                return -1;
 204        return 0;
 205}
 206
 207static void discard_unused_subtrees(struct cache_tree *it)
 208{
 209        struct cache_tree_sub **down = it->down;
 210        int nr = it->subtree_nr;
 211        int dst, src;
 212        for (dst = src = 0; src < nr; src++) {
 213                struct cache_tree_sub *s = down[src];
 214                if (s->used)
 215                        down[dst++] = s;
 216                else {
 217                        cache_tree_free(&s->cache_tree);
 218                        free(s);
 219                        it->subtree_nr--;
 220                }
 221        }
 222}
 223
 224int cache_tree_fully_valid(struct cache_tree *it)
 225{
 226        int i;
 227        if (!it)
 228                return 0;
 229        if (it->entry_count < 0 || !has_sha1_file(it->sha1))
 230                return 0;
 231        for (i = 0; i < it->subtree_nr; i++) {
 232                if (!cache_tree_fully_valid(it->down[i]->cache_tree))
 233                        return 0;
 234        }
 235        return 1;
 236}
 237
 238static int update_one(struct cache_tree *it,
 239                      struct cache_entry **cache,
 240                      int entries,
 241                      const char *base,
 242                      int baselen,
 243                      int *skip_count,
 244                      int flags)
 245{
 246        struct strbuf buffer;
 247        int missing_ok = flags & WRITE_TREE_MISSING_OK;
 248        int dryrun = flags & WRITE_TREE_DRY_RUN;
 249        int repair = flags & WRITE_TREE_REPAIR;
 250        int to_invalidate = 0;
 251        int i;
 252
 253        assert(!(dryrun && repair));
 254
 255        *skip_count = 0;
 256
 257        if (0 <= it->entry_count && has_sha1_file(it->sha1))
 258                return it->entry_count;
 259
 260        /*
 261         * We first scan for subtrees and update them; we start by
 262         * marking existing subtrees -- the ones that are unmarked
 263         * should not be in the result.
 264         */
 265        for (i = 0; i < it->subtree_nr; i++)
 266                it->down[i]->used = 0;
 267
 268        /*
 269         * Find the subtrees and update them.
 270         */
 271        i = 0;
 272        while (i < entries) {
 273                const struct cache_entry *ce = cache[i];
 274                struct cache_tree_sub *sub;
 275                const char *path, *slash;
 276                int pathlen, sublen, subcnt, subskip;
 277
 278                path = ce->name;
 279                pathlen = ce_namelen(ce);
 280                if (pathlen <= baselen || memcmp(base, path, baselen))
 281                        break; /* at the end of this level */
 282
 283                slash = strchr(path + baselen, '/');
 284                if (!slash) {
 285                        i++;
 286                        continue;
 287                }
 288                /*
 289                 * a/bbb/c (base = a/, slash = /c)
 290                 * ==>
 291                 * path+baselen = bbb/c, sublen = 3
 292                 */
 293                sublen = slash - (path + baselen);
 294                sub = find_subtree(it, path + baselen, sublen, 1);
 295                if (!sub->cache_tree)
 296                        sub->cache_tree = cache_tree();
 297                subcnt = update_one(sub->cache_tree,
 298                                    cache + i, entries - i,
 299                                    path,
 300                                    baselen + sublen + 1,
 301                                    &subskip,
 302                                    flags);
 303                if (subcnt < 0)
 304                        return subcnt;
 305                i += subcnt;
 306                sub->count = subcnt; /* to be used in the next loop */
 307                *skip_count += subskip;
 308                sub->used = 1;
 309        }
 310
 311        discard_unused_subtrees(it);
 312
 313        /*
 314         * Then write out the tree object for this level.
 315         */
 316        strbuf_init(&buffer, 8192);
 317
 318        i = 0;
 319        while (i < entries) {
 320                const struct cache_entry *ce = cache[i];
 321                struct cache_tree_sub *sub;
 322                const char *path, *slash;
 323                int pathlen, entlen;
 324                const unsigned char *sha1;
 325                unsigned mode;
 326                int expected_missing = 0;
 327
 328                path = ce->name;
 329                pathlen = ce_namelen(ce);
 330                if (pathlen <= baselen || memcmp(base, path, baselen))
 331                        break; /* at the end of this level */
 332
 333                slash = strchr(path + baselen, '/');
 334                if (slash) {
 335                        entlen = slash - (path + baselen);
 336                        sub = find_subtree(it, path + baselen, entlen, 0);
 337                        if (!sub)
 338                                die("cache-tree.c: '%.*s' in '%s' not found",
 339                                    entlen, path + baselen, path);
 340                        i += sub->count;
 341                        sha1 = sub->cache_tree->sha1;
 342                        mode = S_IFDIR;
 343                        if (sub->cache_tree->entry_count < 0) {
 344                                to_invalidate = 1;
 345                                expected_missing = 1;
 346                        }
 347                }
 348                else {
 349                        sha1 = ce->sha1;
 350                        mode = ce->ce_mode;
 351                        entlen = pathlen - baselen;
 352                        i++;
 353                }
 354                if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
 355                        strbuf_release(&buffer);
 356                        if (expected_missing)
 357                                return -1;
 358                        return error("invalid object %06o %s for '%.*s'",
 359                                mode, sha1_to_hex(sha1), entlen+baselen, path);
 360                }
 361
 362                /*
 363                 * CE_REMOVE entries are removed before the index is
 364                 * written to disk. Skip them to remain consistent
 365                 * with the future on-disk index.
 366                 */
 367                if (ce->ce_flags & CE_REMOVE) {
 368                        *skip_count = *skip_count + 1;
 369                        continue;
 370                }
 371
 372                /*
 373                 * CE_INTENT_TO_ADD entries exist on on-disk index but
 374                 * they are not part of generated trees. Invalidate up
 375                 * to root to force cache-tree users to read elsewhere.
 376                 */
 377                if (ce->ce_flags & CE_INTENT_TO_ADD) {
 378                        to_invalidate = 1;
 379                        continue;
 380                }
 381
 382                strbuf_grow(&buffer, entlen + 100);
 383                strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
 384                strbuf_add(&buffer, sha1, 20);
 385
 386#if DEBUG
 387                fprintf(stderr, "cache-tree update-one %o %.*s\n",
 388                        mode, entlen, path + baselen);
 389#endif
 390        }
 391
 392        if (repair) {
 393                unsigned char sha1[20];
 394                hash_sha1_file(buffer.buf, buffer.len, tree_type, sha1);
 395                if (has_sha1_file(sha1))
 396                        hashcpy(it->sha1, sha1);
 397                else
 398                        to_invalidate = 1;
 399        } else if (dryrun)
 400                hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
 401        else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
 402                strbuf_release(&buffer);
 403                return -1;
 404        }
 405
 406        strbuf_release(&buffer);
 407        it->entry_count = to_invalidate ? -1 : i - *skip_count;
 408#if DEBUG
 409        fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
 410                it->entry_count, it->subtree_nr,
 411                sha1_to_hex(it->sha1));
 412#endif
 413        return i;
 414}
 415
 416int cache_tree_update(struct index_state *istate, int flags)
 417{
 418        struct cache_tree *it = istate->cache_tree;
 419        struct cache_entry **cache = istate->cache;
 420        int entries = istate->cache_nr;
 421        int skip, i = verify_cache(cache, entries, flags);
 422
 423        if (i)
 424                return i;
 425        i = update_one(it, cache, entries, "", 0, &skip, flags);
 426        if (i < 0)
 427                return i;
 428        istate->cache_changed |= CACHE_TREE_CHANGED;
 429        return 0;
 430}
 431
 432static void write_one(struct strbuf *buffer, struct cache_tree *it,
 433                      const char *path, int pathlen)
 434{
 435        int i;
 436
 437        /* One "cache-tree" entry consists of the following:
 438         * path (NUL terminated)
 439         * entry_count, subtree_nr ("%d %d\n")
 440         * tree-sha1 (missing if invalid)
 441         * subtree_nr "cache-tree" entries for subtrees.
 442         */
 443        strbuf_grow(buffer, pathlen + 100);
 444        strbuf_add(buffer, path, pathlen);
 445        strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
 446
 447#if DEBUG
 448        if (0 <= it->entry_count)
 449                fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
 450                        pathlen, path, it->entry_count, it->subtree_nr,
 451                        sha1_to_hex(it->sha1));
 452        else
 453                fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
 454                        pathlen, path, it->subtree_nr);
 455#endif
 456
 457        if (0 <= it->entry_count) {
 458                strbuf_add(buffer, it->sha1, 20);
 459        }
 460        for (i = 0; i < it->subtree_nr; i++) {
 461                struct cache_tree_sub *down = it->down[i];
 462                if (i) {
 463                        struct cache_tree_sub *prev = it->down[i-1];
 464                        if (subtree_name_cmp(down->name, down->namelen,
 465                                             prev->name, prev->namelen) <= 0)
 466                                die("fatal - unsorted cache subtree");
 467                }
 468                write_one(buffer, down->cache_tree, down->name, down->namelen);
 469        }
 470}
 471
 472void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
 473{
 474        write_one(sb, root, "", 0);
 475}
 476
 477static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
 478{
 479        const char *buf = *buffer;
 480        unsigned long size = *size_p;
 481        const char *cp;
 482        char *ep;
 483        struct cache_tree *it;
 484        int i, subtree_nr;
 485
 486        it = NULL;
 487        /* skip name, but make sure name exists */
 488        while (size && *buf) {
 489                size--;
 490                buf++;
 491        }
 492        if (!size)
 493                goto free_return;
 494        buf++; size--;
 495        it = cache_tree();
 496
 497        cp = buf;
 498        it->entry_count = strtol(cp, &ep, 10);
 499        if (cp == ep)
 500                goto free_return;
 501        cp = ep;
 502        subtree_nr = strtol(cp, &ep, 10);
 503        if (cp == ep)
 504                goto free_return;
 505        while (size && *buf && *buf != '\n') {
 506                size--;
 507                buf++;
 508        }
 509        if (!size)
 510                goto free_return;
 511        buf++; size--;
 512        if (0 <= it->entry_count) {
 513                if (size < 20)
 514                        goto free_return;
 515                hashcpy(it->sha1, (const unsigned char*)buf);
 516                buf += 20;
 517                size -= 20;
 518        }
 519
 520#if DEBUG
 521        if (0 <= it->entry_count)
 522                fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
 523                        *buffer, it->entry_count, subtree_nr,
 524                        sha1_to_hex(it->sha1));
 525        else
 526                fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
 527                        *buffer, subtree_nr);
 528#endif
 529
 530        /*
 531         * Just a heuristic -- we do not add directories that often but
 532         * we do not want to have to extend it immediately when we do,
 533         * hence +2.
 534         */
 535        it->subtree_alloc = subtree_nr + 2;
 536        it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
 537        for (i = 0; i < subtree_nr; i++) {
 538                /* read each subtree */
 539                struct cache_tree *sub;
 540                struct cache_tree_sub *subtree;
 541                const char *name = buf;
 542
 543                sub = read_one(&buf, &size);
 544                if (!sub)
 545                        goto free_return;
 546                subtree = cache_tree_sub(it, name);
 547                subtree->cache_tree = sub;
 548        }
 549        if (subtree_nr != it->subtree_nr)
 550                die("cache-tree: internal error");
 551        *buffer = buf;
 552        *size_p = size;
 553        return it;
 554
 555 free_return:
 556        cache_tree_free(&it);
 557        return NULL;
 558}
 559
 560struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
 561{
 562        if (buffer[0])
 563                return NULL; /* not the whole tree */
 564        return read_one(&buffer, &size);
 565}
 566
 567static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
 568{
 569        if (!it)
 570                return NULL;
 571        while (*path) {
 572                const char *slash;
 573                struct cache_tree_sub *sub;
 574
 575                slash = strchrnul(path, '/');
 576                /*
 577                 * Between path and slash is the name of the subtree
 578                 * to look for.
 579                 */
 580                sub = find_subtree(it, path, slash - path, 0);
 581                if (!sub)
 582                        return NULL;
 583                it = sub->cache_tree;
 584
 585                path = slash;
 586                while (*path == '/')
 587                        path++;
 588        }
 589        return it;
 590}
 591
 592int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
 593{
 594        int entries, was_valid, newfd;
 595        struct lock_file *lock_file;
 596
 597        /*
 598         * We can't free this memory, it becomes part of a linked list
 599         * parsed atexit()
 600         */
 601        lock_file = xcalloc(1, sizeof(struct lock_file));
 602
 603        newfd = hold_locked_index(lock_file, 1);
 604
 605        entries = read_cache();
 606        if (entries < 0)
 607                return WRITE_TREE_UNREADABLE_INDEX;
 608        if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
 609                cache_tree_free(&(active_cache_tree));
 610
 611        if (!active_cache_tree)
 612                active_cache_tree = cache_tree();
 613
 614        was_valid = cache_tree_fully_valid(active_cache_tree);
 615        if (!was_valid) {
 616                if (cache_tree_update(&the_index, flags) < 0)
 617                        return WRITE_TREE_UNMERGED_INDEX;
 618                if (0 <= newfd) {
 619                        if (!write_locked_index(&the_index, lock_file, COMMIT_LOCK))
 620                                newfd = -1;
 621                }
 622                /* Not being able to write is fine -- we are only interested
 623                 * in updating the cache-tree part, and if the next caller
 624                 * ends up using the old index with unupdated cache-tree part
 625                 * it misses the work we did here, but that is just a
 626                 * performance penalty and not a big deal.
 627                 */
 628        }
 629
 630        if (prefix) {
 631                struct cache_tree *subtree =
 632                        cache_tree_find(active_cache_tree, prefix);
 633                if (!subtree)
 634                        return WRITE_TREE_PREFIX_ERROR;
 635                hashcpy(sha1, subtree->sha1);
 636        }
 637        else
 638                hashcpy(sha1, active_cache_tree->sha1);
 639
 640        if (0 <= newfd)
 641                rollback_lock_file(lock_file);
 642
 643        return 0;
 644}
 645
 646static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
 647{
 648        struct tree_desc desc;
 649        struct name_entry entry;
 650        int cnt;
 651
 652        hashcpy(it->sha1, tree->object.sha1);
 653        init_tree_desc(&desc, tree->buffer, tree->size);
 654        cnt = 0;
 655        while (tree_entry(&desc, &entry)) {
 656                if (!S_ISDIR(entry.mode))
 657                        cnt++;
 658                else {
 659                        struct cache_tree_sub *sub;
 660                        struct tree *subtree = lookup_tree(entry.sha1);
 661                        if (!subtree->object.parsed)
 662                                parse_tree(subtree);
 663                        sub = cache_tree_sub(it, entry.path);
 664                        sub->cache_tree = cache_tree();
 665                        prime_cache_tree_rec(sub->cache_tree, subtree);
 666                        cnt += sub->cache_tree->entry_count;
 667                }
 668        }
 669        it->entry_count = cnt;
 670}
 671
 672void prime_cache_tree(struct index_state *istate, struct tree *tree)
 673{
 674        cache_tree_free(&istate->cache_tree);
 675        istate->cache_tree = cache_tree();
 676        prime_cache_tree_rec(istate->cache_tree, tree);
 677        istate->cache_changed |= CACHE_TREE_CHANGED;
 678}
 679
 680/*
 681 * find the cache_tree that corresponds to the current level without
 682 * exploding the full path into textual form.  The root of the
 683 * cache tree is given as "root", and our current level is "info".
 684 * (1) When at root level, info->prev is NULL, so it is "root" itself.
 685 * (2) Otherwise, find the cache_tree that corresponds to one level
 686 *     above us, and find ourselves in there.
 687 */
 688static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
 689                                                         struct traverse_info *info)
 690{
 691        struct cache_tree *our_parent;
 692
 693        if (!info->prev)
 694                return root;
 695        our_parent = find_cache_tree_from_traversal(root, info->prev);
 696        return cache_tree_find(our_parent, info->name.path);
 697}
 698
 699int cache_tree_matches_traversal(struct cache_tree *root,
 700                                 struct name_entry *ent,
 701                                 struct traverse_info *info)
 702{
 703        struct cache_tree *it;
 704
 705        it = find_cache_tree_from_traversal(root, info);
 706        it = cache_tree_find(it, ent->path);
 707        if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
 708                return it->entry_count;
 709        return 0;
 710}
 711
 712int update_main_cache_tree(int flags)
 713{
 714        if (!the_index.cache_tree)
 715                the_index.cache_tree = cache_tree();
 716        return cache_tree_update(&the_index, flags);
 717}