4605b7469bb8e9c19e340c04d6703c6b8d1c9db7
   1/*
   2Format of STDIN stream:
   3
   4  stream ::= cmd*;
   5
   6  cmd ::= new_blob
   7        | new_commit
   8        | new_branch
   9        | new_tag
  10        ;
  11
  12  new_blob ::= 'blob' blob_data;
  13
  14  new_commit ::= 'comt' ref_name author_committer_msg
  15    file_change*
  16    '0';
  17
  18  new_branch ::= 'brch' dst_ref_name src_ref_name;
  19  dst_ref_name ::= ref_name;
  20  src_ref_name ::= ref_name | sha1_exp;
  21
  22  new_tag ::= 'tagg' ref_name tag_name tagger_msg;
  23
  24  file_change ::= 'M' path_name hexsha1
  25                | 'D' path_name
  26                ;
  27
  28  author_committer_msg ::= len32
  29    'author' sp name '<' email '>' ts tz lf
  30    'committer' sp name '<' email '>' ts tz lf
  31    lf
  32    binary_data;
  33
  34  tagger_msg ::= len32
  35    'tagger' sp name '<' email '>' ts tz lf
  36    lf
  37    binary_data;
  38
  39  blob_data ::= len32 binary_data; # max len is 2^32-1
  40  path_name ::= len32 path;        # max len is PATH_MAX-1
  41  ref_name  ::= len32 ref;         # max len is PATH_MAX-1
  42  tag_name  ::= len32 tag;         # max len is PATH_MAX-1
  43  sha1_exp  ::= len32 sha1exp;     # max len is PATH_MAX-1
  44
  45  len32 ::= # unsigned 32 bit value, native format;
  46  binary_data ::= # file content, not interpreted;
  47  sp ::= # ASCII space character;
  48  lf ::= # ASCII newline (LF) character;
  49  path ::= # GIT style file path, e.g. "a/b/c";
  50  ref ::= # GIT ref name, e.g. "refs/heads/MOZ_GECKO_EXPERIMENT";
  51  tag ::= # GIT tag name, e.g. "FIREFOX_1_5";
  52  sha1exp ::= # Any valid GIT SHA1 expression;
  53  hexsha1 ::= # SHA1 in hexadecimal format;
  54  name ::= # valid GIT author/committer name;
  55  email ::= # valid GIT author/committer email;
  56  ts ::= # time since the epoch in seconds, ascii decimal;
  57  tz ::= # GIT style timezone;
  58*/
  59
  60#include "builtin.h"
  61#include "cache.h"
  62#include "object.h"
  63#include "blob.h"
  64#include "tree.h"
  65#include "delta.h"
  66#include "pack.h"
  67#include "refs.h"
  68#include "csum-file.h"
  69
  70struct object_entry
  71{
  72        struct object_entry *next;
  73        unsigned long offset;
  74        unsigned char sha1[20];
  75};
  76
  77struct object_entry_pool
  78{
  79        struct object_entry_pool *next_pool;
  80        struct object_entry *next_free;
  81        struct object_entry *end;
  82        struct object_entry entries[FLEX_ARRAY]; /* more */
  83};
  84
  85struct last_object
  86{
  87        void *data;
  88        unsigned int len;
  89        unsigned int depth;
  90        unsigned char sha1[20];
  91};
  92
  93struct mem_pool
  94{
  95        struct mem_pool *next_pool;
  96        char *next_free;
  97        char *end;
  98        char space[FLEX_ARRAY]; /* more */
  99};
 100
 101struct atom_str
 102{
 103        struct atom_str *next_atom;
 104        int str_len;
 105        char str_dat[FLEX_ARRAY]; /* more */
 106};
 107
 108struct tree_content;
 109struct tree_entry
 110{
 111        struct tree_content *tree;
 112        struct atom_str* name;
 113        unsigned int mode;
 114        unsigned char sha1[20];
 115};
 116
 117struct tree_content
 118{
 119        unsigned int entry_capacity; /* must match avail_tree_content */
 120        unsigned int entry_count;
 121        struct tree_entry *entries[FLEX_ARRAY]; /* more */
 122};
 123
 124struct avail_tree_content
 125{
 126        unsigned int entry_capacity; /* must match tree_content */
 127        struct avail_tree_content *next_avail;
 128};
 129
 130struct branch
 131{
 132        struct branch *table_next_branch;
 133        struct branch *active_next_branch;
 134        const char *name;
 135        unsigned long last_commit;
 136        struct tree_entry branch_tree;
 137        unsigned char sha1[20];
 138};
 139
 140
 141/* Stats and misc. counters */
 142static int max_depth = 10;
 143static unsigned long alloc_count;
 144static unsigned long branch_count;
 145static unsigned long object_count;
 146static unsigned long duplicate_count;
 147static unsigned long object_count_by_type[9];
 148static unsigned long duplicate_count_by_type[9];
 149
 150/* Memory pools */
 151static size_t mem_pool_alloc = 2*1024*1024 - sizeof(struct mem_pool);
 152static size_t total_allocd;
 153static struct mem_pool *mem_pool;
 154
 155/* atom management */
 156static unsigned int atom_table_sz = 4451;
 157static unsigned int atom_cnt;
 158static struct atom_str **atom_table;
 159
 160/* The .pack file being generated */
 161static int pack_fd;
 162static unsigned long pack_offset;
 163static unsigned char pack_sha1[20];
 164
 165/* Table of objects we've written. */
 166static unsigned int object_entry_alloc = 1000;
 167static struct object_entry_pool *blocks;
 168static struct object_entry *object_table[1 << 16];
 169
 170/* Our last blob */
 171static struct last_object last_blob;
 172
 173/* Tree management */
 174static unsigned int tree_entry_alloc = 1000;
 175static void *avail_tree_entry;
 176static unsigned int avail_tree_table_sz = 100;
 177static struct avail_tree_content **avail_tree_table;
 178
 179/* Branch data */
 180static unsigned int max_active_branches = 5;
 181static unsigned int cur_active_branches;
 182static unsigned int branch_table_sz = 1039;
 183static struct branch **branch_table;
 184static struct branch *active_branches;
 185
 186
 187static void alloc_objects(int cnt)
 188{
 189        struct object_entry_pool *b;
 190
 191        b = xmalloc(sizeof(struct object_entry_pool)
 192                + cnt * sizeof(struct object_entry));
 193        b->next_pool = blocks;
 194        b->next_free = b->entries;
 195        b->end = b->entries + cnt;
 196        blocks = b;
 197        alloc_count += cnt;
 198}
 199
 200static struct object_entry* new_object(unsigned char *sha1)
 201{
 202        struct object_entry *e;
 203
 204        if (blocks->next_free == blocks->end)
 205                alloc_objects(object_entry_alloc);
 206
 207        e = blocks->next_free++;
 208        memcpy(e->sha1, sha1, sizeof(e->sha1));
 209        return e;
 210}
 211
 212static struct object_entry* find_object(unsigned char *sha1)
 213{
 214        unsigned int h = sha1[0] << 8 | sha1[1];
 215        struct object_entry *e;
 216        for (e = object_table[h]; e; e = e->next)
 217                if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
 218                        return e;
 219        return NULL;
 220}
 221
 222static struct object_entry* insert_object(unsigned char *sha1)
 223{
 224        unsigned int h = sha1[0] << 8 | sha1[1];
 225        struct object_entry *e = object_table[h];
 226        struct object_entry *p = NULL;
 227
 228        while (e) {
 229                if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
 230                        return e;
 231                p = e;
 232                e = e->next;
 233        }
 234
 235        e = new_object(sha1);
 236        e->next = NULL;
 237        e->offset = 0;
 238        if (p)
 239                p->next = e;
 240        else
 241                object_table[h] = e;
 242        return e;
 243}
 244
 245static unsigned int hc_str(const char *s, size_t len)
 246{
 247        unsigned int r = 0;
 248        while (len-- > 0)
 249                r = r * 31 + *s++;
 250        return r;
 251}
 252
 253static void* pool_alloc(size_t len)
 254{
 255        struct mem_pool *p;
 256        void *r;
 257
 258        for (p = mem_pool; p; p = p->next_pool)
 259                if ((p->end - p->next_free >= len))
 260                        break;
 261
 262        if (!p) {
 263                if (len >= (mem_pool_alloc/2)) {
 264                        total_allocd += len;
 265                        return xmalloc(len);
 266                }
 267                total_allocd += sizeof(struct mem_pool) + mem_pool_alloc;
 268                p = xmalloc(sizeof(struct mem_pool) + mem_pool_alloc);
 269                p->next_pool = mem_pool;
 270                p->next_free = p->space;
 271                p->end = p->next_free + mem_pool_alloc;
 272                mem_pool = p;
 273        }
 274
 275        r = p->next_free;
 276        p->next_free += len;
 277        return r;
 278}
 279
 280static void* pool_calloc(size_t count, size_t size)
 281{
 282        size_t len = count * size;
 283        void *r = pool_alloc(len);
 284        memset(r, 0, len);
 285        return r;
 286}
 287
 288static char* pool_strdup(const char *s)
 289{
 290        char *r = pool_alloc(strlen(s) + 1);
 291        strcpy(r, s);
 292        return r;
 293}
 294
 295static struct atom_str* to_atom(const char *s, size_t len)
 296{
 297        unsigned int hc = hc_str(s, len) % atom_table_sz;
 298        struct atom_str *c;
 299
 300        for (c = atom_table[hc]; c; c = c->next_atom)
 301                if (c->str_len == len && !strncmp(s, c->str_dat, len))
 302                        return c;
 303
 304        c = pool_alloc(sizeof(struct atom_str) + len + 1);
 305        c->str_len = len;
 306        strncpy(c->str_dat, s, len);
 307        c->str_dat[len] = 0;
 308        c->next_atom = atom_table[hc];
 309        atom_table[hc] = c;
 310        atom_cnt++;
 311        return c;
 312}
 313
 314static struct branch* lookup_branch(const char *name)
 315{
 316        unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
 317        struct branch *b;
 318
 319        for (b = branch_table[hc]; b; b = b->table_next_branch)
 320                if (!strcmp(name, b->name))
 321                        return b;
 322        return NULL;
 323}
 324
 325static struct branch* new_branch(const char *name)
 326{
 327        unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
 328        struct branch* b = lookup_branch(name);
 329
 330        if (b)
 331                die("Invalid attempt to create duplicate branch: %s", name);
 332
 333        b = pool_calloc(1, sizeof(struct branch));
 334        b->name = pool_strdup(name);
 335        b->table_next_branch = branch_table[hc];
 336        branch_table[hc] = b;
 337        branch_count++;
 338        return b;
 339}
 340
 341static unsigned int hc_entries(unsigned int cnt)
 342{
 343        cnt = cnt & 7 ? (cnt / 8) + 1 : cnt / 8;
 344        return cnt < avail_tree_table_sz ? cnt : avail_tree_table_sz - 1;
 345}
 346
 347static struct tree_content* new_tree_content(unsigned int cnt)
 348{
 349        struct avail_tree_content *f, *l = NULL;
 350        struct tree_content *t;
 351        unsigned int hc = hc_entries(cnt);
 352
 353        for (f = avail_tree_table[hc]; f; l = f, f = f->next_avail)
 354                if (f->entry_capacity >= cnt)
 355                        break;
 356
 357        if (f) {
 358                if (l)
 359                        l->next_avail = f->next_avail;
 360                else
 361                        avail_tree_table[hc] = f->next_avail;
 362        } else {
 363                cnt = cnt & 7 ? ((cnt / 8) + 1) * 8 : cnt;
 364                f = pool_alloc(sizeof(*t) + sizeof(t->entries[0]) * cnt);
 365                f->entry_capacity = cnt;
 366        }
 367
 368        t = (struct tree_content*)f;
 369        t->entry_count = 0;
 370        return t;
 371}
 372
 373static void release_tree_entry(struct tree_entry *e);
 374static void release_tree_content(struct tree_content *t)
 375{
 376        struct avail_tree_content *f = (struct avail_tree_content*)t;
 377        unsigned int hc = hc_entries(f->entry_capacity);
 378        unsigned int i;
 379        for (i = 0; i < t->entry_count; i++)
 380                release_tree_entry(t->entries[i]);
 381        f->next_avail = avail_tree_table[hc];
 382        avail_tree_table[hc] = f;
 383}
 384
 385static struct tree_content* grow_tree_content(
 386        struct tree_content *t,
 387        int amt)
 388{
 389        struct tree_content *r = new_tree_content(t->entry_count + amt);
 390        r->entry_count = t->entry_count;
 391        memcpy(r->entries,t->entries,t->entry_count*sizeof(t->entries[0]));
 392        release_tree_content(t);
 393        return r;
 394}
 395
 396static struct tree_entry* new_tree_entry()
 397{
 398        struct tree_entry *e;
 399
 400        if (!avail_tree_entry) {
 401                unsigned int n = tree_entry_alloc;
 402                avail_tree_entry = e = xmalloc(n * sizeof(struct tree_entry));
 403                while (n--) {
 404                        *((void**)e) = e + 1;
 405                        e++;
 406                }
 407        }
 408
 409        e = avail_tree_entry;
 410        avail_tree_entry = *((void**)e);
 411        return e;
 412}
 413
 414static void release_tree_entry(struct tree_entry *e)
 415{
 416        if (e->tree)
 417                release_tree_content(e->tree);
 418        *((void**)e) = avail_tree_entry;
 419        avail_tree_entry = e;
 420}
 421
 422static void yread(int fd, void *buffer, size_t length)
 423{
 424        ssize_t ret = 0;
 425        while (ret < length) {
 426                ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
 427                if (!size)
 428                        die("Read from descriptor %i: end of stream", fd);
 429                if (size < 0)
 430                        die("Read from descriptor %i: %s", fd, strerror(errno));
 431                ret += size;
 432        }
 433}
 434
 435static int optional_read(int fd, void *buffer, size_t length)
 436{
 437        ssize_t ret = 0;
 438        while (ret < length) {
 439                ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
 440                if (!size && !ret)
 441                        return 1;
 442                if (!size)
 443                        die("Read from descriptor %i: end of stream", fd);
 444                if (size < 0)
 445                        die("Read from descriptor %i: %s", fd, strerror(errno));
 446                ret += size;
 447        }
 448        return 0;
 449}
 450
 451static void ywrite(int fd, void *buffer, size_t length)
 452{
 453        ssize_t ret = 0;
 454        while (ret < length) {
 455                ssize_t size = xwrite(fd, (char *) buffer + ret, length - ret);
 456                if (!size)
 457                        die("Write to descriptor %i: end of file", fd);
 458                if (size < 0)
 459                        die("Write to descriptor %i: %s", fd, strerror(errno));
 460                ret += size;
 461        }
 462}
 463
 464static const char* read_path()
 465{
 466        static char sn[PATH_MAX];
 467        unsigned long slen;
 468
 469        yread(0, &slen, 4);
 470        if (!slen)
 471                die("Expected string command parameter, didn't find one");
 472        if (slen > (PATH_MAX - 1))
 473                die("Can't handle excessive string length %lu", slen);
 474        yread(0, sn, slen);
 475        sn[slen] = 0;
 476        return sn;
 477}
 478
 479static unsigned long encode_header(
 480        enum object_type type,
 481        unsigned long size,
 482        unsigned char *hdr)
 483{
 484        int n = 1;
 485        unsigned char c;
 486
 487        if (type < OBJ_COMMIT || type > OBJ_DELTA)
 488                die("bad type %d", type);
 489
 490        c = (type << 4) | (size & 15);
 491        size >>= 4;
 492        while (size) {
 493                *hdr++ = c | 0x80;
 494                c = size & 0x7f;
 495                size >>= 7;
 496                n++;
 497        }
 498        *hdr = c;
 499        return n;
 500}
 501
 502static int store_object(
 503        enum object_type type,
 504        void *dat,
 505        unsigned long datlen,
 506        struct last_object *last,
 507        unsigned char *sha1out)
 508{
 509        void *out, *delta;
 510        struct object_entry *e;
 511        unsigned char hdr[96];
 512        unsigned char sha1[20];
 513        unsigned long hdrlen, deltalen;
 514        SHA_CTX c;
 515        z_stream s;
 516
 517        hdrlen = sprintf((char*)hdr,"%s %lu",type_names[type],datlen) + 1;
 518        SHA1_Init(&c);
 519        SHA1_Update(&c, hdr, hdrlen);
 520        SHA1_Update(&c, dat, datlen);
 521        SHA1_Final(sha1, &c);
 522        if (sha1out)
 523                memcpy(sha1out, sha1, sizeof(sha1));
 524
 525        e = insert_object(sha1);
 526        if (e->offset) {
 527                duplicate_count++;
 528                duplicate_count_by_type[type]++;
 529                return 1;
 530        }
 531        e->offset = pack_offset;
 532        object_count++;
 533        object_count_by_type[type]++;
 534
 535        if (last && last->data && last->depth < max_depth)
 536                delta = diff_delta(last->data, last->len,
 537                        dat, datlen,
 538                        &deltalen, 0);
 539        else
 540                delta = 0;
 541
 542        memset(&s, 0, sizeof(s));
 543        deflateInit(&s, zlib_compression_level);
 544
 545        if (delta) {
 546                last->depth++;
 547                s.next_in = delta;
 548                s.avail_in = deltalen;
 549                hdrlen = encode_header(OBJ_DELTA, deltalen, hdr);
 550                ywrite(pack_fd, hdr, hdrlen);
 551                ywrite(pack_fd, last->sha1, sizeof(sha1));
 552                pack_offset += hdrlen + sizeof(sha1);
 553        } else {
 554                if (last)
 555                        last->depth = 0;
 556                s.next_in = dat;
 557                s.avail_in = datlen;
 558                hdrlen = encode_header(type, datlen, hdr);
 559                ywrite(pack_fd, hdr, hdrlen);
 560                pack_offset += hdrlen;
 561        }
 562
 563        s.avail_out = deflateBound(&s, s.avail_in);
 564        s.next_out = out = xmalloc(s.avail_out);
 565        while (deflate(&s, Z_FINISH) == Z_OK)
 566                /* nothing */;
 567        deflateEnd(&s);
 568
 569        ywrite(pack_fd, out, s.total_out);
 570        pack_offset += s.total_out;
 571
 572        free(out);
 573        if (delta)
 574                free(delta);
 575        if (last) {
 576                if (last->data)
 577                        free(last->data);
 578                last->data = dat;
 579                last->len = datlen;
 580                memcpy(last->sha1, sha1, sizeof(sha1));
 581        }
 582        return 0;
 583}
 584
 585static const char *get_mode(const char *str, unsigned int *modep)
 586{
 587        unsigned char c;
 588        unsigned int mode = 0;
 589
 590        while ((c = *str++) != ' ') {
 591                if (c < '0' || c > '7')
 592                        return NULL;
 593                mode = (mode << 3) + (c - '0');
 594        }
 595        *modep = mode;
 596        return str;
 597}
 598
 599static void load_tree(struct tree_entry *root)
 600{
 601        struct object_entry *myoe;
 602        struct tree_content *t;
 603        unsigned long size;
 604        char *buf;
 605        const char *c;
 606        char type[20];
 607
 608        root->tree = t = new_tree_content(8);
 609        if (!memcmp(root->sha1, null_sha1, 20))
 610                return;
 611
 612        myoe = find_object(root->sha1);
 613        if (myoe) {
 614                die("FIXME");
 615        } else {
 616                buf = read_sha1_file(root->sha1, type, &size);
 617                if (!buf || strcmp(type, tree_type))
 618                        die("Can't load existing tree %s", sha1_to_hex(root->sha1));
 619        }
 620
 621        c = buf;
 622        while (c != (buf + size)) {
 623                struct tree_entry *e = new_tree_entry();
 624
 625                if (t->entry_count == t->entry_capacity)
 626                        root->tree = t = grow_tree_content(t, 8);
 627                t->entries[t->entry_count++] = e;
 628
 629                e->tree = NULL;
 630                c = get_mode(c, &e->mode);
 631                if (!c)
 632                        die("Corrupt mode in %s", sha1_to_hex(root->sha1));
 633                e->name = to_atom(c, strlen(c));
 634                c += e->name->str_len + 1;
 635                memcpy(e->sha1, c, sizeof(e->sha1));
 636                c += 20;
 637        }
 638        free(buf);
 639}
 640
 641static int tecmp (const void *_a, const void *_b)
 642{
 643        struct tree_entry *a = *((struct tree_entry**)_a);
 644        struct tree_entry *b = *((struct tree_entry**)_b);
 645        return base_name_compare(
 646                a->name->str_dat, a->name->str_len, a->mode,
 647                b->name->str_dat, b->name->str_len, b->mode);
 648}
 649
 650static void store_tree(struct tree_entry *root)
 651{
 652        struct tree_content *t = root->tree;
 653        unsigned int i;
 654        size_t maxlen;
 655        char *buf, *c;
 656
 657        if (memcmp(root->sha1, null_sha1, 20))
 658                return;
 659
 660        maxlen = 0;
 661        for (i = 0; i < t->entry_count; i++) {
 662                maxlen += t->entries[i]->name->str_len + 34;
 663                if (t->entries[i]->tree)
 664                        store_tree(t->entries[i]);
 665        }
 666
 667        qsort(t->entries, t->entry_count, sizeof(t->entries[0]), tecmp);
 668        buf = c = xmalloc(maxlen);
 669        for (i = 0; i < t->entry_count; i++) {
 670                struct tree_entry *e = t->entries[i];
 671                c += sprintf(c, "%o", e->mode);
 672                *c++ = ' ';
 673                strcpy(c, e->name->str_dat);
 674                c += e->name->str_len + 1;
 675                memcpy(c, e->sha1, 20);
 676                c += 20;
 677        }
 678        store_object(OBJ_TREE, buf, c - buf, NULL, root->sha1);
 679        free(buf);
 680}
 681
 682static int tree_content_set(
 683        struct tree_entry *root,
 684        const char *p,
 685        const unsigned char *sha1,
 686        const unsigned int mode)
 687{
 688        struct tree_content *t = root->tree;
 689        const char *slash1;
 690        unsigned int i, n;
 691        struct tree_entry *e;
 692
 693        slash1 = strchr(p, '/');
 694        if (slash1)
 695                n = slash1 - p;
 696        else
 697                n = strlen(p);
 698
 699        for (i = 0; i < t->entry_count; i++) {
 700                e = t->entries[i];
 701                if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
 702                        if (!slash1) {
 703                                if (e->mode == mode && !memcmp(e->sha1, sha1, 20))
 704                                        return 0;
 705                                e->mode = mode;
 706                                memcpy(e->sha1, sha1, 20);
 707                                if (e->tree) {
 708                                        release_tree_content(e->tree);
 709                                        e->tree = NULL;
 710                                }
 711                                memcpy(root->sha1, null_sha1, 20);
 712                                return 1;
 713                        }
 714                        if (!S_ISDIR(e->mode)) {
 715                                e->tree = new_tree_content(8);
 716                                e->mode = 040000;
 717                        }
 718                        if (!e->tree)
 719                                load_tree(e);
 720                        if (tree_content_set(e, slash1 + 1, sha1, mode)) {
 721                                memcpy(root->sha1, null_sha1, 20);
 722                                return 1;
 723                        }
 724                        return 0;
 725                }
 726        }
 727
 728        if (t->entry_count == t->entry_capacity)
 729                root->tree = t = grow_tree_content(t, 8);
 730        e = new_tree_entry();
 731        e->name = to_atom(p, n);
 732        t->entries[t->entry_count++] = e;
 733        if (slash1) {
 734                e->tree = new_tree_content(8);
 735                e->mode = 040000;
 736                tree_content_set(e, slash1 + 1, sha1, mode);
 737        } else {
 738                e->tree = NULL;
 739                e->mode = mode;
 740                memcpy(e->sha1, sha1, 20);
 741        }
 742        memcpy(root->sha1, null_sha1, 20);
 743        return 1;
 744}
 745
 746static int tree_content_remove(struct tree_entry *root, const char *p)
 747{
 748        struct tree_content *t = root->tree;
 749        const char *slash1;
 750        unsigned int i, n;
 751        struct tree_entry *e;
 752
 753        slash1 = strchr(p, '/');
 754        if (slash1)
 755                n = slash1 - p;
 756        else
 757                n = strlen(p);
 758
 759        for (i = 0; i < t->entry_count; i++) {
 760                e = t->entries[i];
 761                if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
 762                        if (!slash1 || !S_ISDIR(e->mode))
 763                                goto del_entry;
 764                        if (!e->tree)
 765                                load_tree(e);
 766                        if (tree_content_remove(e, slash1 + 1)) {
 767                                if (!e->tree->entry_count)
 768                                        goto del_entry;
 769                                memcpy(root->sha1, null_sha1, 20);
 770                                return 1;
 771                        }
 772                        return 0;
 773                }
 774        }
 775        return 0;
 776
 777del_entry:
 778        for (i++; i < t->entry_count; i++)
 779                t->entries[i-1] = t->entries[i];
 780        t->entry_count--;
 781        release_tree_entry(e);
 782        memcpy(root->sha1, null_sha1, 20);
 783        return 1;
 784}
 785
 786static void init_pack_header()
 787{
 788        const char* magic = "PACK";
 789        unsigned long version = 3;
 790        unsigned long zero = 0;
 791
 792        version = htonl(version);
 793        ywrite(pack_fd, (char*)magic, 4);
 794        ywrite(pack_fd, &version, 4);
 795        ywrite(pack_fd, &zero, 4);
 796        pack_offset = 4 * 3;
 797}
 798
 799static void fixup_header_footer()
 800{
 801        SHA_CTX c;
 802        char hdr[8];
 803        unsigned long cnt;
 804        char *buf;
 805        size_t n;
 806
 807        if (lseek(pack_fd, 0, SEEK_SET) != 0)
 808                die("Failed seeking to start: %s", strerror(errno));
 809
 810        SHA1_Init(&c);
 811        yread(pack_fd, hdr, 8);
 812        SHA1_Update(&c, hdr, 8);
 813
 814        cnt = htonl(object_count);
 815        SHA1_Update(&c, &cnt, 4);
 816        ywrite(pack_fd, &cnt, 4);
 817
 818        buf = xmalloc(128 * 1024);
 819        for (;;) {
 820                n = xread(pack_fd, buf, 128 * 1024);
 821                if (n <= 0)
 822                        break;
 823                SHA1_Update(&c, buf, n);
 824        }
 825        free(buf);
 826
 827        SHA1_Final(pack_sha1, &c);
 828        ywrite(pack_fd, pack_sha1, sizeof(pack_sha1));
 829}
 830
 831static int oecmp (const void *_a, const void *_b)
 832{
 833        struct object_entry *a = *((struct object_entry**)_a);
 834        struct object_entry *b = *((struct object_entry**)_b);
 835        return memcmp(a->sha1, b->sha1, sizeof(a->sha1));
 836}
 837
 838static void write_index(const char *idx_name)
 839{
 840        struct sha1file *f;
 841        struct object_entry **idx, **c, **last;
 842        struct object_entry *e;
 843        struct object_entry_pool *o;
 844        unsigned int array[256];
 845        int i;
 846
 847        /* Build the sorted table of object IDs. */
 848        idx = xmalloc(object_count * sizeof(struct object_entry*));
 849        c = idx;
 850        for (o = blocks; o; o = o->next_pool)
 851                for (e = o->entries; e != o->next_free; e++)
 852                        *c++ = e;
 853        last = idx + object_count;
 854        qsort(idx, object_count, sizeof(struct object_entry*), oecmp);
 855
 856        /* Generate the fan-out array. */
 857        c = idx;
 858        for (i = 0; i < 256; i++) {
 859                struct object_entry **next = c;;
 860                while (next < last) {
 861                        if ((*next)->sha1[0] != i)
 862                                break;
 863                        next++;
 864                }
 865                array[i] = htonl(next - idx);
 866                c = next;
 867        }
 868
 869        f = sha1create("%s", idx_name);
 870        sha1write(f, array, 256 * sizeof(int));
 871        for (c = idx; c != last; c++) {
 872                unsigned int offset = htonl((*c)->offset);
 873                sha1write(f, &offset, 4);
 874                sha1write(f, (*c)->sha1, sizeof((*c)->sha1));
 875        }
 876        sha1write(f, pack_sha1, sizeof(pack_sha1));
 877        sha1close(f, NULL, 1);
 878        free(idx);
 879}
 880
 881static void dump_branches()
 882{
 883        static const char *msg = "fast-import";
 884        unsigned int i;
 885        struct branch *b;
 886        struct ref_lock *lock;
 887
 888        for (i = 0; i < branch_table_sz; i++) {
 889                for (b = branch_table[i]; b; b = b->table_next_branch) {
 890                        lock = lock_any_ref_for_update(b->name, NULL, 0);
 891                        if (!lock || write_ref_sha1(lock, b->sha1, msg) < 0)
 892                                die("Can't write %s", b->name);
 893                }
 894        }
 895}
 896
 897static void cmd_new_blob()
 898{
 899        unsigned long datlen;
 900        unsigned char sha1[20];
 901        void *dat;
 902
 903        yread(0, &datlen, 4);
 904        dat = xmalloc(datlen);
 905        yread(0, dat, datlen);
 906        if (store_object(OBJ_BLOB, dat, datlen, &last_blob, sha1))
 907                free(dat);
 908}
 909
 910static void unload_one_branch()
 911{
 912        while (cur_active_branches >= max_active_branches) {
 913                unsigned long min_commit = ULONG_MAX;
 914                struct branch *e, *l = NULL, *p = NULL;
 915
 916                for (e = active_branches; e; e = e->active_next_branch) {
 917                        if (e->last_commit < min_commit) {
 918                                p = l;
 919                                min_commit = e->last_commit;
 920                        }
 921                        l = e;
 922                }
 923
 924                if (p) {
 925                        e = p->active_next_branch;
 926                        p->active_next_branch = e->active_next_branch;
 927                } else {
 928                        e = active_branches;
 929                        active_branches = e->active_next_branch;
 930                }
 931                e->active_next_branch = NULL;
 932                if (e->branch_tree.tree) {
 933                        release_tree_content(e->branch_tree.tree);
 934                        e->branch_tree.tree = NULL;
 935                }
 936                cur_active_branches--;
 937        }
 938}
 939
 940static void load_branch(struct branch *b)
 941{
 942        load_tree(&b->branch_tree);
 943        b->active_next_branch = active_branches;
 944        active_branches = b;
 945        cur_active_branches++;
 946}
 947
 948static void file_change_m(struct branch *b)
 949{
 950        const char *path = read_path();
 951        char hexsha1[41];
 952        unsigned char sha1[20];
 953
 954        yread(0, hexsha1, 40);
 955        hexsha1[40] = 0;
 956
 957        if (get_sha1_hex(hexsha1, sha1))
 958                die("Invalid sha1 %s for %s", hexsha1, path);
 959
 960        tree_content_set(&b->branch_tree, path, sha1, 0100644);
 961}
 962
 963static void file_change_d(struct branch *b)
 964{
 965        tree_content_remove(&b->branch_tree, read_path());
 966}
 967
 968static void cmd_new_commit()
 969{
 970        static const unsigned int max_hdr_len = 94;
 971        const char *name = read_path();
 972        struct branch *b = lookup_branch(name);
 973        unsigned int acmsglen;
 974        char *body, *c;
 975
 976        if (!b)
 977                die("Branch not declared: %s", name);
 978        if (!b->branch_tree.tree) {
 979                unload_one_branch();
 980                load_branch(b);
 981        }
 982
 983        /* author_committer_msg */
 984        yread(0, &acmsglen, 4);
 985        body = xmalloc(acmsglen + max_hdr_len);
 986        c = body + max_hdr_len;
 987        yread(0, c, acmsglen);
 988
 989        /* file_change* */
 990        for (;;) {
 991                unsigned char cmd;
 992                yread(0, &cmd, 1);
 993                if (cmd == '0')
 994                        break;
 995                else if (cmd == 'M')
 996                        file_change_m(b);
 997                else if (cmd == 'D')
 998                        file_change_d(b);
 999                else
1000                        die("Unsupported file_change: %c", cmd);
1001        }
1002
1003        if (memcmp(b->sha1, null_sha1, 20)) {
1004                sprintf(c - 48, "parent %s", sha1_to_hex(b->sha1));
1005                *(c - 1) = '\n';
1006                c -= 48;
1007        }
1008        store_tree(&b->branch_tree);
1009        sprintf(c - 46, "tree %s", sha1_to_hex(b->branch_tree.sha1));
1010        *(c - 1) = '\n';
1011        c -= 46;
1012
1013        store_object(OBJ_COMMIT,
1014                c, (body + max_hdr_len + acmsglen) - c,
1015                NULL, b->sha1);
1016        free(body);
1017        b->last_commit = object_count_by_type[OBJ_COMMIT];
1018}
1019
1020static void cmd_new_branch()
1021{
1022        struct branch *b = new_branch(read_path());
1023        const char *base = read_path();
1024        struct branch *s = lookup_branch(base);
1025
1026        if (!strcmp(b->name, base))
1027                die("Can't create a branch from itself: %s", base);
1028        else if (s) {
1029                memcpy(b->sha1, s->sha1, 20);
1030                memcpy(b->branch_tree.sha1, s->branch_tree.sha1, 20);
1031        }
1032        else if (!get_sha1(base, b->sha1)) {
1033                if (!memcmp(b->sha1, null_sha1, 20))
1034                        memcpy(b->branch_tree.sha1, null_sha1, 20);
1035                else {
1036                        unsigned long size;
1037                        char *buf;
1038
1039                        buf = read_object_with_reference(b->sha1,
1040                                type_names[OBJ_COMMIT], &size, b->sha1);
1041                        if (!buf || size < 46)
1042                                die("Not a valid commit: %s", base);
1043                        if (memcmp("tree ", buf, 5)
1044                                || get_sha1_hex(buf + 5, b->branch_tree.sha1))
1045                                die("The commit %s is corrupt", sha1_to_hex(b->sha1));
1046                        free(buf);
1047                }
1048        } else
1049                die("Not a SHA1 or branch: %s", base);
1050}
1051
1052int main(int argc, const char **argv)
1053{
1054        const char *base_name = argv[1];
1055        int est_obj_cnt = atoi(argv[2]);
1056        char *pack_name;
1057        char *idx_name;
1058        struct stat sb;
1059
1060        setup_ident();
1061        git_config(git_default_config);
1062
1063        pack_name = xmalloc(strlen(base_name) + 6);
1064        sprintf(pack_name, "%s.pack", base_name);
1065        idx_name = xmalloc(strlen(base_name) + 5);
1066        sprintf(idx_name, "%s.idx", base_name);
1067
1068        pack_fd = open(pack_name, O_RDWR|O_CREAT|O_EXCL, 0666);
1069        if (pack_fd < 0)
1070                die("Can't create %s: %s", pack_name, strerror(errno));
1071
1072        alloc_objects(est_obj_cnt);
1073
1074        atom_table = xcalloc(atom_table_sz, sizeof(struct atom_str*));
1075        branch_table = xcalloc(branch_table_sz, sizeof(struct branch*));
1076        avail_tree_table = xcalloc(avail_tree_table_sz, sizeof(struct avail_tree_content*));
1077
1078        init_pack_header();
1079        for (;;) {
1080                unsigned long cmd;
1081                if (optional_read(0, &cmd, 4))
1082                        break;
1083
1084                switch (ntohl(cmd)) {
1085                case 'blob': cmd_new_blob();   break;
1086                case 'comt': cmd_new_commit(); break;
1087                case 'brch': cmd_new_branch(); break;
1088                default:
1089                        die("Invalid command %lu", cmd);
1090                }
1091        }
1092        fixup_header_footer();
1093        close(pack_fd);
1094        write_index(idx_name);
1095        dump_branches();
1096
1097        fprintf(stderr, "%s statistics:\n", argv[0]);
1098        fprintf(stderr, "---------------------------------------------------\n");
1099        fprintf(stderr, "Alloc'd objects: %10lu (%10lu overflow  )\n", alloc_count, alloc_count - est_obj_cnt);
1100        fprintf(stderr, "Total objects:   %10lu (%10lu duplicates)\n", object_count, duplicate_count);
1101        fprintf(stderr, "      blobs  :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_BLOB], duplicate_count_by_type[OBJ_BLOB]);
1102        fprintf(stderr, "      trees  :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TREE], duplicate_count_by_type[OBJ_TREE]);
1103        fprintf(stderr, "      commits:   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_COMMIT], duplicate_count_by_type[OBJ_COMMIT]);
1104        fprintf(stderr, "      tags   :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TAG], duplicate_count_by_type[OBJ_TAG]);
1105        fprintf(stderr, "Total branches:  %10lu\n", branch_count);
1106        fprintf(stderr, "Total atoms:     %10u\n", atom_cnt);
1107        fprintf(stderr, "Memory pools:    %10lu MiB\n", total_allocd/(1024*1024));
1108        fprintf(stderr, "---------------------------------------------------\n");
1109
1110        stat(pack_name, &sb);
1111        fprintf(stderr, "Pack size:       %10lu KiB\n", (unsigned long)(sb.st_size/1024));
1112        stat(idx_name, &sb);
1113        fprintf(stderr, "Index size:      %10lu KiB\n", (unsigned long)(sb.st_size/1024));
1114
1115        fprintf(stderr, "\n");
1116
1117        return 0;
1118}