1/* 2 This is a version (aka dlmalloc) of malloc/free/realloc written by 3 Doug Lea and released to the public domain, as explained at 4 http://creativecommons.org/licenses/publicdomain. Send questions, 5 comments, complaints, performance data, etc to dl@cs.oswego.edu 6 7* Version pre-2.8.4 Mon Nov 27 11:22:37 2006 (dl at gee) 8 9 Note: There may be an updated version of this malloc obtainable at 10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c 11 Check before installing! 12 13* Quickstart 14 15 This library is all in one file to simplify the most common usage: 16 ftp it, compile it (-O3), and link it into another program. All of 17 the compile-time options default to reasonable values for use on 18 most platforms. You might later want to step through various 19 compile-time and dynamic tuning options. 20 21 For convenience, an include file for code using this malloc is at: 22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h 23 You don't really need this .h file unless you call functions not 24 defined in your system include files. The .h file contains only the 25 excerpts from this file needed for using this malloc on ANSI C/C++ 26 systems, so long as you haven't changed compile-time options about 27 naming and tuning parameters. If you do, then you can create your 28 own malloc.h that does include all settings by cutting at the point 29 indicated below. Note that you may already by default be using a C 30 library containing a malloc that is based on some version of this 31 malloc (for example in linux). You might still want to use the one 32 in this file to customize settings or to avoid overheads associated 33 with library versions. 34 35* Vital statistics: 36 37 Supported pointer/size_t representation: 4 or 8 bytes 38 size_t MUST be an unsigned type of the same width as 39 pointers. (If you are using an ancient system that declares 40 size_t as a signed type, or need it to be a different width 41 than pointers, you can use a previous release of this malloc 42 (e.g. 2.7.2) supporting these.) 43 44 Alignment: 8 bytes (default) 45 This suffices for nearly all current machines and C compilers. 46 However, you can define MALLOC_ALIGNMENT to be wider than this 47 if necessary (up to 128bytes), at the expense of using more space. 48 49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) 50 8 or 16 bytes (if 8byte sizes) 51 Each malloced chunk has a hidden word of overhead holding size 52 and status information, and additional cross-check word 53 if FOOTERS is defined. 54 55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) 56 8-byte ptrs: 32 bytes (including overhead) 57 58 Even a request for zero bytes (i.e., malloc(0)) returns a 59 pointer to something of the minimum allocatable size. 60 The maximum overhead wastage (i.e., number of extra bytes 61 allocated than were requested in malloc) is less than or equal 62 to the minimum size, except for requests >= mmap_threshold that 63 are serviced via mmap(), where the worst case wastage is about 64 32 bytes plus the remainder from a system page (the minimal 65 mmap unit); typically 4096 or 8192 bytes. 66 67 Security: static-safe; optionally more or less 68 The "security" of malloc refers to the ability of malicious 69 code to accentuate the effects of errors (for example, freeing 70 space that is not currently malloc'ed or overwriting past the 71 ends of chunks) in code that calls malloc. This malloc 72 guarantees not to modify any memory locations below the base of 73 heap, i.e., static variables, even in the presence of usage 74 errors. The routines additionally detect most improper frees 75 and reallocs. All this holds as long as the static bookkeeping 76 for malloc itself is not corrupted by some other means. This 77 is only one aspect of security -- these checks do not, and 78 cannot, detect all possible programming errors. 79 80 If FOOTERS is defined nonzero, then each allocated chunk 81 carries an additional check word to verify that it was malloced 82 from its space. These check words are the same within each 83 execution of a program using malloc, but differ across 84 executions, so externally crafted fake chunks cannot be 85 freed. This improves security by rejecting frees/reallocs that 86 could corrupt heap memory, in addition to the checks preventing 87 writes to statics that are always on. This may further improve 88 security at the expense of time and space overhead. (Note that 89 FOOTERS may also be worth using with MSPACES.) 90 91 By default detected errors cause the program to abort (calling 92 "abort()"). You can override this to instead proceed past 93 errors by defining PROCEED_ON_ERROR. In this case, a bad free 94 has no effect, and a malloc that encounters a bad address 95 caused by user overwrites will ignore the bad address by 96 dropping pointers and indices to all known memory. This may 97 be appropriate for programs that should continue if at all 98 possible in the face of programming errors, although they may 99 run out of memory because dropped memory is never reclaimed. 100 101 If you don't like either of these options, you can define 102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything 103 else. And if you are sure that your program using malloc has 104 no errors or vulnerabilities, you can define INSECURE to 1, 105 which might (or might not) provide a small performance improvement. 106 107 Thread-safety: NOT thread-safe unless USE_LOCKS defined 108 When USE_LOCKS is defined, each public call to malloc, free, 109 etc is surrounded with either a pthread mutex or a win32 110 spinlock (depending on WIN32). This is not especially fast, and 111 can be a major bottleneck. It is designed only to provide 112 minimal protection in concurrent environments, and to provide a 113 basis for extensions. If you are using malloc in a concurrent 114 program, consider instead using nedmalloc 115 (http://www.nedprod.com/programs/portable/nedmalloc/) or 116 ptmalloc (See http://www.malloc.de), which are derived 117 from versions of this malloc. 118 119 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP 120 This malloc can use unix sbrk or any emulation (invoked using 121 the CALL_MORECORE macro) and/or mmap/munmap or any emulation 122 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system 123 memory. On most unix systems, it tends to work best if both 124 MORECORE and MMAP are enabled. On Win32, it uses emulations 125 based on VirtualAlloc. It also uses common C library functions 126 like memset. 127 128 Compliance: I believe it is compliant with the Single Unix Specification 129 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably 130 others as well. 131 132* Overview of algorithms 133 134 This is not the fastest, most space-conserving, most portable, or 135 most tunable malloc ever written. However it is among the fastest 136 while also being among the most space-conserving, portable and 137 tunable. Consistent balance across these factors results in a good 138 general-purpose allocator for malloc-intensive programs. 139 140 In most ways, this malloc is a best-fit allocator. Generally, it 141 chooses the best-fitting existing chunk for a request, with ties 142 broken in approximately least-recently-used order. (This strategy 143 normally maintains low fragmentation.) However, for requests less 144 than 256bytes, it deviates from best-fit when there is not an 145 exactly fitting available chunk by preferring to use space adjacent 146 to that used for the previous small request, as well as by breaking 147 ties in approximately most-recently-used order. (These enhance 148 locality of series of small allocations.) And for very large requests 149 (>= 256Kb by default), it relies on system memory mapping 150 facilities, if supported. (This helps avoid carrying around and 151 possibly fragmenting memory used only for large chunks.) 152 153 All operations (except malloc_stats and mallinfo) have execution 154 times that are bounded by a constant factor of the number of bits in 155 a size_t, not counting any clearing in calloc or copying in realloc, 156 or actions surrounding MORECORE and MMAP that have times 157 proportional to the number of non-contiguous regions returned by 158 system allocation routines, which is often just 1. In real-time 159 applications, you can optionally suppress segment traversals using 160 NO_SEGMENT_TRAVERSAL, which assures bounded execution even when 161 system allocators return non-contiguous spaces, at the typical 162 expense of carrying around more memory and increased fragmentation. 163 164 The implementation is not very modular and seriously overuses 165 macros. Perhaps someday all C compilers will do as good a job 166 inlining modular code as can now be done by brute-force expansion, 167 but now, enough of them seem not to. 168 169 Some compilers issue a lot of warnings about code that is 170 dead/unreachable only on some platforms, and also about intentional 171 uses of negation on unsigned types. All known cases of each can be 172 ignored. 173 174 For a longer but out of date high-level description, see 175 http://gee.cs.oswego.edu/dl/html/malloc.html 176 177* MSPACES 178 If MSPACES is defined, then in addition to malloc, free, etc., 179 this file also defines mspace_malloc, mspace_free, etc. These 180 are versions of malloc routines that take an "mspace" argument 181 obtained using create_mspace, to control all internal bookkeeping. 182 If ONLY_MSPACES is defined, only these versions are compiled. 183 So if you would like to use this allocator for only some allocations, 184 and your system malloc for others, you can compile with 185 ONLY_MSPACES and then do something like... 186 static mspace mymspace = create_mspace(0,0); // for example 187 #define mymalloc(bytes) mspace_malloc(mymspace, bytes) 188 189 (Note: If you only need one instance of an mspace, you can instead 190 use "USE_DL_PREFIX" to relabel the global malloc.) 191 192 You can similarly create thread-local allocators by storing 193 mspaces as thread-locals. For example: 194 static __thread mspace tlms = 0; 195 void* tlmalloc(size_t bytes) { 196 if (tlms == 0) tlms = create_mspace(0, 0); 197 return mspace_malloc(tlms, bytes); 198 } 199 void tlfree(void* mem) { mspace_free(tlms, mem); } 200 201 Unless FOOTERS is defined, each mspace is completely independent. 202 You cannot allocate from one and free to another (although 203 conformance is only weakly checked, so usage errors are not always 204 caught). If FOOTERS is defined, then each chunk carries around a tag 205 indicating its originating mspace, and frees are directed to their 206 originating spaces. 207 208 ------------------------- Compile-time options --------------------------- 209 210Be careful in setting #define values for numerical constants of type 211size_t. On some systems, literal values are not automatically extended 212to size_t precision unless they are explicitly casted. You can also 213use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. 214 215WIN32 default: defined if _WIN32 defined 216 Defining WIN32 sets up defaults for MS environment and compilers. 217 Otherwise defaults are for unix. Beware that there seem to be some 218 cases where this malloc might not be a pure drop-in replacement for 219 Win32 malloc: Random-looking failures from Win32 GDI API's (eg; 220 SetDIBits()) may be due to bugs in some video driver implementations 221 when pixel buffers are malloc()ed, and the region spans more than 222 one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) 223 default granularity, pixel buffers may straddle virtual allocation 224 regions more often than when using the Microsoft allocator. You can 225 avoid this by using VirtualAlloc() and VirtualFree() for all pixel 226 buffers rather than using malloc(). If this is not possible, 227 recompile this malloc with a larger DEFAULT_GRANULARITY. 228 229MALLOC_ALIGNMENT default: (size_t)8 230 Controls the minimum alignment for malloc'ed chunks. It must be a 231 power of two and at least 8, even on machines for which smaller 232 alignments would suffice. It may be defined as larger than this 233 though. Note however that code and data structures are optimized for 234 the case of 8-byte alignment. 235 236MSPACES default: 0 (false) 237 If true, compile in support for independent allocation spaces. 238 This is only supported if HAVE_MMAP is true. 239 240ONLY_MSPACES default: 0 (false) 241 If true, only compile in mspace versions, not regular versions. 242 243USE_LOCKS default: 0 (false) 244 Causes each call to each public routine to be surrounded with 245 pthread or WIN32 mutex lock/unlock. (If set true, this can be 246 overridden on a per-mspace basis for mspace versions.) If set to a 247 non-zero value other than 1, locks are used, but their 248 implementation is left out, so lock functions must be supplied manually. 249 250USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC 251 If true, uses custom spin locks for locking. This is currently 252 supported only for x86 platforms using gcc or recent MS compilers. 253 Otherwise, posix locks or win32 critical sections are used. 254 255FOOTERS default: 0 256 If true, provide extra checking and dispatching by placing 257 information in the footers of allocated chunks. This adds 258 space and time overhead. 259 260INSECURE default: 0 261 If true, omit checks for usage errors and heap space overwrites. 262 263USE_DL_PREFIX default: NOT defined 264 Causes compiler to prefix all public routines with the string 'dl'. 265 This can be useful when you only want to use this malloc in one part 266 of a program, using your regular system malloc elsewhere. 267 268ABORT default: defined as abort() 269 Defines how to abort on failed checks. On most systems, a failed 270 check cannot die with an "assert" or even print an informative 271 message, because the underlying print routines in turn call malloc, 272 which will fail again. Generally, the best policy is to simply call 273 abort(). It's not very useful to do more than this because many 274 errors due to overwriting will show up as address faults (null, odd 275 addresses etc) rather than malloc-triggered checks, so will also 276 abort. Also, most compilers know that abort() does not return, so 277 can better optimize code conditionally calling it. 278 279PROCEED_ON_ERROR default: defined as 0 (false) 280 Controls whether detected bad addresses cause them to bypassed 281 rather than aborting. If set, detected bad arguments to free and 282 realloc are ignored. And all bookkeeping information is zeroed out 283 upon a detected overwrite of freed heap space, thus losing the 284 ability to ever return it from malloc again, but enabling the 285 application to proceed. If PROCEED_ON_ERROR is defined, the 286 static variable malloc_corruption_error_count is compiled in 287 and can be examined to see if errors have occurred. This option 288 generates slower code than the default abort policy. 289 290DEBUG default: NOT defined 291 The DEBUG setting is mainly intended for people trying to modify 292 this code or diagnose problems when porting to new platforms. 293 However, it may also be able to better isolate user errors than just 294 using runtime checks. The assertions in the check routines spell 295 out in more detail the assumptions and invariants underlying the 296 algorithms. The checking is fairly extensive, and will slow down 297 execution noticeably. Calling malloc_stats or mallinfo with DEBUG 298 set will attempt to check every non-mmapped allocated and free chunk 299 in the course of computing the summaries. 300 301ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) 302 Debugging assertion failures can be nearly impossible if your 303 version of the assert macro causes malloc to be called, which will 304 lead to a cascade of further failures, blowing the runtime stack. 305 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), 306 which will usually make debugging easier. 307 308MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 309 The action to take before "return 0" when malloc fails to be able to 310 return memory because there is none available. 311 312HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES 313 True if this system supports sbrk or an emulation of it. 314 315MORECORE default: sbrk 316 The name of the sbrk-style system routine to call to obtain more 317 memory. See below for guidance on writing custom MORECORE 318 functions. The type of the argument to sbrk/MORECORE varies across 319 systems. It cannot be size_t, because it supports negative 320 arguments, so it is normally the signed type of the same width as 321 size_t (sometimes declared as "intptr_t"). It doesn't much matter 322 though. Internally, we only call it with arguments less than half 323 the max value of a size_t, which should work across all reasonable 324 possibilities, although sometimes generating compiler warnings. 325 326MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE 327 If true, take advantage of fact that consecutive calls to MORECORE 328 with positive arguments always return contiguous increasing 329 addresses. This is true of unix sbrk. It does not hurt too much to 330 set it true anyway, since malloc copes with non-contiguities. 331 Setting it false when definitely non-contiguous saves time 332 and possibly wasted space it would take to discover this though. 333 334MORECORE_CANNOT_TRIM default: NOT defined 335 True if MORECORE cannot release space back to the system when given 336 negative arguments. This is generally necessary only if you are 337 using a hand-crafted MORECORE function that cannot handle negative 338 arguments. 339 340NO_SEGMENT_TRAVERSAL default: 0 341 If non-zero, suppresses traversals of memory segments 342 returned by either MORECORE or CALL_MMAP. This disables 343 merging of segments that are contiguous, and selectively 344 releasing them to the OS if unused, but bounds execution times. 345 346HAVE_MMAP default: 1 (true) 347 True if this system supports mmap or an emulation of it. If so, and 348 HAVE_MORECORE is not true, MMAP is used for all system 349 allocation. If set and HAVE_MORECORE is true as well, MMAP is 350 primarily used to directly allocate very large blocks. It is also 351 used as a backup strategy in cases where MORECORE fails to provide 352 space from system. Note: A single call to MUNMAP is assumed to be 353 able to unmap memory that may have be allocated using multiple calls 354 to MMAP, so long as they are adjacent. 355 356HAVE_MREMAP default: 1 on linux, else 0 357 If true realloc() uses mremap() to re-allocate large blocks and 358 extend or shrink allocation spaces. 359 360MMAP_CLEARS default: 1 except on WINCE. 361 True if mmap clears memory so calloc doesn't need to. This is true 362 for standard unix mmap using /dev/zero and on WIN32 except for WINCE. 363 364USE_BUILTIN_FFS default: 0 (i.e., not used) 365 Causes malloc to use the builtin ffs() function to compute indices. 366 Some compilers may recognize and intrinsify ffs to be faster than the 367 supplied C version. Also, the case of x86 using gcc is special-cased 368 to an asm instruction, so is already as fast as it can be, and so 369 this setting has no effect. Similarly for Win32 under recent MS compilers. 370 (On most x86s, the asm version is only slightly faster than the C version.) 371 372malloc_getpagesize default: derive from system includes, or 4096. 373 The system page size. To the extent possible, this malloc manages 374 memory from the system in page-size units. This may be (and 375 usually is) a function rather than a constant. This is ignored 376 if WIN32, where page size is determined using getSystemInfo during 377 initialization. 378 379USE_DEV_RANDOM default: 0 (i.e., not used) 380 Causes malloc to use /dev/random to initialize secure magic seed for 381 stamping footers. Otherwise, the current time is used. 382 383NO_MALLINFO default: 0 384 If defined, don't compile "mallinfo". This can be a simple way 385 of dealing with mismatches between system declarations and 386 those in this file. 387 388MALLINFO_FIELD_TYPE default: size_t 389 The type of the fields in the mallinfo struct. This was originally 390 defined as "int" in SVID etc, but is more usefully defined as 391 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set 392 393REALLOC_ZERO_BYTES_FREES default: not defined 394 This should be set if a call to realloc with zero bytes should 395 be the same as a call to free. Some people think it should. Otherwise, 396 since this malloc returns a unique pointer for malloc(0), so does 397 realloc(p, 0). 398 399LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H 400LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H 401LACKS_STDLIB_H default: NOT defined unless on WIN32 402 Define these if your system does not have these header files. 403 You might need to manually insert some of the declarations they provide. 404 405DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, 406 system_info.dwAllocationGranularity in WIN32, 407 otherwise 64K. 408 Also settable using mallopt(M_GRANULARITY, x) 409 The unit for allocating and deallocating memory from the system. On 410 most systems with contiguous MORECORE, there is no reason to 411 make this more than a page. However, systems with MMAP tend to 412 either require or encourage larger granularities. You can increase 413 this value to prevent system allocation functions to be called so 414 often, especially if they are slow. The value must be at least one 415 page and must be a power of two. Setting to 0 causes initialization 416 to either page size or win32 region size. (Note: In previous 417 versions of malloc, the equivalent of this option was called 418 "TOP_PAD") 419 420DEFAULT_TRIM_THRESHOLD default: 2MB 421 Also settable using mallopt(M_TRIM_THRESHOLD, x) 422 The maximum amount of unused top-most memory to keep before 423 releasing via malloc_trim in free(). Automatic trimming is mainly 424 useful in long-lived programs using contiguous MORECORE. Because 425 trimming via sbrk can be slow on some systems, and can sometimes be 426 wasteful (in cases where programs immediately afterward allocate 427 more large chunks) the value should be high enough so that your 428 overall system performance would improve by releasing this much 429 memory. As a rough guide, you might set to a value close to the 430 average size of a process (program) running on your system. 431 Releasing this much memory would allow such a process to run in 432 memory. Generally, it is worth tuning trim thresholds when a 433 program undergoes phases where several large chunks are allocated 434 and released in ways that can reuse each other's storage, perhaps 435 mixed with phases where there are no such chunks at all. The trim 436 value must be greater than page size to have any useful effect. To 437 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick 438 some people use of mallocing a huge space and then freeing it at 439 program startup, in an attempt to reserve system memory, doesn't 440 have the intended effect under automatic trimming, since that memory 441 will immediately be returned to the system. 442 443DEFAULT_MMAP_THRESHOLD default: 256K 444 Also settable using mallopt(M_MMAP_THRESHOLD, x) 445 The request size threshold for using MMAP to directly service a 446 request. Requests of at least this size that cannot be allocated 447 using already-existing space will be serviced via mmap. (If enough 448 normal freed space already exists it is used instead.) Using mmap 449 segregates relatively large chunks of memory so that they can be 450 individually obtained and released from the host system. A request 451 serviced through mmap is never reused by any other request (at least 452 not directly; the system may just so happen to remap successive 453 requests to the same locations). Segregating space in this way has 454 the benefits that: Mmapped space can always be individually released 455 back to the system, which helps keep the system level memory demands 456 of a long-lived program low. Also, mapped memory doesn't become 457 `locked' between other chunks, as can happen with normally allocated 458 chunks, which means that even trimming via malloc_trim would not 459 release them. However, it has the disadvantage that the space 460 cannot be reclaimed, consolidated, and then used to service later 461 requests, as happens with normal chunks. The advantages of mmap 462 nearly always outweigh disadvantages for "large" chunks, but the 463 value of "large" may vary across systems. The default is an 464 empirically derived value that works well in most systems. You can 465 disable mmap by setting to MAX_SIZE_T. 466 467MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP 468 The number of consolidated frees between checks to release 469 unused segments when freeing. When using non-contiguous segments, 470 especially with multiple mspaces, checking only for topmost space 471 doesn't always suffice to trigger trimming. To compensate for this, 472 free() will, with a period of MAX_RELEASE_CHECK_RATE (or the 473 current number of segments, if greater) try to release unused 474 segments to the OS when freeing chunks that result in 475 consolidation. The best value for this parameter is a compromise 476 between slowing down frees with relatively costly checks that 477 rarely trigger versus holding on to unused memory. To effectively 478 disable, set to MAX_SIZE_T. This may lead to a very slight speed 479 improvement at the expense of carrying around more memory. 480*/ 481 482/* Version identifier to allow people to support multiple versions */ 483#ifndef DLMALLOC_VERSION 484#define DLMALLOC_VERSION 20804 485#endif/* DLMALLOC_VERSION */ 486 487#if defined(linux) 488#define _GNU_SOURCE 1 489#endif 490 491#ifndef WIN32 492#ifdef _WIN32 493#define WIN32 1 494#endif/* _WIN32 */ 495#ifdef _WIN32_WCE 496#define LACKS_FCNTL_H 497#define WIN32 1 498#endif/* _WIN32_WCE */ 499#endif/* WIN32 */ 500#ifdef WIN32 501#define WIN32_LEAN_AND_MEAN 502#ifndef _WIN32_WINNT 503#define _WIN32_WINNT 0x403 504#endif 505#include <windows.h> 506#define HAVE_MMAP 1 507#define HAVE_MORECORE 0 508#define LACKS_UNISTD_H 509#define LACKS_SYS_PARAM_H 510#define LACKS_SYS_MMAN_H 511#define LACKS_STRING_H 512#define LACKS_STRINGS_H 513#define LACKS_SYS_TYPES_H 514#define LACKS_ERRNO_H 515#ifndef MALLOC_FAILURE_ACTION 516#define MALLOC_FAILURE_ACTION 517#endif/* MALLOC_FAILURE_ACTION */ 518#ifdef _WIN32_WCE/* WINCE reportedly does not clear */ 519#define MMAP_CLEARS 0 520#else 521#define MMAP_CLEARS 1 522#endif/* _WIN32_WCE */ 523#endif/* WIN32 */ 524 525#if defined(DARWIN) || defined(_DARWIN) 526/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ 527#ifndef HAVE_MORECORE 528#define HAVE_MORECORE 0 529#define HAVE_MMAP 1 530/* OSX allocators provide 16 byte alignment */ 531#ifndef MALLOC_ALIGNMENT 532#define MALLOC_ALIGNMENT ((size_t)16U) 533#endif 534#endif/* HAVE_MORECORE */ 535#endif/* DARWIN */ 536 537#ifndef LACKS_SYS_TYPES_H 538#include <sys/types.h>/* For size_t */ 539#endif/* LACKS_SYS_TYPES_H */ 540 541/* The maximum possible size_t value has all bits set */ 542#define MAX_SIZE_T (~(size_t)0) 543 544#ifndef ONLY_MSPACES 545#define ONLY_MSPACES 0/* define to a value */ 546#else 547#define ONLY_MSPACES 1 548#endif/* ONLY_MSPACES */ 549#ifndef MSPACES 550#if ONLY_MSPACES 551#define MSPACES 1 552#else/* ONLY_MSPACES */ 553#define MSPACES 0 554#endif/* ONLY_MSPACES */ 555#endif/* MSPACES */ 556#ifndef MALLOC_ALIGNMENT 557#define MALLOC_ALIGNMENT ((size_t)8U) 558#endif/* MALLOC_ALIGNMENT */ 559#ifndef FOOTERS 560#define FOOTERS 0 561#endif/* FOOTERS */ 562#ifndef ABORT 563#define ABORT abort() 564#endif/* ABORT */ 565#ifndef ABORT_ON_ASSERT_FAILURE 566#define ABORT_ON_ASSERT_FAILURE 1 567#endif/* ABORT_ON_ASSERT_FAILURE */ 568#ifndef PROCEED_ON_ERROR 569#define PROCEED_ON_ERROR 0 570#endif/* PROCEED_ON_ERROR */ 571#ifndef USE_LOCKS 572#define USE_LOCKS 0 573#endif/* USE_LOCKS */ 574#ifndef USE_SPIN_LOCKS 575#if USE_LOCKS && (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310) 576#define USE_SPIN_LOCKS 1 577#else 578#define USE_SPIN_LOCKS 0 579#endif/* USE_LOCKS && ... */ 580#endif/* USE_SPIN_LOCKS */ 581#ifndef INSECURE 582#define INSECURE 0 583#endif/* INSECURE */ 584#ifndef HAVE_MMAP 585#define HAVE_MMAP 1 586#endif/* HAVE_MMAP */ 587#ifndef MMAP_CLEARS 588#define MMAP_CLEARS 1 589#endif/* MMAP_CLEARS */ 590#ifndef HAVE_MREMAP 591#ifdef linux 592#define HAVE_MREMAP 1 593#else/* linux */ 594#define HAVE_MREMAP 0 595#endif/* linux */ 596#endif/* HAVE_MREMAP */ 597#ifndef MALLOC_FAILURE_ACTION 598#define MALLOC_FAILURE_ACTION errno = ENOMEM; 599#endif/* MALLOC_FAILURE_ACTION */ 600#ifndef HAVE_MORECORE 601#if ONLY_MSPACES 602#define HAVE_MORECORE 0 603#else/* ONLY_MSPACES */ 604#define HAVE_MORECORE 1 605#endif/* ONLY_MSPACES */ 606#endif/* HAVE_MORECORE */ 607#if !HAVE_MORECORE 608#define MORECORE_CONTIGUOUS 0 609#else/* !HAVE_MORECORE */ 610#define MORECORE_DEFAULT sbrk 611#ifndef MORECORE_CONTIGUOUS 612#define MORECORE_CONTIGUOUS 1 613#endif/* MORECORE_CONTIGUOUS */ 614#endif/* HAVE_MORECORE */ 615#ifndef DEFAULT_GRANULARITY 616#if (MORECORE_CONTIGUOUS || defined(WIN32)) 617#define DEFAULT_GRANULARITY (0)/* 0 means to compute in init_mparams */ 618#else/* MORECORE_CONTIGUOUS */ 619#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) 620#endif/* MORECORE_CONTIGUOUS */ 621#endif/* DEFAULT_GRANULARITY */ 622#ifndef DEFAULT_TRIM_THRESHOLD 623#ifndef MORECORE_CANNOT_TRIM 624#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) 625#else/* MORECORE_CANNOT_TRIM */ 626#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T 627#endif/* MORECORE_CANNOT_TRIM */ 628#endif/* DEFAULT_TRIM_THRESHOLD */ 629#ifndef DEFAULT_MMAP_THRESHOLD 630#if HAVE_MMAP 631#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) 632#else/* HAVE_MMAP */ 633#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T 634#endif/* HAVE_MMAP */ 635#endif/* DEFAULT_MMAP_THRESHOLD */ 636#ifndef MAX_RELEASE_CHECK_RATE 637#if HAVE_MMAP 638#define MAX_RELEASE_CHECK_RATE 4095 639#else 640#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T 641#endif/* HAVE_MMAP */ 642#endif/* MAX_RELEASE_CHECK_RATE */ 643#ifndef USE_BUILTIN_FFS 644#define USE_BUILTIN_FFS 0 645#endif/* USE_BUILTIN_FFS */ 646#ifndef USE_DEV_RANDOM 647#define USE_DEV_RANDOM 0 648#endif/* USE_DEV_RANDOM */ 649#ifndef NO_MALLINFO 650#define NO_MALLINFO 0 651#endif/* NO_MALLINFO */ 652#ifndef MALLINFO_FIELD_TYPE 653#define MALLINFO_FIELD_TYPE size_t 654#endif/* MALLINFO_FIELD_TYPE */ 655#ifndef NO_SEGMENT_TRAVERSAL 656#define NO_SEGMENT_TRAVERSAL 0 657#endif/* NO_SEGMENT_TRAVERSAL */ 658 659/* 660 mallopt tuning options. SVID/XPG defines four standard parameter 661 numbers for mallopt, normally defined in malloc.h. None of these 662 are used in this malloc, so setting them has no effect. But this 663 malloc does support the following options. 664*/ 665 666#define M_TRIM_THRESHOLD (-1) 667#define M_GRANULARITY (-2) 668#define M_MMAP_THRESHOLD (-3) 669 670/* ------------------------ Mallinfo declarations ------------------------ */ 671 672#if !NO_MALLINFO 673/* 674 This version of malloc supports the standard SVID/XPG mallinfo 675 routine that returns a struct containing usage properties and 676 statistics. It should work on any system that has a 677 /usr/include/malloc.h defining struct mallinfo. The main 678 declaration needed is the mallinfo struct that is returned (by-copy) 679 by mallinfo(). The malloinfo struct contains a bunch of fields that 680 are not even meaningful in this version of malloc. These fields are 681 are instead filled by mallinfo() with other numbers that might be of 682 interest. 683 684 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a 685 /usr/include/malloc.h file that includes a declaration of struct 686 mallinfo. If so, it is included; else a compliant version is 687 declared below. These must be precisely the same for mallinfo() to 688 work. The original SVID version of this struct, defined on most 689 systems with mallinfo, declares all fields as ints. But some others 690 define as unsigned long. If your system defines the fields using a 691 type of different width than listed here, you MUST #include your 692 system version and #define HAVE_USR_INCLUDE_MALLOC_H. 693*/ 694 695/* #define HAVE_USR_INCLUDE_MALLOC_H */ 696 697#ifdef HAVE_USR_INCLUDE_MALLOC_H 698#include"/usr/include/malloc.h" 699#else/* HAVE_USR_INCLUDE_MALLOC_H */ 700#ifndef STRUCT_MALLINFO_DECLARED 701#define STRUCT_MALLINFO_DECLARED 1 702struct mallinfo { 703 MALLINFO_FIELD_TYPE arena;/* non-mmapped space allocated from system */ 704 MALLINFO_FIELD_TYPE ordblks;/* number of free chunks */ 705 MALLINFO_FIELD_TYPE smblks;/* always 0 */ 706 MALLINFO_FIELD_TYPE hblks;/* always 0 */ 707 MALLINFO_FIELD_TYPE hblkhd;/* space in mmapped regions */ 708 MALLINFO_FIELD_TYPE usmblks;/* maximum total allocated space */ 709 MALLINFO_FIELD_TYPE fsmblks;/* always 0 */ 710 MALLINFO_FIELD_TYPE uordblks;/* total allocated space */ 711 MALLINFO_FIELD_TYPE fordblks;/* total free space */ 712 MALLINFO_FIELD_TYPE keepcost;/* releasable (via malloc_trim) space */ 713}; 714#endif/* STRUCT_MALLINFO_DECLARED */ 715#endif/* HAVE_USR_INCLUDE_MALLOC_H */ 716#endif/* NO_MALLINFO */ 717 718/* 719 Try to persuade compilers to inline. The most critical functions for 720 inlining are defined as macros, so these aren't used for them. 721*/ 722 723#ifdef __MINGW64_VERSION_MAJOR 724#undef FORCEINLINE 725#endif 726#ifndef FORCEINLINE 727#if defined(__GNUC__) 728#define FORCEINLINE __inline __attribute__ ((always_inline)) 729#elif defined(_MSC_VER) 730#define FORCEINLINE __forceinline 731#endif 732#endif 733#ifndef NOINLINE 734#if defined(__GNUC__) 735#define NOINLINE __attribute__ ((noinline)) 736#elif defined(_MSC_VER) 737#define NOINLINE __declspec(noinline) 738#else 739#define NOINLINE 740#endif 741#endif 742 743#ifdef __cplusplus 744extern"C"{ 745#ifndef FORCEINLINE 746#define FORCEINLINE inline 747#endif 748#endif/* __cplusplus */ 749#ifndef FORCEINLINE 750#define FORCEINLINE 751#endif 752 753#if !ONLY_MSPACES 754 755/* ------------------- Declarations of public routines ------------------- */ 756 757#ifndef USE_DL_PREFIX 758#define dlcalloc calloc 759#define dlfree free 760#define dlmalloc malloc 761#define dlmemalign memalign 762#define dlrealloc realloc 763#define dlvalloc valloc 764#define dlpvalloc pvalloc 765#define dlmallinfo mallinfo 766#define dlmallopt mallopt 767#define dlmalloc_trim malloc_trim 768#define dlmalloc_stats malloc_stats 769#define dlmalloc_usable_size malloc_usable_size 770#define dlmalloc_footprint malloc_footprint 771#define dlmalloc_max_footprint malloc_max_footprint 772#define dlindependent_calloc independent_calloc 773#define dlindependent_comalloc independent_comalloc 774#endif/* USE_DL_PREFIX */ 775 776 777/* 778 malloc(size_t n) 779 Returns a pointer to a newly allocated chunk of at least n bytes, or 780 null if no space is available, in which case errno is set to ENOMEM 781 on ANSI C systems. 782 783 If n is zero, malloc returns a minimum-sized chunk. (The minimum 784 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit 785 systems.) Note that size_t is an unsigned type, so calls with 786 arguments that would be negative if signed are interpreted as 787 requests for huge amounts of space, which will often fail. The 788 maximum supported value of n differs across systems, but is in all 789 cases less than the maximum representable value of a size_t. 790*/ 791void*dlmalloc(size_t); 792 793/* 794 free(void* p) 795 Releases the chunk of memory pointed to by p, that had been previously 796 allocated using malloc or a related routine such as realloc. 797 It has no effect if p is null. If p was not malloced or already 798 freed, free(p) will by default cause the current program to abort. 799*/ 800voiddlfree(void*); 801 802/* 803 calloc(size_t n_elements, size_t element_size); 804 Returns a pointer to n_elements * element_size bytes, with all locations 805 set to zero. 806*/ 807void*dlcalloc(size_t,size_t); 808 809/* 810 realloc(void* p, size_t n) 811 Returns a pointer to a chunk of size n that contains the same data 812 as does chunk p up to the minimum of (n, p's size) bytes, or null 813 if no space is available. 814 815 The returned pointer may or may not be the same as p. The algorithm 816 prefers extending p in most cases when possible, otherwise it 817 employs the equivalent of a malloc-copy-free sequence. 818 819 If p is null, realloc is equivalent to malloc. 820 821 If space is not available, realloc returns null, errno is set (if on 822 ANSI) and p is NOT freed. 823 824 if n is for fewer bytes than already held by p, the newly unused 825 space is lopped off and freed if possible. realloc with a size 826 argument of zero (re)allocates a minimum-sized chunk. 827 828 The old unix realloc convention of allowing the last-free'd chunk 829 to be used as an argument to realloc is not supported. 830*/ 831 832void*dlrealloc(void*,size_t); 833 834/* 835 memalign(size_t alignment, size_t n); 836 Returns a pointer to a newly allocated chunk of n bytes, aligned 837 in accord with the alignment argument. 838 839 The alignment argument should be a power of two. If the argument is 840 not a power of two, the nearest greater power is used. 841 8-byte alignment is guaranteed by normal malloc calls, so don't 842 bother calling memalign with an argument of 8 or less. 843 844 Overreliance on memalign is a sure way to fragment space. 845*/ 846void*dlmemalign(size_t,size_t); 847 848/* 849 valloc(size_t n); 850 Equivalent to memalign(pagesize, n), where pagesize is the page 851 size of the system. If the pagesize is unknown, 4096 is used. 852*/ 853void*dlvalloc(size_t); 854 855/* 856 mallopt(int parameter_number, int parameter_value) 857 Sets tunable parameters The format is to provide a 858 (parameter-number, parameter-value) pair. mallopt then sets the 859 corresponding parameter to the argument value if it can (i.e., so 860 long as the value is meaningful), and returns 1 if successful else 861 0. To workaround the fact that mallopt is specified to use int, 862 not size_t parameters, the value -1 is specially treated as the 863 maximum unsigned size_t value. 864 865 SVID/XPG/ANSI defines four standard param numbers for mallopt, 866 normally defined in malloc.h. None of these are use in this malloc, 867 so setting them has no effect. But this malloc also supports other 868 options in mallopt. See below for details. Briefly, supported 869 parameters are as follows (listed defaults are for "typical" 870 configurations). 871 872 Symbol param # default allowed param values 873 M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) 874 M_GRANULARITY -2 page size any power of 2 >= page size 875 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) 876*/ 877intdlmallopt(int,int); 878 879/* 880 malloc_footprint(); 881 Returns the number of bytes obtained from the system. The total 882 number of bytes allocated by malloc, realloc etc., is less than this 883 value. Unlike mallinfo, this function returns only a precomputed 884 result, so can be called frequently to monitor memory consumption. 885 Even if locks are otherwise defined, this function does not use them, 886 so results might not be up to date. 887*/ 888size_tdlmalloc_footprint(void); 889 890/* 891 malloc_max_footprint(); 892 Returns the maximum number of bytes obtained from the system. This 893 value will be greater than current footprint if deallocated space 894 has been reclaimed by the system. The peak number of bytes allocated 895 by malloc, realloc etc., is less than this value. Unlike mallinfo, 896 this function returns only a precomputed result, so can be called 897 frequently to monitor memory consumption. Even if locks are 898 otherwise defined, this function does not use them, so results might 899 not be up to date. 900*/ 901size_tdlmalloc_max_footprint(void); 902 903#if !NO_MALLINFO 904/* 905 mallinfo() 906 Returns (by copy) a struct containing various summary statistics: 907 908 arena: current total non-mmapped bytes allocated from system 909 ordblks: the number of free chunks 910 smblks: always zero. 911 hblks: current number of mmapped regions 912 hblkhd: total bytes held in mmapped regions 913 usmblks: the maximum total allocated space. This will be greater 914 than current total if trimming has occurred. 915 fsmblks: always zero 916 uordblks: current total allocated space (normal or mmapped) 917 fordblks: total free space 918 keepcost: the maximum number of bytes that could ideally be released 919 back to system via malloc_trim. ("ideally" means that 920 it ignores page restrictions etc.) 921 922 Because these fields are ints, but internal bookkeeping may 923 be kept as longs, the reported values may wrap around zero and 924 thus be inaccurate. 925*/ 926struct mallinfo dlmallinfo(void); 927#endif/* NO_MALLINFO */ 928 929/* 930 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); 931 932 independent_calloc is similar to calloc, but instead of returning a 933 single cleared space, it returns an array of pointers to n_elements 934 independent elements that can hold contents of size elem_size, each 935 of which starts out cleared, and can be independently freed, 936 realloc'ed etc. The elements are guaranteed to be adjacently 937 allocated (this is not guaranteed to occur with multiple callocs or 938 mallocs), which may also improve cache locality in some 939 applications. 940 941 The "chunks" argument is optional (i.e., may be null, which is 942 probably the most typical usage). If it is null, the returned array 943 is itself dynamically allocated and should also be freed when it is 944 no longer needed. Otherwise, the chunks array must be of at least 945 n_elements in length. It is filled in with the pointers to the 946 chunks. 947 948 In either case, independent_calloc returns this pointer array, or 949 null if the allocation failed. If n_elements is zero and "chunks" 950 is null, it returns a chunk representing an array with zero elements 951 (which should be freed if not wanted). 952 953 Each element must be individually freed when it is no longer 954 needed. If you'd like to instead be able to free all at once, you 955 should instead use regular calloc and assign pointers into this 956 space to represent elements. (In this case though, you cannot 957 independently free elements.) 958 959 independent_calloc simplifies and speeds up implementations of many 960 kinds of pools. It may also be useful when constructing large data 961 structures that initially have a fixed number of fixed-sized nodes, 962 but the number is not known at compile time, and some of the nodes 963 may later need to be freed. For example: 964 965 struct Node { int item; struct Node* next; }; 966 967 struct Node* build_list() { 968 struct Node** pool; 969 int n = read_number_of_nodes_needed(); 970 if (n <= 0) return 0; 971 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); 972 if (pool == 0) die(); 973 // organize into a linked list... 974 struct Node* first = pool[0]; 975 for (i = 0; i < n-1; ++i) 976 pool[i]->next = pool[i+1]; 977 free(pool); // Can now free the array (or not, if it is needed later) 978 return first; 979 } 980*/ 981void**dlindependent_calloc(size_t,size_t,void**); 982 983/* 984 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); 985 986 independent_comalloc allocates, all at once, a set of n_elements 987 chunks with sizes indicated in the "sizes" array. It returns 988 an array of pointers to these elements, each of which can be 989 independently freed, realloc'ed etc. The elements are guaranteed to 990 be adjacently allocated (this is not guaranteed to occur with 991 multiple callocs or mallocs), which may also improve cache locality 992 in some applications. 993 994 The "chunks" argument is optional (i.e., may be null). If it is null 995 the returned array is itself dynamically allocated and should also 996 be freed when it is no longer needed. Otherwise, the chunks array 997 must be of at least n_elements in length. It is filled in with the 998 pointers to the chunks. 9991000 In either case, independent_comalloc returns this pointer array, or1001 null if the allocation failed. If n_elements is zero and chunks is1002 null, it returns a chunk representing an array with zero elements1003 (which should be freed if not wanted).10041005 Each element must be individually freed when it is no longer1006 needed. If you'd like to instead be able to free all at once, you1007 should instead use a single regular malloc, and assign pointers at1008 particular offsets in the aggregate space. (In this case though, you1009 cannot independently free elements.)10101011 independent_comallac differs from independent_calloc in that each1012 element may have a different size, and also that it does not1013 automatically clear elements.10141015 independent_comalloc can be used to speed up allocation in cases1016 where several structs or objects must always be allocated at the1017 same time. For example:10181019 struct Head { ... }1020 struct Foot { ... }10211022 void send_message(char* msg) {1023 int msglen = strlen(msg);1024 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };1025 void* chunks[3];1026 if (independent_comalloc(3, sizes, chunks) == 0)1027 die();1028 struct Head* head = (struct Head*)(chunks[0]);1029 char* body = (char*)(chunks[1]);1030 struct Foot* foot = (struct Foot*)(chunks[2]);1031 // ...1032 }10331034 In general though, independent_comalloc is worth using only for1035 larger values of n_elements. For small values, you probably won't1036 detect enough difference from series of malloc calls to bother.10371038 Overuse of independent_comalloc can increase overall memory usage,1039 since it cannot reuse existing noncontiguous small chunks that1040 might be available for some of the elements.1041*/1042void**dlindependent_comalloc(size_t,size_t*,void**);104310441045/*1046 pvalloc(size_t n);1047 Equivalent to valloc(minimum-page-that-holds(n)), that is,1048 round up n to nearest pagesize.1049 */1050void*dlpvalloc(size_t);10511052/*1053 malloc_trim(size_t pad);10541055 If possible, gives memory back to the system (via negative arguments1056 to sbrk) if there is unused memory at the `high' end of the malloc1057 pool or in unused MMAP segments. You can call this after freeing1058 large blocks of memory to potentially reduce the system-level memory1059 requirements of a program. However, it cannot guarantee to reduce1060 memory. Under some allocation patterns, some large free blocks of1061 memory will be locked between two used chunks, so they cannot be1062 given back to the system.10631064 The `pad' argument to malloc_trim represents the amount of free1065 trailing space to leave untrimmed. If this argument is zero, only1066 the minimum amount of memory to maintain internal data structures1067 will be left. Non-zero arguments can be supplied to maintain enough1068 trailing space to service future expected allocations without having1069 to re-obtain memory from the system.10701071 Malloc_trim returns 1 if it actually released any memory, else 0.1072*/1073intdlmalloc_trim(size_t);10741075/*1076 malloc_stats();1077 Prints on stderr the amount of space obtained from the system (both1078 via sbrk and mmap), the maximum amount (which may be more than1079 current if malloc_trim and/or munmap got called), and the current1080 number of bytes allocated via malloc (or realloc, etc) but not yet1081 freed. Note that this is the number of bytes allocated, not the1082 number requested. It will be larger than the number requested1083 because of alignment and bookkeeping overhead. Because it includes1084 alignment wastage as being in use, this figure may be greater than1085 zero even when no user-level chunks are allocated.10861087 The reported current and maximum system memory can be inaccurate if1088 a program makes other calls to system memory allocation functions1089 (normally sbrk) outside of malloc.10901091 malloc_stats prints only the most commonly interesting statistics.1092 More information can be obtained by calling mallinfo.1093*/1094voiddlmalloc_stats(void);10951096#endif/* ONLY_MSPACES */10971098/*1099 malloc_usable_size(void* p);11001101 Returns the number of bytes you can actually use in1102 an allocated chunk, which may be more than you requested (although1103 often not) due to alignment and minimum size constraints.1104 You can use this many bytes without worrying about1105 overwriting other allocated objects. This is not a particularly great1106 programming practice. malloc_usable_size can be more useful in1107 debugging and assertions, for example:11081109 p = malloc(n);1110 assert(malloc_usable_size(p) >= 256);1111*/1112size_tdlmalloc_usable_size(void*);111311141115#if MSPACES11161117/*1118 mspace is an opaque type representing an independent1119 region of space that supports mspace_malloc, etc.1120*/1121typedefvoid* mspace;11221123/*1124 create_mspace creates and returns a new independent space with the1125 given initial capacity, or, if 0, the default granularity size. It1126 returns null if there is no system memory available to create the1127 space. If argument locked is non-zero, the space uses a separate1128 lock to control access. The capacity of the space will grow1129 dynamically as needed to service mspace_malloc requests. You can1130 control the sizes of incremental increases of this space by1131 compiling with a different DEFAULT_GRANULARITY or dynamically1132 setting with mallopt(M_GRANULARITY, value).1133*/1134mspace create_mspace(size_t capacity,int locked);11351136/*1137 destroy_mspace destroys the given space, and attempts to return all1138 of its memory back to the system, returning the total number of1139 bytes freed. After destruction, the results of access to all memory1140 used by the space become undefined.1141*/1142size_tdestroy_mspace(mspace msp);11431144/*1145 create_mspace_with_base uses the memory supplied as the initial base1146 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this1147 space is used for bookkeeping, so the capacity must be at least this1148 large. (Otherwise 0 is returned.) When this initial space is1149 exhausted, additional memory will be obtained from the system.1150 Destroying this space will deallocate all additionally allocated1151 space (if possible) but not the initial base.1152*/1153mspace create_mspace_with_base(void* base,size_t capacity,int locked);11541155/*1156 mspace_mmap_large_chunks controls whether requests for large chunks1157 are allocated in their own mmapped regions, separate from others in1158 this mspace. By default this is enabled, which reduces1159 fragmentation. However, such chunks are not necessarily released to1160 the system upon destroy_mspace. Disabling by setting to false may1161 increase fragmentation, but avoids leakage when relying on1162 destroy_mspace to release all memory allocated using this space.1163*/1164intmspace_mmap_large_chunks(mspace msp,int enable);116511661167/*1168 mspace_malloc behaves as malloc, but operates within1169 the given space.1170*/1171void*mspace_malloc(mspace msp,size_t bytes);11721173/*1174 mspace_free behaves as free, but operates within1175 the given space.11761177 If compiled with FOOTERS==1, mspace_free is not actually needed.1178 free may be called instead of mspace_free because freed chunks from1179 any space are handled by their originating spaces.1180*/1181voidmspace_free(mspace msp,void* mem);11821183/*1184 mspace_realloc behaves as realloc, but operates within1185 the given space.11861187 If compiled with FOOTERS==1, mspace_realloc is not actually1188 needed. realloc may be called instead of mspace_realloc because1189 realloced chunks from any space are handled by their originating1190 spaces.1191*/1192void*mspace_realloc(mspace msp,void* mem,size_t newsize);11931194/*1195 mspace_calloc behaves as calloc, but operates within1196 the given space.1197*/1198void*mspace_calloc(mspace msp,size_t n_elements,size_t elem_size);11991200/*1201 mspace_memalign behaves as memalign, but operates within1202 the given space.1203*/1204void*mspace_memalign(mspace msp,size_t alignment,size_t bytes);12051206/*1207 mspace_independent_calloc behaves as independent_calloc, but1208 operates within the given space.1209*/1210void**mspace_independent_calloc(mspace msp,size_t n_elements,1211size_t elem_size,void* chunks[]);12121213/*1214 mspace_independent_comalloc behaves as independent_comalloc, but1215 operates within the given space.1216*/1217void**mspace_independent_comalloc(mspace msp,size_t n_elements,1218size_t sizes[],void* chunks[]);12191220/*1221 mspace_footprint() returns the number of bytes obtained from the1222 system for this space.1223*/1224size_tmspace_footprint(mspace msp);12251226/*1227 mspace_max_footprint() returns the peak number of bytes obtained from the1228 system for this space.1229*/1230size_tmspace_max_footprint(mspace msp);123112321233#if !NO_MALLINFO1234/*1235 mspace_mallinfo behaves as mallinfo, but reports properties of1236 the given space.1237*/1238struct mallinfo mspace_mallinfo(mspace msp);1239#endif/* NO_MALLINFO */12401241/*1242 malloc_usable_size(void* p) behaves the same as malloc_usable_size;1243*/1244size_tmspace_usable_size(void* mem);12451246/*1247 mspace_malloc_stats behaves as malloc_stats, but reports1248 properties of the given space.1249*/1250voidmspace_malloc_stats(mspace msp);12511252/*1253 mspace_trim behaves as malloc_trim, but1254 operates within the given space.1255*/1256intmspace_trim(mspace msp,size_t pad);12571258/*1259 An alias for mallopt.1260*/1261intmspace_mallopt(int,int);12621263#endif/* MSPACES */12641265#ifdef __cplusplus1266};/* end of extern "C" */1267#endif/* __cplusplus */12681269/*1270 ========================================================================1271 To make a fully customizable malloc.h header file, cut everything1272 above this line, put into file malloc.h, edit to suit, and #include it1273 on the next line, as well as in programs that use this malloc.1274 ========================================================================1275*/12761277/* #include "malloc.h" */12781279/*------------------------------ internal #includes ---------------------- */12801281#ifdef WIN321282#ifndef __GNUC__1283#pragma warning( disable : 4146 )/* no "unsigned" warnings */1284#endif1285#endif/* WIN32 */12861287#include <stdio.h>/* for printing in malloc_stats */12881289#ifndef LACKS_ERRNO_H1290#include <errno.h>/* for MALLOC_FAILURE_ACTION */1291#endif/* LACKS_ERRNO_H */1292#if FOOTERS1293#include <time.h>/* for magic initialization */1294#endif/* FOOTERS */1295#ifndef LACKS_STDLIB_H1296#include <stdlib.h>/* for abort() */1297#endif/* LACKS_STDLIB_H */1298#ifdef DEBUG1299#if ABORT_ON_ASSERT_FAILURE1300#define assert(x) if(!(x)) ABORT1301#else/* ABORT_ON_ASSERT_FAILURE */1302#include <assert.h>1303#endif/* ABORT_ON_ASSERT_FAILURE */1304#else/* DEBUG */1305#ifndef assert1306#define assert(x)1307#endif1308#define DEBUG 01309#endif/* DEBUG */1310#ifndef LACKS_STRING_H1311#include <string.h>/* for memset etc */1312#endif/* LACKS_STRING_H */1313#if USE_BUILTIN_FFS1314#ifndef LACKS_STRINGS_H1315#include <strings.h>/* for ffs */1316#endif/* LACKS_STRINGS_H */1317#endif/* USE_BUILTIN_FFS */1318#if HAVE_MMAP1319#ifndef LACKS_SYS_MMAN_H1320#include <sys/mman.h>/* for mmap */1321#endif/* LACKS_SYS_MMAN_H */1322#ifndef LACKS_FCNTL_H1323#include <fcntl.h>1324#endif/* LACKS_FCNTL_H */1325#endif/* HAVE_MMAP */1326#ifndef LACKS_UNISTD_H1327#include <unistd.h>/* for sbrk, sysconf */1328#else/* LACKS_UNISTD_H */1329#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)1330externvoid*sbrk(ptrdiff_t);1331#endif/* FreeBSD etc */1332#endif/* LACKS_UNISTD_H */13331334/* Declarations for locking */1335#if USE_LOCKS1336#ifndef WIN321337#include <pthread.h>1338#if defined (__SVR4) && defined (__sun)/* solaris */1339#include <thread.h>1340#endif/* solaris */1341#else1342#ifndef _M_AMD641343/* These are already defined on AMD64 builds */1344#ifdef __cplusplus1345extern"C"{1346#endif/* __cplusplus */1347#ifndef __MINGW32__1348LONG __cdecl _InterlockedCompareExchange(LONG volatile*Dest, LONG Exchange, LONG Comp);1349LONG __cdecl _InterlockedExchange(LONG volatile*Target, LONG Value);1350#endif1351#ifdef __cplusplus1352}1353#endif/* __cplusplus */1354#endif/* _M_AMD64 */1355#ifndef __MINGW32__1356#pragma intrinsic (_InterlockedCompareExchange)1357#pragma intrinsic (_InterlockedExchange)1358#else1359/* --[ start GCC compatibility ]----------------------------------------------1360 * Compatibility <intrin_x86.h> header for GCC -- GCC equivalents of intrinsic1361 * Microsoft Visual C++ functions. Originally developed for the ReactOS1362 * (<http://www.reactos.org/>) and TinyKrnl (<http://www.tinykrnl.org/>)1363 * projects.1364 *1365 * Copyright (c) 2006 KJK::Hyperion <hackbunny@reactos.com>1366 *1367 * Permission is hereby granted, free of charge, to any person obtaining a1368 * copy of this software and associated documentation files (the "Software"),1369 * to deal in the Software without restriction, including without limitation1370 * the rights to use, copy, modify, merge, publish, distribute, sublicense,1371 * and/or sell copies of the Software, and to permit persons to whom the1372 * Software is furnished to do so, subject to the following conditions:1373 *1374 * The above copyright notice and this permission notice shall be included in1375 * all copies or substantial portions of the Software.1376 *1377 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR1378 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,1379 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE1380 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER1381 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING1382 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER1383 * DEALINGS IN THE SOFTWARE.1384 */13851386/*** Atomic operations ***/1387#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) > 401001388#undef _ReadWriteBarrier1389#define _ReadWriteBarrier() __sync_synchronize()1390#else1391static __inline__ __attribute__((always_inline))long__sync_lock_test_and_set(volatilelong*const Target,const long Value)1392{1393long res;1394 __asm__ __volatile__("xchg%z0%2,%0":"=g"(*(Target)),"=r"(res) :"1"(Value));1395return res;1396}1397static void __inline__ __attribute__((always_inline))_MemoryBarrier(void)1398{1399 __asm__ __volatile__("": : :"memory");1400}1401#define _ReadWriteBarrier() _MemoryBarrier()1402#endif1403/* BUGBUG: GCC only supports full barriers */1404static __inline__ __attribute__((always_inline))long_InterlockedExchange(volatilelong*const Target,const long Value)1405{1406/* NOTE: __sync_lock_test_and_set would be an acquire barrier, so we force a full barrier */1407_ReadWriteBarrier();1408return__sync_lock_test_and_set(Target, Value);1409}1410/* --[ end GCC compatibility ]---------------------------------------------- */1411#endif1412#define interlockedcompareexchange _InterlockedCompareExchange1413#define interlockedexchange _InterlockedExchange1414#endif/* Win32 */1415#endif/* USE_LOCKS */14161417/* Declarations for bit scanning on win32 */1418#if defined(_MSC_VER) && _MSC_VER>=13001419#ifndef BitScanForward/* Try to avoid pulling in WinNT.h */1420#ifdef __cplusplus1421extern"C"{1422#endif/* __cplusplus */1423unsigned char_BitScanForward(unsigned long*index,unsigned long mask);1424unsigned char_BitScanReverse(unsigned long*index,unsigned long mask);1425#ifdef __cplusplus1426}1427#endif/* __cplusplus */14281429#define BitScanForward _BitScanForward1430#define BitScanReverse _BitScanReverse1431#pragma intrinsic(_BitScanForward)1432#pragma intrinsic(_BitScanReverse)1433#endif/* BitScanForward */1434#endif/* defined(_MSC_VER) && _MSC_VER>=1300 */14351436#ifndef WIN321437#ifndef malloc_getpagesize1438# ifdef _SC_PAGESIZE/* some SVR4 systems omit an underscore */1439# ifndef _SC_PAGE_SIZE1440# define _SC_PAGE_SIZE _SC_PAGESIZE1441# endif1442# endif1443# ifdef _SC_PAGE_SIZE1444# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)1445# else1446# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)1447externsize_tgetpagesize();1448# define malloc_getpagesize getpagesize()1449# else1450# ifdef WIN32/* use supplied emulation of getpagesize */1451# define malloc_getpagesize getpagesize()1452# else1453# ifndef LACKS_SYS_PARAM_H1454# include <sys/param.h>1455# endif1456# ifdef EXEC_PAGESIZE1457# define malloc_getpagesize EXEC_PAGESIZE1458# else1459# ifdef NBPG1460# ifndef CLSIZE1461# define malloc_getpagesize NBPG1462# else1463# define malloc_getpagesize (NBPG * CLSIZE)1464# endif1465# else1466# ifdef NBPC1467# define malloc_getpagesize NBPC1468# else1469# ifdef PAGESIZE1470# define malloc_getpagesize PAGESIZE1471# else/* just guess */1472# define malloc_getpagesize ((size_t)4096U)1473# endif1474# endif1475# endif1476# endif1477# endif1478# endif1479# endif1480#endif1481#endif1482148314841485/* ------------------- size_t and alignment properties -------------------- */14861487/* The byte and bit size of a size_t */1488#define SIZE_T_SIZE (sizeof(size_t))1489#define SIZE_T_BITSIZE (sizeof(size_t) << 3)14901491/* Some constants coerced to size_t */1492/* Annoying but necessary to avoid errors on some platforms */1493#define SIZE_T_ZERO ((size_t)0)1494#define SIZE_T_ONE ((size_t)1)1495#define SIZE_T_TWO ((size_t)2)1496#define SIZE_T_FOUR ((size_t)4)1497#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)1498#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)1499#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)1500#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)15011502/* The bit mask value corresponding to MALLOC_ALIGNMENT */1503#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)15041505/* True if address a has acceptable alignment */1506#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)15071508/* the number of bytes to offset an address to align it */1509#define align_offset(A)\1510 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\1511 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))15121513/* -------------------------- MMAP preliminaries ------------------------- */15141515/*1516 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and1517 checks to fail so compiler optimizer can delete code rather than1518 using so many "#if"s.1519*/152015211522/* MORECORE and MMAP must return MFAIL on failure */1523#define MFAIL ((void*)(MAX_SIZE_T))1524#define CMFAIL ((char*)(MFAIL))/* defined for convenience */15251526#if HAVE_MMAP15271528#ifndef WIN321529#define MUNMAP_DEFAULT(a, s) munmap((a), (s))1530#define MMAP_PROT (PROT_READ|PROT_WRITE)1531#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)1532#define MAP_ANONYMOUS MAP_ANON1533#endif/* MAP_ANON */1534#ifdef MAP_ANONYMOUS1535#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)1536#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)1537#else/* MAP_ANONYMOUS */1538/*1539 Nearly all versions of mmap support MAP_ANONYMOUS, so the following1540 is unlikely to be needed, but is supplied just in case.1541*/1542#define MMAP_FLAGS (MAP_PRIVATE)1543static int dev_zero_fd = -1;/* Cached file descriptor for /dev/zero. */1544#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \1545 (dev_zero_fd = open("/dev/zero", O_RDWR), \1546 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \1547 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))1548#endif/* MAP_ANONYMOUS */15491550#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)15511552#else/* WIN32 */15531554/* Win32 MMAP via VirtualAlloc */1555static FORCEINLINE void*win32mmap(size_t size) {1556void* ptr =VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);1557return(ptr !=0)? ptr: MFAIL;1558}15591560/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */1561static FORCEINLINE void*win32direct_mmap(size_t size) {1562void* ptr =VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,1563 PAGE_READWRITE);1564return(ptr !=0)? ptr: MFAIL;1565}15661567/* This function supports releasing coalesed segments */1568static FORCEINLINE intwin32munmap(void* ptr,size_t size) {1569 MEMORY_BASIC_INFORMATION minfo;1570char* cptr = (char*)ptr;1571while(size) {1572if(VirtualQuery(cptr, &minfo,sizeof(minfo)) ==0)1573return-1;1574if(minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||1575 minfo.State != MEM_COMMIT || minfo.RegionSize > size)1576return-1;1577if(VirtualFree(cptr,0, MEM_RELEASE) ==0)1578return-1;1579 cptr += minfo.RegionSize;1580 size -= minfo.RegionSize;1581}1582return0;1583}15841585#define MMAP_DEFAULT(s) win32mmap(s)1586#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))1587#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)1588#endif/* WIN32 */1589#endif/* HAVE_MMAP */15901591#if HAVE_MREMAP1592#ifndef WIN321593#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))1594#endif/* WIN32 */1595#endif/* HAVE_MREMAP */159615971598/**1599 * Define CALL_MORECORE1600 */1601#if HAVE_MORECORE1602#ifdef MORECORE1603#define CALL_MORECORE(S) MORECORE(S)1604#else/* MORECORE */1605#define CALL_MORECORE(S) MORECORE_DEFAULT(S)1606#endif/* MORECORE */1607#else/* HAVE_MORECORE */1608#define CALL_MORECORE(S) MFAIL1609#endif/* HAVE_MORECORE */16101611/**1612 * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP1613 */1614#if HAVE_MMAP1615#define IS_MMAPPED_BIT (SIZE_T_ONE)1616#define USE_MMAP_BIT (SIZE_T_ONE)16171618#ifdef MMAP1619#define CALL_MMAP(s) MMAP(s)1620#else/* MMAP */1621#define CALL_MMAP(s) MMAP_DEFAULT(s)1622#endif/* MMAP */1623#ifdef MUNMAP1624#define CALL_MUNMAP(a, s) MUNMAP((a), (s))1625#else/* MUNMAP */1626#define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))1627#endif/* MUNMAP */1628#ifdef DIRECT_MMAP1629#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)1630#else/* DIRECT_MMAP */1631#define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)1632#endif/* DIRECT_MMAP */1633#else/* HAVE_MMAP */1634#define IS_MMAPPED_BIT (SIZE_T_ZERO)1635#define USE_MMAP_BIT (SIZE_T_ZERO)16361637#define MMAP(s) MFAIL1638#define MUNMAP(a, s) (-1)1639#define DIRECT_MMAP(s) MFAIL1640#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)1641#define CALL_MMAP(s) MMAP(s)1642#define CALL_MUNMAP(a, s) MUNMAP((a), (s))1643#endif/* HAVE_MMAP */16441645/**1646 * Define CALL_MREMAP1647 */1648#if HAVE_MMAP && HAVE_MREMAP1649#ifdef MREMAP1650#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))1651#else/* MREMAP */1652#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))1653#endif/* MREMAP */1654#else/* HAVE_MMAP && HAVE_MREMAP */1655#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL1656#endif/* HAVE_MMAP && HAVE_MREMAP */16571658/* mstate bit set if continguous morecore disabled or failed */1659#define USE_NONCONTIGUOUS_BIT (4U)16601661/* segment bit set in create_mspace_with_base */1662#define EXTERN_BIT (8U)166316641665/* --------------------------- Lock preliminaries ------------------------ */16661667/*1668 When locks are defined, there is one global lock, plus1669 one per-mspace lock.16701671 The global lock_ensures that mparams.magic and other unique1672 mparams values are initialized only once. It also protects1673 sequences of calls to MORECORE. In many cases sys_alloc requires1674 two calls, that should not be interleaved with calls by other1675 threads. This does not protect against direct calls to MORECORE1676 by other threads not using this lock, so there is still code to1677 cope the best we can on interference.16781679 Per-mspace locks surround calls to malloc, free, etc. To enable use1680 in layered extensions, per-mspace locks are reentrant.16811682 Because lock-protected regions generally have bounded times, it is1683 OK to use the supplied simple spinlocks in the custom versions for1684 x86.16851686 If USE_LOCKS is > 1, the definitions of lock routines here are1687 bypassed, in which case you will need to define at least1688 INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly TRY_LOCK1689 (which is not used in this malloc, but commonly needed in1690 extensions.)1691*/16921693#if USE_LOCKS == 116941695#if USE_SPIN_LOCKS1696#ifndef WIN3216971698/* Custom pthread-style spin locks on x86 and x64 for gcc */1699struct pthread_mlock_t {1700volatileunsigned int l;1701volatileunsigned int c;1702volatile pthread_t threadid;1703};1704#define MLOCK_T struct pthread_mlock_t1705#define CURRENT_THREAD pthread_self()1706#define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0)1707#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)1708#define RELEASE_LOCK(sl) pthread_release_lock(sl)1709#define TRY_LOCK(sl) pthread_try_lock(sl)1710#define SPINS_PER_YIELD 6317111712static MLOCK_T malloc_global_mutex = {0,0,0};17131714static FORCEINLINE intpthread_acquire_lock(MLOCK_T *sl) {1715int spins =0;1716volatileunsigned int* lp = &sl->l;1717for(;;) {1718if(*lp !=0) {1719if(sl->threadid == CURRENT_THREAD) {1720++sl->c;1721return0;1722}1723}1724else{1725/* place args to cmpxchgl in locals to evade oddities in some gccs */1726int cmp =0;1727int val =1;1728int ret;1729 __asm__ __volatile__("lock; cmpxchgl%1,%2"1730:"=a"(ret)1731:"r"(val),"m"(*(lp)),"0"(cmp)1732:"memory","cc");1733if(!ret) {1734assert(!sl->threadid);1735 sl->c =1;1736 sl->threadid = CURRENT_THREAD;1737return0;1738}1739if((++spins & SPINS_PER_YIELD) ==0) {1740#if defined (__SVR4) && defined (__sun)/* solaris */1741thr_yield();1742#else1743#if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)1744sched_yield();1745#else/* no-op yield on unknown systems */1746;1747#endif/* __linux__ || __FreeBSD__ || __APPLE__ */1748#endif/* solaris */1749}1750}1751}1752}17531754static FORCEINLINE voidpthread_release_lock(MLOCK_T *sl) {1755assert(sl->l !=0);1756assert(sl->threadid == CURRENT_THREAD);1757if(--sl->c ==0) {1758volatileunsigned int* lp = &sl->l;1759int prev =0;1760int ret;1761 sl->threadid =0;1762 __asm__ __volatile__("lock; xchgl%0,%1"1763:"=r"(ret)1764:"m"(*(lp)),"0"(prev)1765:"memory");1766}1767}17681769static FORCEINLINE intpthread_try_lock(MLOCK_T *sl) {1770volatileunsigned int* lp = &sl->l;1771if(*lp !=0) {1772if(sl->threadid == CURRENT_THREAD) {1773++sl->c;1774return1;1775}1776}1777else{1778int cmp =0;1779int val =1;1780int ret;1781 __asm__ __volatile__("lock; cmpxchgl%1,%2"1782:"=a"(ret)1783:"r"(val),"m"(*(lp)),"0"(cmp)1784:"memory","cc");1785if(!ret) {1786assert(!sl->threadid);1787 sl->c =1;1788 sl->threadid = CURRENT_THREAD;1789return1;1790}1791}1792return0;1793}179417951796#else/* WIN32 */1797/* Custom win32-style spin locks on x86 and x64 for MSC */1798struct win32_mlock_t1799{1800volatilelong l;1801volatileunsigned int c;1802volatilelong threadid;1803};18041805staticinlineintreturn_0(int i) {return0; }1806#define MLOCK_T struct win32_mlock_t1807#define CURRENT_THREAD win32_getcurrentthreadid()1808#define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), return_0(0))1809#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)1810#define RELEASE_LOCK(sl) win32_release_lock(sl)1811#define TRY_LOCK(sl) win32_try_lock(sl)1812#define SPINS_PER_YIELD 6318131814static MLOCK_T malloc_global_mutex = {0,0,0};18151816static FORCEINLINE longwin32_getcurrentthreadid(void) {1817#ifdef _MSC_VER1818#if defined(_M_IX86)1819long*threadstruct=(long*)__readfsdword(0x18);1820long threadid=threadstruct[0x24/sizeof(long)];1821return threadid;1822#elif defined(_M_X64)1823/* todo */1824returnGetCurrentThreadId();1825#else1826returnGetCurrentThreadId();1827#endif1828#else1829returnGetCurrentThreadId();1830#endif1831}18321833static FORCEINLINE intwin32_acquire_lock(MLOCK_T *sl) {1834int spins =0;1835for(;;) {1836if(sl->l !=0) {1837if(sl->threadid == CURRENT_THREAD) {1838++sl->c;1839return0;1840}1841}1842else{1843if(!interlockedexchange(&sl->l,1)) {1844assert(!sl->threadid);1845 sl->c=CURRENT_THREAD;1846 sl->threadid = CURRENT_THREAD;1847 sl->c =1;1848return0;1849}1850}1851if((++spins & SPINS_PER_YIELD) ==0)1852SleepEx(0, FALSE);1853}1854}18551856static FORCEINLINE voidwin32_release_lock(MLOCK_T *sl) {1857assert(sl->threadid == CURRENT_THREAD);1858assert(sl->l !=0);1859if(--sl->c ==0) {1860 sl->threadid =0;1861interlockedexchange(&sl->l,0);1862}1863}18641865static FORCEINLINE intwin32_try_lock(MLOCK_T *sl) {1866if(sl->l !=0) {1867if(sl->threadid == CURRENT_THREAD) {1868++sl->c;1869return1;1870}1871}1872else{1873if(!interlockedexchange(&sl->l,1)){1874assert(!sl->threadid);1875 sl->threadid = CURRENT_THREAD;1876 sl->c =1;1877return1;1878}1879}1880return0;1881}18821883#endif/* WIN32 */1884#else/* USE_SPIN_LOCKS */18851886#ifndef WIN321887/* pthreads-based locks */18881889#define MLOCK_T pthread_mutex_t1890#define CURRENT_THREAD pthread_self()1891#define INITIAL_LOCK(sl) pthread_init_lock(sl)1892#define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl)1893#define RELEASE_LOCK(sl) pthread_mutex_unlock(sl)1894#define TRY_LOCK(sl) (!pthread_mutex_trylock(sl))18951896static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;18971898/* Cope with old-style linux recursive lock initialization by adding */1899/* skipped internal declaration from pthread.h */1900#ifdef linux1901#ifndef PTHREAD_MUTEX_RECURSIVE1902externint pthread_mutexattr_setkind_np __P((pthread_mutexattr_t *__attr,1903int __kind));1904#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP1905#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)1906#endif1907#endif19081909static intpthread_init_lock(MLOCK_T *sl) {1910 pthread_mutexattr_t attr;1911if(pthread_mutexattr_init(&attr))return1;1912if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE))return1;1913if(pthread_mutex_init(sl, &attr))return1;1914if(pthread_mutexattr_destroy(&attr))return1;1915return0;1916}19171918#else/* WIN32 */1919/* Win32 critical sections */1920#define MLOCK_T CRITICAL_SECTION1921#define CURRENT_THREAD GetCurrentThreadId()1922#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))1923#define ACQUIRE_LOCK(s) (EnterCriticalSection(s), 0)1924#define RELEASE_LOCK(s) LeaveCriticalSection(s)1925#define TRY_LOCK(s) TryEnterCriticalSection(s)1926#define NEED_GLOBAL_LOCK_INIT19271928static MLOCK_T malloc_global_mutex;1929staticvolatilelong malloc_global_mutex_status;19301931/* Use spin loop to initialize global lock */1932static voidinit_malloc_global_mutex() {1933for(;;) {1934long stat = malloc_global_mutex_status;1935if(stat >0)1936return;1937/* transition to < 0 while initializing, then to > 0) */1938if(stat ==0&&1939interlockedcompareexchange(&malloc_global_mutex_status, -1,0) ==0) {1940InitializeCriticalSection(&malloc_global_mutex);1941interlockedexchange(&malloc_global_mutex_status,1);1942return;1943}1944SleepEx(0, FALSE);1945}1946}19471948#endif/* WIN32 */1949#endif/* USE_SPIN_LOCKS */1950#endif/* USE_LOCKS == 1 */19511952/* ----------------------- User-defined locks ------------------------ */19531954#if USE_LOCKS > 11955/* Define your own lock implementation here */1956/* #define INITIAL_LOCK(sl) ... */1957/* #define ACQUIRE_LOCK(sl) ... */1958/* #define RELEASE_LOCK(sl) ... */1959/* #define TRY_LOCK(sl) ... */1960/* static MLOCK_T malloc_global_mutex = ... */1961#endif/* USE_LOCKS > 1 */19621963/* ----------------------- Lock-based state ------------------------ */19641965#if USE_LOCKS1966#define USE_LOCK_BIT (2U)1967#else/* USE_LOCKS */1968#define USE_LOCK_BIT (0U)1969#define INITIAL_LOCK(l)1970#endif/* USE_LOCKS */19711972#if USE_LOCKS1973#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);1974#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);1975#else/* USE_LOCKS */1976#define ACQUIRE_MALLOC_GLOBAL_LOCK()1977#define RELEASE_MALLOC_GLOBAL_LOCK()1978#endif/* USE_LOCKS */197919801981/* ----------------------- Chunk representations ------------------------ */19821983/*1984 (The following includes lightly edited explanations by Colin Plumb.)19851986 The malloc_chunk declaration below is misleading (but accurate and1987 necessary). It declares a "view" into memory allowing access to1988 necessary fields at known offsets from a given base.19891990 Chunks of memory are maintained using a `boundary tag' method as1991 originally described by Knuth. (See the paper by Paul Wilson1992 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such1993 techniques.) Sizes of free chunks are stored both in the front of1994 each chunk and at the end. This makes consolidating fragmented1995 chunks into bigger chunks fast. The head fields also hold bits1996 representing whether chunks are free or in use.19971998 Here are some pictures to make it clearer. They are "exploded" to1999 show that the state of a chunk can be thought of as extending from2000 the high 31 bits of the head field of its header through the2001 prev_foot and PINUSE_BIT bit of the following chunk header.20022003 A chunk that's in use looks like:20042005 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2006 | Size of previous chunk (if P = 0) |2007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|2009 | Size of this chunk 1| +-+2010 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2011 | |2012 +- -+2013 | |2014 +- -+2015 | :2016 +- size - sizeof(size_t) available payload bytes -+2017 : |2018 chunk-> +- -+2019 | |2020 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|2022 | Size of next chunk (may or may not be in use) | +-+2023 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+20242025 And if it's free, it looks like this:20262027 chunk-> +- -+2028 | User payload (must be in use, or we would have merged!) |2029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|2031 | Size of this chunk 0| +-+2032 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2033 | Next pointer |2034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2035 | Prev pointer |2036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2037 | :2038 +- size - sizeof(struct chunk) unused bytes -+2039 : |2040 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2041 | Size of this chunk |2042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|2044 | Size of next chunk (must be in use, or we would have merged)| +-+2045 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2046 | :2047 +- User payload -+2048 : |2049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2050 |0|2051 +-+2052 Note that since we always merge adjacent free chunks, the chunks2053 adjacent to a free chunk must be in use.20542055 Given a pointer to a chunk (which can be derived trivially from the2056 payload pointer) we can, in O(1) time, find out whether the adjacent2057 chunks are free, and if so, unlink them from the lists that they2058 are on and merge them with the current chunk.20592060 Chunks always begin on even word boundaries, so the mem portion2061 (which is returned to the user) is also on an even word boundary, and2062 thus at least double-word aligned.20632064 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the2065 chunk size (which is always a multiple of two words), is an in-use2066 bit for the *previous* chunk. If that bit is *clear*, then the2067 word before the current chunk size contains the previous chunk2068 size, and can be used to find the front of the previous chunk.2069 The very first chunk allocated always has this bit set, preventing2070 access to non-existent (or non-owned) memory. If pinuse is set for2071 any given chunk, then you CANNOT determine the size of the2072 previous chunk, and might even get a memory addressing fault when2073 trying to do so.20742075 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of2076 the chunk size redundantly records whether the current chunk is2077 inuse. This redundancy enables usage checks within free and realloc,2078 and reduces indirection when freeing and consolidating chunks.20792080 Each freshly allocated chunk must have both cinuse and pinuse set.2081 That is, each allocated chunk borders either a previously allocated2082 and still in-use chunk, or the base of its memory arena. This is2083 ensured by making all allocations from the `lowest' part of any2084 found chunk. Further, no free chunk physically borders another one,2085 so each free chunk is known to be preceded and followed by either2086 inuse chunks or the ends of memory.20872088 Note that the `foot' of the current chunk is actually represented2089 as the prev_foot of the NEXT chunk. This makes it easier to2090 deal with alignments etc but can be very confusing when trying2091 to extend or adapt this code.20922093 The exceptions to all this are20942095 1. The special chunk `top' is the top-most available chunk (i.e.,2096 the one bordering the end of available memory). It is treated2097 specially. Top is never included in any bin, is used only if2098 no other chunk is available, and is released back to the2099 system if it is very large (see M_TRIM_THRESHOLD). In effect,2100 the top chunk is treated as larger (and thus less well2101 fitting) than any other available chunk. The top chunk2102 doesn't update its trailing size field since there is no next2103 contiguous chunk that would have to index off it. However,2104 space is still allocated for it (TOP_FOOT_SIZE) to enable2105 separation or merging when space is extended.21062107 3. Chunks allocated via mmap, which have the lowest-order bit2108 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set2109 PINUSE_BIT in their head fields. Because they are allocated2110 one-by-one, each must carry its own prev_foot field, which is2111 also used to hold the offset this chunk has within its mmapped2112 region, which is needed to preserve alignment. Each mmapped2113 chunk is trailed by the first two fields of a fake next-chunk2114 for sake of usage checks.21152116*/21172118struct malloc_chunk {2119size_t prev_foot;/* Size of previous chunk (if free). */2120size_t head;/* Size and inuse bits. */2121struct malloc_chunk* fd;/* double links -- used only if free. */2122struct malloc_chunk* bk;2123};21242125typedefstruct malloc_chunk mchunk;2126typedefstruct malloc_chunk* mchunkptr;2127typedefstruct malloc_chunk* sbinptr;/* The type of bins of chunks */2128typedefunsigned int bindex_t;/* Described below */2129typedefunsigned int binmap_t;/* Described below */2130typedefunsigned int flag_t;/* The type of various bit flag sets */21312132/* ------------------- Chunks sizes and alignments ----------------------- */21332134#define MCHUNK_SIZE (sizeof(mchunk))21352136#if FOOTERS2137#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)2138#else/* FOOTERS */2139#define CHUNK_OVERHEAD (SIZE_T_SIZE)2140#endif/* FOOTERS */21412142/* MMapped chunks need a second word of overhead ... */2143#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)2144/* ... and additional padding for fake next-chunk at foot */2145#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)21462147/* The smallest size we can malloc is an aligned minimal chunk */2148#define MIN_CHUNK_SIZE\2149 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)21502151/* conversion from malloc headers to user pointers, and back */2152#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))2153#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))2154/* chunk associated with aligned address A */2155#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))21562157/* Bounds on request (not chunk) sizes. */2158#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)2159#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)21602161/* pad request bytes into a usable size */2162#define pad_request(req) \2163 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)21642165/* pad request, checking for minimum (but not maximum) */2166#define request2size(req) \2167 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))216821692170/* ------------------ Operations on head and foot fields ----------------- */21712172/*2173 The head field of a chunk is or'ed with PINUSE_BIT when previous2174 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in2175 use. If the chunk was obtained with mmap, the prev_foot field has2176 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the2177 mmapped region to the base of the chunk.21782179 FLAG4_BIT is not used by this malloc, but might be useful in extensions.2180*/21812182#define PINUSE_BIT (SIZE_T_ONE)2183#define CINUSE_BIT (SIZE_T_TWO)2184#define FLAG4_BIT (SIZE_T_FOUR)2185#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)2186#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)21872188/* Head value for fenceposts */2189#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)21902191/* extraction of fields from head words */2192#define cinuse(p) ((p)->head & CINUSE_BIT)2193#define pinuse(p) ((p)->head & PINUSE_BIT)2194#define chunksize(p) ((p)->head & ~(FLAG_BITS))21952196#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)2197#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)21982199/* Treat space at ptr +/- offset as a chunk */2200#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))2201#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))22022203/* Ptr to next or previous physical malloc_chunk. */2204#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))2205#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))22062207/* extract next chunk's pinuse bit */2208#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)22092210/* Get/set size at footer */2211#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)2212#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))22132214/* Set size, pinuse bit, and foot */2215#define set_size_and_pinuse_of_free_chunk(p, s)\2216 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))22172218/* Set size, pinuse bit, foot, and clear next pinuse */2219#define set_free_with_pinuse(p, s, n)\2220 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))22212222#define is_mmapped(p)\2223 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))22242225/* Get the internal overhead associated with chunk p */2226#define overhead_for(p)\2227 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)22282229/* Return true if malloced space is not necessarily cleared */2230#if MMAP_CLEARS2231#define calloc_must_clear(p) (!is_mmapped(p))2232#else/* MMAP_CLEARS */2233#define calloc_must_clear(p) (1)2234#endif/* MMAP_CLEARS */22352236/* ---------------------- Overlaid data structures ----------------------- */22372238/*2239 When chunks are not in use, they are treated as nodes of either2240 lists or trees.22412242 "Small" chunks are stored in circular doubly-linked lists, and look2243 like this:22442245 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2246 | Size of previous chunk |2247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2248 `head:' | Size of chunk, in bytes |P|2249 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2250 | Forward pointer to next chunk in list |2251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2252 | Back pointer to previous chunk in list |2253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2254 | Unused space (may be 0 bytes long) .2255 . .2256 . |2257nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2258 `foot:' | Size of chunk, in bytes |2259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+22602261 Larger chunks are kept in a form of bitwise digital trees (aka2262 tries) keyed on chunksizes. Because malloc_tree_chunks are only for2263 free chunks greater than 256 bytes, their size doesn't impose any2264 constraints on user chunk sizes. Each node looks like:22652266 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2267 | Size of previous chunk |2268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2269 `head:' | Size of chunk, in bytes |P|2270 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2271 | Forward pointer to next chunk of same size |2272 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2273 | Back pointer to previous chunk of same size |2274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2275 | Pointer to left child (child[0]) |2276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2277 | Pointer to right child (child[1]) |2278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2279 | Pointer to parent |2280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2281 | bin index of this chunk |2282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2283 | Unused space .2284 . |2285nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2286 `foot:' | Size of chunk, in bytes |2287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+22882289 Each tree holding treenodes is a tree of unique chunk sizes. Chunks2290 of the same size are arranged in a circularly-linked list, with only2291 the oldest chunk (the next to be used, in our FIFO ordering)2292 actually in the tree. (Tree members are distinguished by a non-null2293 parent pointer.) If a chunk with the same size as an existing node2294 is inserted, it is linked off the existing node using pointers that2295 work in the same way as fd/bk pointers of small chunks.22962297 Each tree contains a power of 2 sized range of chunk sizes (the2298 smallest is 0x100 <= x < 0x180), which is divided in half at each2299 tree level, with the chunks in the smaller half of the range (0x1002300 <= x < 0x140 for the top nose) in the left subtree and the larger2301 half (0x140 <= x < 0x180) in the right subtree. This is, of course,2302 done by inspecting individual bits.23032304 Using these rules, each node's left subtree contains all smaller2305 sizes than its right subtree. However, the node at the root of each2306 subtree has no particular ordering relationship to either. (The2307 dividing line between the subtree sizes is based on trie relation.)2308 If we remove the last chunk of a given size from the interior of the2309 tree, we need to replace it with a leaf node. The tree ordering2310 rules permit a node to be replaced by any leaf below it.23112312 The smallest chunk in a tree (a common operation in a best-fit2313 allocator) can be found by walking a path to the leftmost leaf in2314 the tree. Unlike a usual binary tree, where we follow left child2315 pointers until we reach a null, here we follow the right child2316 pointer any time the left one is null, until we reach a leaf with2317 both child pointers null. The smallest chunk in the tree will be2318 somewhere along that path.23192320 The worst case number of steps to add, find, or remove a node is2321 bounded by the number of bits differentiating chunks within2322 bins. Under current bin calculations, this ranges from 6 up to 212323 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case2324 is of course much better.2325*/23262327struct malloc_tree_chunk {2328/* The first four fields must be compatible with malloc_chunk */2329size_t prev_foot;2330size_t head;2331struct malloc_tree_chunk* fd;2332struct malloc_tree_chunk* bk;23332334struct malloc_tree_chunk* child[2];2335struct malloc_tree_chunk* parent;2336 bindex_t index;2337};23382339typedefstruct malloc_tree_chunk tchunk;2340typedefstruct malloc_tree_chunk* tchunkptr;2341typedefstruct malloc_tree_chunk* tbinptr;/* The type of bins of trees */23422343/* A little helper macro for trees */2344#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])23452346/* ----------------------------- Segments -------------------------------- */23472348/*2349 Each malloc space may include non-contiguous segments, held in a2350 list headed by an embedded malloc_segment record representing the2351 top-most space. Segments also include flags holding properties of2352 the space. Large chunks that are directly allocated by mmap are not2353 included in this list. They are instead independently created and2354 destroyed without otherwise keeping track of them.23552356 Segment management mainly comes into play for spaces allocated by2357 MMAP. Any call to MMAP might or might not return memory that is2358 adjacent to an existing segment. MORECORE normally contiguously2359 extends the current space, so this space is almost always adjacent,2360 which is simpler and faster to deal with. (This is why MORECORE is2361 used preferentially to MMAP when both are available -- see2362 sys_alloc.) When allocating using MMAP, we don't use any of the2363 hinting mechanisms (inconsistently) supported in various2364 implementations of unix mmap, or distinguish reserving from2365 committing memory. Instead, we just ask for space, and exploit2366 contiguity when we get it. It is probably possible to do2367 better than this on some systems, but no general scheme seems2368 to be significantly better.23692370 Management entails a simpler variant of the consolidation scheme2371 used for chunks to reduce fragmentation -- new adjacent memory is2372 normally prepended or appended to an existing segment. However,2373 there are limitations compared to chunk consolidation that mostly2374 reflect the fact that segment processing is relatively infrequent2375 (occurring only when getting memory from system) and that we2376 don't expect to have huge numbers of segments:23772378 * Segments are not indexed, so traversal requires linear scans. (It2379 would be possible to index these, but is not worth the extra2380 overhead and complexity for most programs on most platforms.)2381 * New segments are only appended to old ones when holding top-most2382 memory; if they cannot be prepended to others, they are held in2383 different segments.23842385 Except for the top-most segment of an mstate, each segment record2386 is kept at the tail of its segment. Segments are added by pushing2387 segment records onto the list headed by &mstate.seg for the2388 containing mstate.23892390 Segment flags control allocation/merge/deallocation policies:2391 * If EXTERN_BIT set, then we did not allocate this segment,2392 and so should not try to deallocate or merge with others.2393 (This currently holds only for the initial segment passed2394 into create_mspace_with_base.)2395 * If IS_MMAPPED_BIT set, the segment may be merged with2396 other surrounding mmapped segments and trimmed/de-allocated2397 using munmap.2398 * If neither bit is set, then the segment was obtained using2399 MORECORE so can be merged with surrounding MORECORE'd segments2400 and deallocated/trimmed using MORECORE with negative arguments.2401*/24022403struct malloc_segment {2404char* base;/* base address */2405size_t size;/* allocated size */2406struct malloc_segment* next;/* ptr to next segment */2407 flag_t sflags;/* mmap and extern flag */2408};24092410#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)2411#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)24122413typedefstruct malloc_segment msegment;2414typedefstruct malloc_segment* msegmentptr;24152416/* ---------------------------- malloc_state ----------------------------- */24172418/*2419 A malloc_state holds all of the bookkeeping for a space.2420 The main fields are:24212422 Top2423 The topmost chunk of the currently active segment. Its size is2424 cached in topsize. The actual size of topmost space is2425 topsize+TOP_FOOT_SIZE, which includes space reserved for adding2426 fenceposts and segment records if necessary when getting more2427 space from the system. The size at which to autotrim top is2428 cached from mparams in trim_check, except that it is disabled if2429 an autotrim fails.24302431 Designated victim (dv)2432 This is the preferred chunk for servicing small requests that2433 don't have exact fits. It is normally the chunk split off most2434 recently to service another small request. Its size is cached in2435 dvsize. The link fields of this chunk are not maintained since it2436 is not kept in a bin.24372438 SmallBins2439 An array of bin headers for free chunks. These bins hold chunks2440 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains2441 chunks of all the same size, spaced 8 bytes apart. To simplify2442 use in double-linked lists, each bin header acts as a malloc_chunk2443 pointing to the real first node, if it exists (else pointing to2444 itself). This avoids special-casing for headers. But to avoid2445 waste, we allocate only the fd/bk pointers of bins, and then use2446 repositioning tricks to treat these as the fields of a chunk.24472448 TreeBins2449 Treebins are pointers to the roots of trees holding a range of2450 sizes. There are 2 equally spaced treebins for each power of two2451 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything2452 larger.24532454 Bin maps2455 There is one bit map for small bins ("smallmap") and one for2456 treebins ("treemap). Each bin sets its bit when non-empty, and2457 clears the bit when empty. Bit operations are then used to avoid2458 bin-by-bin searching -- nearly all "search" is done without ever2459 looking at bins that won't be selected. The bit maps2460 conservatively use 32 bits per map word, even if on 64bit system.2461 For a good description of some of the bit-based techniques used2462 here, see Henry S. Warren Jr's book "Hacker's Delight" (and2463 supplement at http://hackersdelight.org/). Many of these are2464 intended to reduce the branchiness of paths through malloc etc, as2465 well as to reduce the number of memory locations read or written.24662467 Segments2468 A list of segments headed by an embedded malloc_segment record2469 representing the initial space.24702471 Address check support2472 The least_addr field is the least address ever obtained from2473 MORECORE or MMAP. Attempted frees and reallocs of any address less2474 than this are trapped (unless INSECURE is defined).24752476 Magic tag2477 A cross-check field that should always hold same value as mparams.magic.24782479 Flags2480 Bits recording whether to use MMAP, locks, or contiguous MORECORE24812482 Statistics2483 Each space keeps track of current and maximum system memory2484 obtained via MORECORE or MMAP.24852486 Trim support2487 Fields holding the amount of unused topmost memory that should trigger2488 timming, and a counter to force periodic scanning to release unused2489 non-topmost segments.24902491 Locking2492 If USE_LOCKS is defined, the "mutex" lock is acquired and released2493 around every public call using this mspace.24942495 Extension support2496 A void* pointer and a size_t field that can be used to help implement2497 extensions to this malloc.2498*/24992500/* Bin types, widths and sizes */2501#define NSMALLBINS (32U)2502#define NTREEBINS (32U)2503#define SMALLBIN_SHIFT (3U)2504#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)2505#define TREEBIN_SHIFT (8U)2506#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)2507#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)2508#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)25092510struct malloc_state {2511 binmap_t smallmap;2512 binmap_t treemap;2513size_t dvsize;2514size_t topsize;2515char* least_addr;2516 mchunkptr dv;2517 mchunkptr top;2518size_t trim_check;2519size_t release_checks;2520size_t magic;2521 mchunkptr smallbins[(NSMALLBINS+1)*2];2522 tbinptr treebins[NTREEBINS];2523size_t footprint;2524size_t max_footprint;2525 flag_t mflags;2526#if USE_LOCKS2527 MLOCK_T mutex;/* locate lock among fields that rarely change */2528#endif/* USE_LOCKS */2529 msegment seg;2530void* extp;/* Unused but available for extensions */2531size_t exts;2532};25332534typedefstruct malloc_state* mstate;25352536/* ------------- Global malloc_state and malloc_params ------------------- */25372538/*2539 malloc_params holds global properties, including those that can be2540 dynamically set using mallopt. There is a single instance, mparams,2541 initialized in init_mparams. Note that the non-zeroness of "magic"2542 also serves as an initialization flag.2543*/25442545struct malloc_params {2546volatilesize_t magic;2547size_t page_size;2548size_t granularity;2549size_t mmap_threshold;2550size_t trim_threshold;2551 flag_t default_mflags;2552};25532554static struct malloc_params mparams;25552556/* Ensure mparams initialized */2557#define ensure_initialization() ((void)(mparams.magic != 0 || init_mparams()))25582559#if !ONLY_MSPACES25602561/* The global malloc_state used for all non-"mspace" calls */2562static struct malloc_state _gm_;2563#define gm (&_gm_)2564#define is_global(M) ((M) == &_gm_)25652566#endif/* !ONLY_MSPACES */25672568#define is_initialized(M) ((M)->top != 0)25692570/* -------------------------- system alloc setup ------------------------- */25712572/* Operations on mflags */25732574#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)2575#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)2576#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)25772578#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)2579#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)2580#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)25812582#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)2583#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)25842585#define set_lock(M,L)\2586 ((M)->mflags = (L)?\2587 ((M)->mflags | USE_LOCK_BIT) :\2588 ((M)->mflags & ~USE_LOCK_BIT))25892590/* page-align a size */2591#define page_align(S)\2592 (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))25932594/* granularity-align a size */2595#define granularity_align(S)\2596 (((S) + (mparams.granularity - SIZE_T_ONE))\2597 & ~(mparams.granularity - SIZE_T_ONE))259825992600/* For mmap, use granularity alignment on windows, else page-align */2601#ifdef WIN322602#define mmap_align(S) granularity_align(S)2603#else2604#define mmap_align(S) page_align(S)2605#endif26062607/* For sys_alloc, enough padding to ensure can malloc request on success */2608#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)26092610#define is_page_aligned(S)\2611 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)2612#define is_granularity_aligned(S)\2613 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)26142615/* True if segment S holds address A */2616#define segment_holds(S, A)\2617 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)26182619/* Return segment holding given address */2620static msegmentptr segment_holding(mstate m,char* addr) {2621 msegmentptr sp = &m->seg;2622for(;;) {2623if(addr >= sp->base && addr < sp->base + sp->size)2624return sp;2625if((sp = sp->next) ==0)2626return0;2627}2628}26292630/* Return true if segment contains a segment link */2631static inthas_segment_link(mstate m, msegmentptr ss) {2632 msegmentptr sp = &m->seg;2633for(;;) {2634if((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)2635return1;2636if((sp = sp->next) ==0)2637return0;2638}2639}26402641#ifndef MORECORE_CANNOT_TRIM2642#define should_trim(M,s) ((s) > (M)->trim_check)2643#else/* MORECORE_CANNOT_TRIM */2644#define should_trim(M,s) (0)2645#endif/* MORECORE_CANNOT_TRIM */26462647/*2648 TOP_FOOT_SIZE is padding at the end of a segment, including space2649 that may be needed to place segment records and fenceposts when new2650 noncontiguous segments are added.2651*/2652#define TOP_FOOT_SIZE\2653 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)265426552656/* ------------------------------- Hooks -------------------------------- */26572658/*2659 PREACTION should be defined to return 0 on success, and nonzero on2660 failure. If you are not using locking, you can redefine these to do2661 anything you like.2662*/26632664#if USE_LOCKS26652666#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)2667#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }2668#else/* USE_LOCKS */26692670#ifndef PREACTION2671#define PREACTION(M) (0)2672#endif/* PREACTION */26732674#ifndef POSTACTION2675#define POSTACTION(M)2676#endif/* POSTACTION */26772678#endif/* USE_LOCKS */26792680/*2681 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.2682 USAGE_ERROR_ACTION is triggered on detected bad frees and2683 reallocs. The argument p is an address that might have triggered the2684 fault. It is ignored by the two predefined actions, but might be2685 useful in custom actions that try to help diagnose errors.2686*/26872688#if PROCEED_ON_ERROR26892690/* A count of the number of corruption errors causing resets */2691int malloc_corruption_error_count;26922693/* default corruption action */2694static voidreset_on_error(mstate m);26952696#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)2697#define USAGE_ERROR_ACTION(m, p)26982699#else/* PROCEED_ON_ERROR */27002701#ifndef CORRUPTION_ERROR_ACTION2702#define CORRUPTION_ERROR_ACTION(m) ABORT2703#endif/* CORRUPTION_ERROR_ACTION */27042705#ifndef USAGE_ERROR_ACTION2706#define USAGE_ERROR_ACTION(m,p) ABORT2707#endif/* USAGE_ERROR_ACTION */27082709#endif/* PROCEED_ON_ERROR */27102711/* -------------------------- Debugging setup ---------------------------- */27122713#if ! DEBUG27142715#define check_free_chunk(M,P)2716#define check_inuse_chunk(M,P)2717#define check_malloced_chunk(M,P,N)2718#define check_mmapped_chunk(M,P)2719#define check_malloc_state(M)2720#define check_top_chunk(M,P)27212722#else/* DEBUG */2723#define check_free_chunk(M,P) do_check_free_chunk(M,P)2724#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)2725#define check_top_chunk(M,P) do_check_top_chunk(M,P)2726#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)2727#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)2728#define check_malloc_state(M) do_check_malloc_state(M)27292730static voiddo_check_any_chunk(mstate m, mchunkptr p);2731static voiddo_check_top_chunk(mstate m, mchunkptr p);2732static voiddo_check_mmapped_chunk(mstate m, mchunkptr p);2733static voiddo_check_inuse_chunk(mstate m, mchunkptr p);2734static voiddo_check_free_chunk(mstate m, mchunkptr p);2735static voiddo_check_malloced_chunk(mstate m,void* mem,size_t s);2736static voiddo_check_tree(mstate m, tchunkptr t);2737static voiddo_check_treebin(mstate m, bindex_t i);2738static voiddo_check_smallbin(mstate m, bindex_t i);2739static voiddo_check_malloc_state(mstate m);2740static intbin_find(mstate m, mchunkptr x);2741static size_ttraverse_and_check(mstate m);2742#endif/* DEBUG */27432744/* ---------------------------- Indexing Bins ---------------------------- */27452746#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)2747#define small_index(s) ((s) >> SMALLBIN_SHIFT)2748#define small_index2size(i) ((i) << SMALLBIN_SHIFT)2749#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))27502751/* addressing by index. See above about smallbin repositioning */2752#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))2753#define treebin_at(M,i) (&((M)->treebins[i]))27542755/* assign tree index for size S to variable I. Use x86 asm if possible */2756#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))2757#define compute_tree_index(S, I)\2758{\2759 unsigned int X = S >> TREEBIN_SHIFT;\2760 if (X == 0)\2761 I = 0;\2762 else if (X > 0xFFFF)\2763 I = NTREEBINS-1;\2764 else {\2765 unsigned int K;\2766 __asm__("bsrl\t%1,%0\n\t" :"=r" (K) :"rm" (X));\2767 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\2768 }\2769}27702771#elif defined (__INTEL_COMPILER)2772#define compute_tree_index(S, I)\2773{\2774 size_t X = S >> TREEBIN_SHIFT;\2775 if (X == 0)\2776 I = 0;\2777 else if (X > 0xFFFF)\2778 I = NTREEBINS-1;\2779 else {\2780 unsigned int K = _bit_scan_reverse (X); \2781 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\2782 }\2783}27842785#elif defined(_MSC_VER) && _MSC_VER>=13002786#define compute_tree_index(S, I)\2787{\2788 size_t X = S >> TREEBIN_SHIFT;\2789 if (X == 0)\2790 I = 0;\2791 else if (X > 0xFFFF)\2792 I = NTREEBINS-1;\2793 else {\2794 unsigned int K;\2795 _BitScanReverse((DWORD *) &K, X);\2796 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\2797 }\2798}27992800#else/* GNUC */2801#define compute_tree_index(S, I)\2802{\2803 size_t X = S >> TREEBIN_SHIFT;\2804 if (X == 0)\2805 I = 0;\2806 else if (X > 0xFFFF)\2807 I = NTREEBINS-1;\2808 else {\2809 unsigned int Y = (unsigned int)X;\2810 unsigned int N = ((Y - 0x100) >> 16) & 8;\2811 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\2812 N += K;\2813 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\2814 K = 14 - N + ((Y <<= K) >> 15);\2815 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\2816 }\2817}2818#endif/* GNUC */28192820/* Bit representing maximum resolved size in a treebin at i */2821#define bit_for_tree_index(i) \2822 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)28232824/* Shift placing maximum resolved bit in a treebin at i as sign bit */2825#define leftshift_for_tree_index(i) \2826 ((i == NTREEBINS-1)? 0 : \2827 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))28282829/* The size of the smallest chunk held in bin with index i */2830#define minsize_for_tree_index(i) \2831 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \2832 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))283328342835/* ------------------------ Operations on bin maps ----------------------- */28362837/* bit corresponding to given index */2838#define idx2bit(i) ((binmap_t)(1) << (i))28392840/* Mark/Clear bits with given index */2841#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))2842#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))2843#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))28442845#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))2846#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))2847#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))28482849/* isolate the least set bit of a bitmap */2850#define least_bit(x) ((x) & -(x))28512852/* mask with all bits to left of least bit of x on */2853#define left_bits(x) ((x<<1) | -(x<<1))28542855/* mask with all bits to left of or equal to least bit of x on */2856#define same_or_left_bits(x) ((x) | -(x))28572858/* index corresponding to given bit. Use x86 asm if possible */28592860#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))2861#define compute_bit2idx(X, I)\2862{\2863 unsigned int J;\2864 __asm__("bsfl\t%1,%0\n\t" :"=r" (J) :"rm" (X));\2865 I = (bindex_t)J;\2866}28672868#elif defined (__INTEL_COMPILER)2869#define compute_bit2idx(X, I)\2870{\2871 unsigned int J;\2872 J = _bit_scan_forward (X); \2873 I = (bindex_t)J;\2874}28752876#elif defined(_MSC_VER) && _MSC_VER>=13002877#define compute_bit2idx(X, I)\2878{\2879 unsigned int J;\2880 _BitScanForward((DWORD *) &J, X);\2881 I = (bindex_t)J;\2882}28832884#elif USE_BUILTIN_FFS2885#define compute_bit2idx(X, I) I = ffs(X)-128862887#else2888#define compute_bit2idx(X, I)\2889{\2890 unsigned int Y = X - 1;\2891 unsigned int K = Y >> (16-4) & 16;\2892 unsigned int N = K; Y >>= K;\2893 N += K = Y >> (8-3) & 8; Y >>= K;\2894 N += K = Y >> (4-2) & 4; Y >>= K;\2895 N += K = Y >> (2-1) & 2; Y >>= K;\2896 N += K = Y >> (1-0) & 1; Y >>= K;\2897 I = (bindex_t)(N + Y);\2898}2899#endif/* GNUC */290029012902/* ----------------------- Runtime Check Support ------------------------- */29032904/*2905 For security, the main invariant is that malloc/free/etc never2906 writes to a static address other than malloc_state, unless static2907 malloc_state itself has been corrupted, which cannot occur via2908 malloc (because of these checks). In essence this means that we2909 believe all pointers, sizes, maps etc held in malloc_state, but2910 check all of those linked or offsetted from other embedded data2911 structures. These checks are interspersed with main code in a way2912 that tends to minimize their run-time cost.29132914 When FOOTERS is defined, in addition to range checking, we also2915 verify footer fields of inuse chunks, which can be used guarantee2916 that the mstate controlling malloc/free is intact. This is a2917 streamlined version of the approach described by William Robertson2918 et al in "Run-time Detection of Heap-based Overflows" LISA'032919 http://www.usenix.org/events/lisa03/tech/robertson.html The footer2920 of an inuse chunk holds the xor of its mstate and a random seed,2921 that is checked upon calls to free() and realloc(). This is2922 (probablistically) unguessable from outside the program, but can be2923 computed by any code successfully malloc'ing any chunk, so does not2924 itself provide protection against code that has already broken2925 security through some other means. Unlike Robertson et al, we2926 always dynamically check addresses of all offset chunks (previous,2927 next, etc). This turns out to be cheaper than relying on hashes.2928*/29292930#if !INSECURE2931/* Check if address a is at least as high as any from MORECORE or MMAP */2932#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)2933/* Check if address of next chunk n is higher than base chunk p */2934#define ok_next(p, n) ((char*)(p) < (char*)(n))2935/* Check if p has its cinuse bit on */2936#define ok_cinuse(p) cinuse(p)2937/* Check if p has its pinuse bit on */2938#define ok_pinuse(p) pinuse(p)29392940#else/* !INSECURE */2941#define ok_address(M, a) (1)2942#define ok_next(b, n) (1)2943#define ok_cinuse(p) (1)2944#define ok_pinuse(p) (1)2945#endif/* !INSECURE */29462947#if (FOOTERS && !INSECURE)2948/* Check if (alleged) mstate m has expected magic field */2949#define ok_magic(M) ((M)->magic == mparams.magic)2950#else/* (FOOTERS && !INSECURE) */2951#define ok_magic(M) (1)2952#endif/* (FOOTERS && !INSECURE) */295329542955/* In gcc, use __builtin_expect to minimize impact of checks */2956#if !INSECURE2957#if defined(__GNUC__) && __GNUC__ >= 32958#define RTCHECK(e) __builtin_expect(e, 1)2959#else/* GNUC */2960#define RTCHECK(e) (e)2961#endif/* GNUC */2962#else/* !INSECURE */2963#define RTCHECK(e) (1)2964#endif/* !INSECURE */29652966/* macros to set up inuse chunks with or without footers */29672968#if !FOOTERS29692970#define mark_inuse_foot(M,p,s)29712972/* Set cinuse bit and pinuse bit of next chunk */2973#define set_inuse(M,p,s)\2974 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\2975 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)29762977/* Set cinuse and pinuse of this chunk and pinuse of next chunk */2978#define set_inuse_and_pinuse(M,p,s)\2979 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\2980 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)29812982/* Set size, cinuse and pinuse bit of this chunk */2983#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\2984 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))29852986#else/* FOOTERS */29872988/* Set foot of inuse chunk to be xor of mstate and seed */2989#define mark_inuse_foot(M,p,s)\2990 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))29912992#define get_mstate_for(p)\2993 ((mstate)(((mchunkptr)((char*)(p) +\2994 (chunksize(p))))->prev_foot ^ mparams.magic))29952996#define set_inuse(M,p,s)\2997 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\2998 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \2999 mark_inuse_foot(M,p,s))30003001#define set_inuse_and_pinuse(M,p,s)\3002 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\3003 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\3004 mark_inuse_foot(M,p,s))30053006#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\3007 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\3008 mark_inuse_foot(M, p, s))30093010#endif/* !FOOTERS */30113012/* ---------------------------- setting mparams -------------------------- */30133014/* Initialize mparams */3015static intinit_mparams(void) {3016#ifdef NEED_GLOBAL_LOCK_INIT3017if(malloc_global_mutex_status <=0)3018init_malloc_global_mutex();3019#endif30203021ACQUIRE_MALLOC_GLOBAL_LOCK();3022if(mparams.magic ==0) {3023size_t magic;3024size_t psize;3025size_t gsize;30263027#ifndef WIN323028 psize = malloc_getpagesize;3029 gsize = ((DEFAULT_GRANULARITY !=0)? DEFAULT_GRANULARITY : psize);3030#else/* WIN32 */3031{3032 SYSTEM_INFO system_info;3033GetSystemInfo(&system_info);3034 psize = system_info.dwPageSize;3035 gsize = ((DEFAULT_GRANULARITY !=0)?3036 DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);3037}3038#endif/* WIN32 */30393040/* Sanity-check configuration:3041 size_t must be unsigned and as wide as pointer type.3042 ints must be at least 4 bytes.3043 alignment must be at least 8.3044 Alignment, min chunk size, and page size must all be powers of 2.3045 */3046if((sizeof(size_t) !=sizeof(char*)) ||3047(MAX_SIZE_T < MIN_CHUNK_SIZE) ||3048(sizeof(int) <4) ||3049(MALLOC_ALIGNMENT < (size_t)8U) ||3050((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) !=0) ||3051((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) !=0) ||3052((gsize & (gsize-SIZE_T_ONE)) !=0) ||3053((psize & (psize-SIZE_T_ONE)) !=0))3054 ABORT;30553056 mparams.granularity = gsize;3057 mparams.page_size = psize;3058 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;3059 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;3060#if MORECORE_CONTIGUOUS3061 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;3062#else/* MORECORE_CONTIGUOUS */3063 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;3064#endif/* MORECORE_CONTIGUOUS */30653066#if !ONLY_MSPACES3067/* Set up lock for main malloc area */3068 gm->mflags = mparams.default_mflags;3069(void)INITIAL_LOCK(&gm->mutex);3070#endif30713072#if (FOOTERS && !INSECURE)3073{3074#if USE_DEV_RANDOM3075int fd;3076unsigned char buf[sizeof(size_t)];3077/* Try to use /dev/urandom, else fall back on using time */3078if((fd =open("/dev/urandom", O_RDONLY)) >=0&&3079read(fd, buf,sizeof(buf)) ==sizeof(buf)) {3080 magic = *((size_t*) buf);3081close(fd);3082}3083else3084#endif/* USE_DEV_RANDOM */3085#ifdef WIN323086 magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);3087#else3088 magic = (size_t)(time(0) ^ (size_t)0x55555555U);3089#endif3090 magic |= (size_t)8U;/* ensure nonzero */3091 magic &= ~(size_t)7U;/* improve chances of fault for bad values */3092}3093#else/* (FOOTERS && !INSECURE) */3094 magic = (size_t)0x58585858U;3095#endif/* (FOOTERS && !INSECURE) */30963097 mparams.magic = magic;3098}30993100RELEASE_MALLOC_GLOBAL_LOCK();3101return1;3102}31033104/* support for mallopt */3105static intchange_mparam(int param_number,int value) {3106size_t val = (value == -1)? MAX_SIZE_T : (size_t)value;3107ensure_initialization();3108switch(param_number) {3109case M_TRIM_THRESHOLD:3110 mparams.trim_threshold = val;3111return1;3112case M_GRANULARITY:3113if(val >= mparams.page_size && ((val & (val-1)) ==0)) {3114 mparams.granularity = val;3115return1;3116}3117else3118return0;3119case M_MMAP_THRESHOLD:3120 mparams.mmap_threshold = val;3121return1;3122default:3123return0;3124}3125}31263127#if DEBUG3128/* ------------------------- Debugging Support --------------------------- */31293130/* Check properties of any chunk, whether free, inuse, mmapped etc */3131static voiddo_check_any_chunk(mstate m, mchunkptr p) {3132assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));3133assert(ok_address(m, p));3134}31353136/* Check properties of top chunk */3137static voiddo_check_top_chunk(mstate m, mchunkptr p) {3138 msegmentptr sp =segment_holding(m, (char*)p);3139size_t sz = p->head & ~INUSE_BITS;/* third-lowest bit can be set! */3140assert(sp !=0);3141assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));3142assert(ok_address(m, p));3143assert(sz == m->topsize);3144assert(sz >0);3145assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);3146assert(pinuse(p));3147assert(!pinuse(chunk_plus_offset(p, sz)));3148}31493150/* Check properties of (inuse) mmapped chunks */3151static voiddo_check_mmapped_chunk(mstate m, mchunkptr p) {3152size_t sz =chunksize(p);3153size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);3154assert(is_mmapped(p));3155assert(use_mmap(m));3156assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));3157assert(ok_address(m, p));3158assert(!is_small(sz));3159assert((len & (mparams.page_size-SIZE_T_ONE)) ==0);3160assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);3161assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head ==0);3162}31633164/* Check properties of inuse chunks */3165static voiddo_check_inuse_chunk(mstate m, mchunkptr p) {3166do_check_any_chunk(m, p);3167assert(cinuse(p));3168assert(next_pinuse(p));3169/* If not pinuse and not mmapped, previous chunk has OK offset */3170assert(is_mmapped(p) ||pinuse(p) ||next_chunk(prev_chunk(p)) == p);3171if(is_mmapped(p))3172do_check_mmapped_chunk(m, p);3173}31743175/* Check properties of free chunks */3176static voiddo_check_free_chunk(mstate m, mchunkptr p) {3177size_t sz =chunksize(p);3178 mchunkptr next =chunk_plus_offset(p, sz);3179do_check_any_chunk(m, p);3180assert(!cinuse(p));3181assert(!next_pinuse(p));3182assert(!is_mmapped(p));3183if(p != m->dv && p != m->top) {3184if(sz >= MIN_CHUNK_SIZE) {3185assert((sz & CHUNK_ALIGN_MASK) ==0);3186assert(is_aligned(chunk2mem(p)));3187assert(next->prev_foot == sz);3188assert(pinuse(p));3189assert(next == m->top ||cinuse(next));3190assert(p->fd->bk == p);3191assert(p->bk->fd == p);3192}3193else/* markers are always of size SIZE_T_SIZE */3194assert(sz == SIZE_T_SIZE);3195}3196}31973198/* Check properties of malloced chunks at the point they are malloced */3199static voiddo_check_malloced_chunk(mstate m,void* mem,size_t s) {3200if(mem !=0) {3201 mchunkptr p =mem2chunk(mem);3202size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);3203do_check_inuse_chunk(m, p);3204assert((sz & CHUNK_ALIGN_MASK) ==0);3205assert(sz >= MIN_CHUNK_SIZE);3206assert(sz >= s);3207/* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */3208assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));3209}3210}32113212/* Check a tree and its subtrees. */3213static voiddo_check_tree(mstate m, tchunkptr t) {3214 tchunkptr head =0;3215 tchunkptr u = t;3216 bindex_t tindex = t->index;3217size_t tsize =chunksize(t);3218 bindex_t idx;3219compute_tree_index(tsize, idx);3220assert(tindex == idx);3221assert(tsize >= MIN_LARGE_SIZE);3222assert(tsize >=minsize_for_tree_index(idx));3223assert((idx == NTREEBINS-1) || (tsize <minsize_for_tree_index((idx+1))));32243225do{/* traverse through chain of same-sized nodes */3226do_check_any_chunk(m, ((mchunkptr)u));3227assert(u->index == tindex);3228assert(chunksize(u) == tsize);3229assert(!cinuse(u));3230assert(!next_pinuse(u));3231assert(u->fd->bk == u);3232assert(u->bk->fd == u);3233if(u->parent ==0) {3234assert(u->child[0] ==0);3235assert(u->child[1] ==0);3236}3237else{3238assert(head ==0);/* only one node on chain has parent */3239 head = u;3240assert(u->parent != u);3241assert(u->parent->child[0] == u ||3242 u->parent->child[1] == u ||3243*((tbinptr*)(u->parent)) == u);3244if(u->child[0] !=0) {3245assert(u->child[0]->parent == u);3246assert(u->child[0] != u);3247do_check_tree(m, u->child[0]);3248}3249if(u->child[1] !=0) {3250assert(u->child[1]->parent == u);3251assert(u->child[1] != u);3252do_check_tree(m, u->child[1]);3253}3254if(u->child[0] !=0&& u->child[1] !=0) {3255assert(chunksize(u->child[0]) <chunksize(u->child[1]));3256}3257}3258 u = u->fd;3259}while(u != t);3260assert(head !=0);3261}32623263/* Check all the chunks in a treebin. */3264static voiddo_check_treebin(mstate m, bindex_t i) {3265 tbinptr* tb =treebin_at(m, i);3266 tchunkptr t = *tb;3267int empty = (m->treemap & (1U<< i)) ==0;3268if(t ==0)3269assert(empty);3270if(!empty)3271do_check_tree(m, t);3272}32733274/* Check all the chunks in a smallbin. */3275static voiddo_check_smallbin(mstate m, bindex_t i) {3276 sbinptr b =smallbin_at(m, i);3277 mchunkptr p = b->bk;3278unsigned int empty = (m->smallmap & (1U<< i)) ==0;3279if(p == b)3280assert(empty);3281if(!empty) {3282for(; p != b; p = p->bk) {3283size_t size =chunksize(p);3284 mchunkptr q;3285/* each chunk claims to be free */3286do_check_free_chunk(m, p);3287/* chunk belongs in bin */3288assert(small_index(size) == i);3289assert(p->bk == b ||chunksize(p->bk) ==chunksize(p));3290/* chunk is followed by an inuse chunk */3291 q =next_chunk(p);3292if(q->head != FENCEPOST_HEAD)3293do_check_inuse_chunk(m, q);3294}3295}3296}32973298/* Find x in a bin. Used in other check functions. */3299static intbin_find(mstate m, mchunkptr x) {3300size_t size =chunksize(x);3301if(is_small(size)) {3302 bindex_t sidx =small_index(size);3303 sbinptr b =smallbin_at(m, sidx);3304if(smallmap_is_marked(m, sidx)) {3305 mchunkptr p = b;3306do{3307if(p == x)3308return1;3309}while((p = p->fd) != b);3310}3311}3312else{3313 bindex_t tidx;3314compute_tree_index(size, tidx);3315if(treemap_is_marked(m, tidx)) {3316 tchunkptr t = *treebin_at(m, tidx);3317size_t sizebits = size <<leftshift_for_tree_index(tidx);3318while(t !=0&&chunksize(t) != size) {3319 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) &1];3320 sizebits <<=1;3321}3322if(t !=0) {3323 tchunkptr u = t;3324do{3325if(u == (tchunkptr)x)3326return1;3327}while((u = u->fd) != t);3328}3329}3330}3331return0;3332}33333334/* Traverse each chunk and check it; return total */3335static size_ttraverse_and_check(mstate m) {3336size_t sum =0;3337if(is_initialized(m)) {3338 msegmentptr s = &m->seg;3339 sum += m->topsize + TOP_FOOT_SIZE;3340while(s !=0) {3341 mchunkptr q =align_as_chunk(s->base);3342 mchunkptr lastq =0;3343assert(pinuse(q));3344while(segment_holds(s, q) &&3345 q != m->top && q->head != FENCEPOST_HEAD) {3346 sum +=chunksize(q);3347if(cinuse(q)) {3348assert(!bin_find(m, q));3349do_check_inuse_chunk(m, q);3350}3351else{3352assert(q == m->dv ||bin_find(m, q));3353assert(lastq ==0||cinuse(lastq));/* Not 2 consecutive free */3354do_check_free_chunk(m, q);3355}3356 lastq = q;3357 q =next_chunk(q);3358}3359 s = s->next;3360}3361}3362return sum;3363}33643365/* Check all properties of malloc_state. */3366static voiddo_check_malloc_state(mstate m) {3367 bindex_t i;3368size_t total;3369/* check bins */3370for(i =0; i < NSMALLBINS; ++i)3371do_check_smallbin(m, i);3372for(i =0; i < NTREEBINS; ++i)3373do_check_treebin(m, i);33743375if(m->dvsize !=0) {/* check dv chunk */3376do_check_any_chunk(m, m->dv);3377assert(m->dvsize ==chunksize(m->dv));3378assert(m->dvsize >= MIN_CHUNK_SIZE);3379assert(bin_find(m, m->dv) ==0);3380}33813382if(m->top !=0) {/* check top chunk */3383do_check_top_chunk(m, m->top);3384/*assert(m->topsize == chunksize(m->top)); redundant */3385assert(m->topsize >0);3386assert(bin_find(m, m->top) ==0);3387}33883389 total =traverse_and_check(m);3390assert(total <= m->footprint);3391assert(m->footprint <= m->max_footprint);3392}3393#endif/* DEBUG */33943395/* ----------------------------- statistics ------------------------------ */33963397#if !NO_MALLINFO3398static struct mallinfo internal_mallinfo(mstate m) {3399struct mallinfo nm = {0,0,0,0,0,0,0,0,0,0};3400ensure_initialization();3401if(!PREACTION(m)) {3402check_malloc_state(m);3403if(is_initialized(m)) {3404size_t nfree = SIZE_T_ONE;/* top always free */3405size_t mfree = m->topsize + TOP_FOOT_SIZE;3406size_t sum = mfree;3407 msegmentptr s = &m->seg;3408while(s !=0) {3409 mchunkptr q =align_as_chunk(s->base);3410while(segment_holds(s, q) &&3411 q != m->top && q->head != FENCEPOST_HEAD) {3412size_t sz =chunksize(q);3413 sum += sz;3414if(!cinuse(q)) {3415 mfree += sz;3416++nfree;3417}3418 q =next_chunk(q);3419}3420 s = s->next;3421}34223423 nm.arena = sum;3424 nm.ordblks = nfree;3425 nm.hblkhd = m->footprint - sum;3426 nm.usmblks = m->max_footprint;3427 nm.uordblks = m->footprint - mfree;3428 nm.fordblks = mfree;3429 nm.keepcost = m->topsize;3430}34313432POSTACTION(m);3433}3434return nm;3435}3436#endif/* !NO_MALLINFO */34373438static voidinternal_malloc_stats(mstate m) {3439ensure_initialization();3440if(!PREACTION(m)) {3441size_t maxfp =0;3442size_t fp =0;3443size_t used =0;3444check_malloc_state(m);3445if(is_initialized(m)) {3446 msegmentptr s = &m->seg;3447 maxfp = m->max_footprint;3448 fp = m->footprint;3449 used = fp - (m->topsize + TOP_FOOT_SIZE);34503451while(s !=0) {3452 mchunkptr q =align_as_chunk(s->base);3453while(segment_holds(s, q) &&3454 q != m->top && q->head != FENCEPOST_HEAD) {3455if(!cinuse(q))3456 used -=chunksize(q);3457 q =next_chunk(q);3458}3459 s = s->next;3460}3461}34623463fprintf(stderr,"max system bytes =%10lu\n", (unsigned long)(maxfp));3464fprintf(stderr,"system bytes =%10lu\n", (unsigned long)(fp));3465fprintf(stderr,"in use bytes =%10lu\n", (unsigned long)(used));34663467POSTACTION(m);3468}3469}34703471/* ----------------------- Operations on smallbins ----------------------- */34723473/*3474 Various forms of linking and unlinking are defined as macros. Even3475 the ones for trees, which are very long but have very short typical3476 paths. This is ugly but reduces reliance on inlining support of3477 compilers.3478*/34793480/* Link a free chunk into a smallbin */3481#define insert_small_chunk(M, P, S) {\3482 bindex_t I = small_index(S);\3483 mchunkptr B = smallbin_at(M, I);\3484 mchunkptr F = B;\3485 assert(S >= MIN_CHUNK_SIZE);\3486 if (!smallmap_is_marked(M, I))\3487 mark_smallmap(M, I);\3488 else if (RTCHECK(ok_address(M, B->fd)))\3489 F = B->fd;\3490 else {\3491 CORRUPTION_ERROR_ACTION(M);\3492 }\3493 B->fd = P;\3494 F->bk = P;\3495 P->fd = F;\3496 P->bk = B;\3497}34983499/* Unlink a chunk from a smallbin */3500#define unlink_small_chunk(M, P, S) {\3501 mchunkptr F = P->fd;\3502 mchunkptr B = P->bk;\3503 bindex_t I = small_index(S);\3504 assert(P != B);\3505 assert(P != F);\3506 assert(chunksize(P) == small_index2size(I));\3507 if (F == B)\3508 clear_smallmap(M, I);\3509 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\3510 (B == smallbin_at(M,I) || ok_address(M, B)))) {\3511 F->bk = B;\3512 B->fd = F;\3513 }\3514 else {\3515 CORRUPTION_ERROR_ACTION(M);\3516 }\3517}35183519/* Unlink the first chunk from a smallbin */3520#define unlink_first_small_chunk(M, B, P, I) {\3521 mchunkptr F = P->fd;\3522 assert(P != B);\3523 assert(P != F);\3524 assert(chunksize(P) == small_index2size(I));\3525 if (B == F)\3526 clear_smallmap(M, I);\3527 else if (RTCHECK(ok_address(M, F))) {\3528 B->fd = F;\3529 F->bk = B;\3530 }\3531 else {\3532 CORRUPTION_ERROR_ACTION(M);\3533 }\3534}3535353635373538/* Replace dv node, binning the old one */3539/* Used only when dvsize known to be small */3540#define replace_dv(M, P, S) {\3541 size_t DVS = M->dvsize;\3542 if (DVS != 0) {\3543 mchunkptr DV = M->dv;\3544 assert(is_small(DVS));\3545 insert_small_chunk(M, DV, DVS);\3546 }\3547 M->dvsize = S;\3548 M->dv = P;\3549}35503551/* ------------------------- Operations on trees ------------------------- */35523553/* Insert chunk into tree */3554#define insert_large_chunk(M, X, S) {\3555 tbinptr* H;\3556 bindex_t I;\3557 compute_tree_index(S, I);\3558 H = treebin_at(M, I);\3559 X->index = I;\3560 X->child[0] = X->child[1] = 0;\3561 if (!treemap_is_marked(M, I)) {\3562 mark_treemap(M, I);\3563 *H = X;\3564 X->parent = (tchunkptr)H;\3565 X->fd = X->bk = X;\3566 }\3567 else {\3568 tchunkptr T = *H;\3569 size_t K = S << leftshift_for_tree_index(I);\3570 for (;;) {\3571 if (chunksize(T) != S) {\3572 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\3573 K <<= 1;\3574 if (*C != 0)\3575 T = *C;\3576 else if (RTCHECK(ok_address(M, C))) {\3577 *C = X;\3578 X->parent = T;\3579 X->fd = X->bk = X;\3580 break;\3581 }\3582 else {\3583 CORRUPTION_ERROR_ACTION(M);\3584 break;\3585 }\3586 }\3587 else {\3588 tchunkptr F = T->fd;\3589 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\3590 T->fd = F->bk = X;\3591 X->fd = F;\3592 X->bk = T;\3593 X->parent = 0;\3594 break;\3595 }\3596 else {\3597 CORRUPTION_ERROR_ACTION(M);\3598 break;\3599 }\3600 }\3601 }\3602 }\3603}36043605/*3606 Unlink steps:36073608 1. If x is a chained node, unlink it from its same-sized fd/bk links3609 and choose its bk node as its replacement.3610 2. If x was the last node of its size, but not a leaf node, it must3611 be replaced with a leaf node (not merely one with an open left or3612 right), to make sure that lefts and rights of descendants3613 correspond properly to bit masks. We use the rightmost descendant3614 of x. We could use any other leaf, but this is easy to locate and3615 tends to counteract removal of leftmosts elsewhere, and so keeps3616 paths shorter than minimally guaranteed. This doesn't loop much3617 because on average a node in a tree is near the bottom.3618 3. If x is the base of a chain (i.e., has parent links) relink3619 x's parent and children to x's replacement (or null if none).3620*/36213622#define unlink_large_chunk(M, X) {\3623 tchunkptr XP = X->parent;\3624 tchunkptr R;\3625 if (X->bk != X) {\3626 tchunkptr F = X->fd;\3627 R = X->bk;\3628 if (RTCHECK(ok_address(M, F))) {\3629 F->bk = R;\3630 R->fd = F;\3631 }\3632 else {\3633 CORRUPTION_ERROR_ACTION(M);\3634 }\3635 }\3636 else {\3637 tchunkptr* RP;\3638 if (((R = *(RP = &(X->child[1]))) != 0) ||\3639 ((R = *(RP = &(X->child[0]))) != 0)) {\3640 tchunkptr* CP;\3641 while ((*(CP = &(R->child[1])) != 0) ||\3642 (*(CP = &(R->child[0])) != 0)) {\3643 R = *(RP = CP);\3644 }\3645 if (RTCHECK(ok_address(M, RP)))\3646 *RP = 0;\3647 else {\3648 CORRUPTION_ERROR_ACTION(M);\3649 }\3650 }\3651 }\3652 if (XP != 0) {\3653 tbinptr* H = treebin_at(M, X->index);\3654 if (X == *H) {\3655 if ((*H = R) == 0) \3656 clear_treemap(M, X->index);\3657 }\3658 else if (RTCHECK(ok_address(M, XP))) {\3659 if (XP->child[0] == X) \3660 XP->child[0] = R;\3661 else \3662 XP->child[1] = R;\3663 }\3664 else\3665 CORRUPTION_ERROR_ACTION(M);\3666 if (R != 0) {\3667 if (RTCHECK(ok_address(M, R))) {\3668 tchunkptr C0, C1;\3669 R->parent = XP;\3670 if ((C0 = X->child[0]) != 0) {\3671 if (RTCHECK(ok_address(M, C0))) {\3672 R->child[0] = C0;\3673 C0->parent = R;\3674 }\3675 else\3676 CORRUPTION_ERROR_ACTION(M);\3677 }\3678 if ((C1 = X->child[1]) != 0) {\3679 if (RTCHECK(ok_address(M, C1))) {\3680 R->child[1] = C1;\3681 C1->parent = R;\3682 }\3683 else\3684 CORRUPTION_ERROR_ACTION(M);\3685 }\3686 }\3687 else\3688 CORRUPTION_ERROR_ACTION(M);\3689 }\3690 }\3691}36923693/* Relays to large vs small bin operations */36943695#define insert_chunk(M, P, S)\3696 if (is_small(S)) insert_small_chunk(M, P, S)\3697 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }36983699#define unlink_chunk(M, P, S)\3700 if (is_small(S)) unlink_small_chunk(M, P, S)\3701 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }370237033704/* Relays to internal calls to malloc/free from realloc, memalign etc */37053706#if ONLY_MSPACES3707#define internal_malloc(m, b) mspace_malloc(m, b)3708#define internal_free(m, mem) mspace_free(m,mem);3709#else/* ONLY_MSPACES */3710#if MSPACES3711#define internal_malloc(m, b)\3712 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)3713#define internal_free(m, mem)\3714 if (m == gm) dlfree(mem); else mspace_free(m,mem);3715#else/* MSPACES */3716#define internal_malloc(m, b) dlmalloc(b)3717#define internal_free(m, mem) dlfree(mem)3718#endif/* MSPACES */3719#endif/* ONLY_MSPACES */37203721/* ----------------------- Direct-mmapping chunks ----------------------- */37223723/*3724 Directly mmapped chunks are set up with an offset to the start of3725 the mmapped region stored in the prev_foot field of the chunk. This3726 allows reconstruction of the required argument to MUNMAP when freed,3727 and also allows adjustment of the returned chunk to meet alignment3728 requirements (especially in memalign). There is also enough space3729 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain3730 the PINUSE bit so frees can be checked.3731*/37323733/* Malloc using mmap */3734static void*mmap_alloc(mstate m,size_t nb) {3735size_t mmsize =mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);3736if(mmsize > nb) {/* Check for wrap around 0 */3737char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));3738if(mm != CMFAIL) {3739size_t offset =align_offset(chunk2mem(mm));3740size_t psize = mmsize - offset - MMAP_FOOT_PAD;3741 mchunkptr p = (mchunkptr)(mm + offset);3742 p->prev_foot = offset | IS_MMAPPED_BIT;3743(p)->head = (psize|CINUSE_BIT);3744mark_inuse_foot(m, p, psize);3745chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;3746chunk_plus_offset(p, psize+SIZE_T_SIZE)->head =0;37473748if(mm < m->least_addr)3749 m->least_addr = mm;3750if((m->footprint += mmsize) > m->max_footprint)3751 m->max_footprint = m->footprint;3752assert(is_aligned(chunk2mem(p)));3753check_mmapped_chunk(m, p);3754returnchunk2mem(p);3755}3756}3757return0;3758}37593760/* Realloc using mmap */3761static mchunkptr mmap_resize(mstate m, mchunkptr oldp,size_t nb) {3762size_t oldsize =chunksize(oldp);3763if(is_small(nb))/* Can't shrink mmap regions below small size */3764return0;3765/* Keep old chunk if big enough but not too big */3766if(oldsize >= nb + SIZE_T_SIZE &&3767(oldsize - nb) <= (mparams.granularity <<1))3768return oldp;3769else{3770size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;3771size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;3772size_t newmmsize =mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);3773char* cp = (char*)CALL_MREMAP((char*)oldp - offset,3774 oldmmsize, newmmsize,1);3775if(cp != CMFAIL) {3776 mchunkptr newp = (mchunkptr)(cp + offset);3777size_t psize = newmmsize - offset - MMAP_FOOT_PAD;3778 newp->head = (psize|CINUSE_BIT);3779mark_inuse_foot(m, newp, psize);3780chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;3781chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head =0;37823783if(cp < m->least_addr)3784 m->least_addr = cp;3785if((m->footprint += newmmsize - oldmmsize) > m->max_footprint)3786 m->max_footprint = m->footprint;3787check_mmapped_chunk(m, newp);3788return newp;3789}3790}3791return0;3792}37933794/* -------------------------- mspace management -------------------------- */37953796/* Initialize top chunk and its size */3797static voidinit_top(mstate m, mchunkptr p,size_t psize) {3798/* Ensure alignment */3799size_t offset =align_offset(chunk2mem(p));3800 p = (mchunkptr)((char*)p + offset);3801 psize -= offset;38023803 m->top = p;3804 m->topsize = psize;3805 p->head = psize | PINUSE_BIT;3806/* set size of fake trailing chunk holding overhead space only once */3807chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;3808 m->trim_check = mparams.trim_threshold;/* reset on each update */3809}38103811/* Initialize bins for a new mstate that is otherwise zeroed out */3812static voidinit_bins(mstate m) {3813/* Establish circular links for smallbins */3814 bindex_t i;3815for(i =0; i < NSMALLBINS; ++i) {3816 sbinptr bin =smallbin_at(m,i);3817 bin->fd = bin->bk = bin;3818}3819}38203821#if PROCEED_ON_ERROR38223823/* default corruption action */3824static voidreset_on_error(mstate m) {3825int i;3826++malloc_corruption_error_count;3827/* Reinitialize fields to forget about all memory */3828 m->smallbins = m->treebins =0;3829 m->dvsize = m->topsize =0;3830 m->seg.base =0;3831 m->seg.size =0;3832 m->seg.next =0;3833 m->top = m->dv =0;3834for(i =0; i < NTREEBINS; ++i)3835*treebin_at(m, i) =0;3836init_bins(m);3837}3838#endif/* PROCEED_ON_ERROR */38393840/* Allocate chunk and prepend remainder with chunk in successor base. */3841static void*prepend_alloc(mstate m,char* newbase,char* oldbase,3842size_t nb) {3843 mchunkptr p =align_as_chunk(newbase);3844 mchunkptr oldfirst =align_as_chunk(oldbase);3845size_t psize = (char*)oldfirst - (char*)p;3846 mchunkptr q =chunk_plus_offset(p, nb);3847size_t qsize = psize - nb;3848set_size_and_pinuse_of_inuse_chunk(m, p, nb);38493850assert((char*)oldfirst > (char*)q);3851assert(pinuse(oldfirst));3852assert(qsize >= MIN_CHUNK_SIZE);38533854/* consolidate remainder with first chunk of old base */3855if(oldfirst == m->top) {3856size_t tsize = m->topsize += qsize;3857 m->top = q;3858 q->head = tsize | PINUSE_BIT;3859check_top_chunk(m, q);3860}3861else if(oldfirst == m->dv) {3862size_t dsize = m->dvsize += qsize;3863 m->dv = q;3864set_size_and_pinuse_of_free_chunk(q, dsize);3865}3866else{3867if(!cinuse(oldfirst)) {3868size_t nsize =chunksize(oldfirst);3869unlink_chunk(m, oldfirst, nsize);3870 oldfirst =chunk_plus_offset(oldfirst, nsize);3871 qsize += nsize;3872}3873set_free_with_pinuse(q, qsize, oldfirst);3874insert_chunk(m, q, qsize);3875check_free_chunk(m, q);3876}38773878check_malloced_chunk(m,chunk2mem(p), nb);3879returnchunk2mem(p);3880}38813882/* Add a segment to hold a new noncontiguous region */3883static voidadd_segment(mstate m,char* tbase,size_t tsize, flag_t mmapped) {3884/* Determine locations and sizes of segment, fenceposts, old top */3885char* old_top = (char*)m->top;3886 msegmentptr oldsp =segment_holding(m, old_top);3887char* old_end = oldsp->base + oldsp->size;3888size_t ssize =pad_request(sizeof(struct malloc_segment));3889char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);3890size_t offset =align_offset(chunk2mem(rawsp));3891char* asp = rawsp + offset;3892char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;3893 mchunkptr sp = (mchunkptr)csp;3894 msegmentptr ss = (msegmentptr)(chunk2mem(sp));3895 mchunkptr tnext =chunk_plus_offset(sp, ssize);3896 mchunkptr p = tnext;3897int nfences =0;38983899/* reset top to new space */3900init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);39013902/* Set up segment record */3903assert(is_aligned(ss));3904set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);3905*ss = m->seg;/* Push current record */3906 m->seg.base = tbase;3907 m->seg.size = tsize;3908 m->seg.sflags = mmapped;3909 m->seg.next = ss;39103911/* Insert trailing fenceposts */3912for(;;) {3913 mchunkptr nextp =chunk_plus_offset(p, SIZE_T_SIZE);3914 p->head = FENCEPOST_HEAD;3915++nfences;3916if((char*)(&(nextp->head)) < old_end)3917 p = nextp;3918else3919break;3920}3921assert(nfences >=2);39223923/* Insert the rest of old top into a bin as an ordinary free chunk */3924if(csp != old_top) {3925 mchunkptr q = (mchunkptr)old_top;3926size_t psize = csp - old_top;3927 mchunkptr tn =chunk_plus_offset(q, psize);3928set_free_with_pinuse(q, psize, tn);3929insert_chunk(m, q, psize);3930}39313932check_top_chunk(m, m->top);3933}39343935/* -------------------------- System allocation -------------------------- */39363937/* Get memory from system using MORECORE or MMAP */3938static void*sys_alloc(mstate m,size_t nb) {3939char* tbase = CMFAIL;3940size_t tsize =0;3941 flag_t mmap_flag =0;39423943ensure_initialization();39443945/* Directly map large chunks */3946if(use_mmap(m) && nb >= mparams.mmap_threshold) {3947void* mem =mmap_alloc(m, nb);3948if(mem !=0)3949return mem;3950}39513952/*3953 Try getting memory in any of three ways (in most-preferred to3954 least-preferred order):3955 1. A call to MORECORE that can normally contiguously extend memory.3956 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or3957 main space is mmapped or a previous contiguous call failed)3958 2. A call to MMAP new space (disabled if not HAVE_MMAP).3959 Note that under the default settings, if MORECORE is unable to3960 fulfill a request, and HAVE_MMAP is true, then mmap is3961 used as a noncontiguous system allocator. This is a useful backup3962 strategy for systems with holes in address spaces -- in this case3963 sbrk cannot contiguously expand the heap, but mmap may be able to3964 find space.3965 3. A call to MORECORE that cannot usually contiguously extend memory.3966 (disabled if not HAVE_MORECORE)39673968 In all cases, we need to request enough bytes from system to ensure3969 we can malloc nb bytes upon success, so pad with enough space for3970 top_foot, plus alignment-pad to make sure we don't lose bytes if3971 not on boundary, and round this up to a granularity unit.3972 */39733974if(MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {3975char* br = CMFAIL;3976 msegmentptr ss = (m->top ==0)?0:segment_holding(m, (char*)m->top);3977size_t asize =0;3978ACQUIRE_MALLOC_GLOBAL_LOCK();39793980if(ss ==0) {/* First time through or recovery */3981char* base = (char*)CALL_MORECORE(0);3982if(base != CMFAIL) {3983 asize =granularity_align(nb + SYS_ALLOC_PADDING);3984/* Adjust to end on a page boundary */3985if(!is_page_aligned(base))3986 asize += (page_align((size_t)base) - (size_t)base);3987/* Can't call MORECORE if size is negative when treated as signed */3988if(asize < HALF_MAX_SIZE_T &&3989(br = (char*)(CALL_MORECORE(asize))) == base) {3990 tbase = base;3991 tsize = asize;3992}3993}3994}3995else{3996/* Subtract out existing available top space from MORECORE request. */3997 asize =granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);3998/* Use mem here only if it did continuously extend old space */3999if(asize < HALF_MAX_SIZE_T &&4000(br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {4001 tbase = br;4002 tsize = asize;4003}4004}40054006if(tbase == CMFAIL) {/* Cope with partial failure */4007if(br != CMFAIL) {/* Try to use/extend the space we did get */4008if(asize < HALF_MAX_SIZE_T &&4009 asize < nb + SYS_ALLOC_PADDING) {4010size_t esize =granularity_align(nb + SYS_ALLOC_PADDING - asize);4011if(esize < HALF_MAX_SIZE_T) {4012char* end = (char*)CALL_MORECORE(esize);4013if(end != CMFAIL)4014 asize += esize;4015else{/* Can't use; try to release */4016(void)CALL_MORECORE(-asize);4017 br = CMFAIL;4018}4019}4020}4021}4022if(br != CMFAIL) {/* Use the space we did get */4023 tbase = br;4024 tsize = asize;4025}4026else4027disable_contiguous(m);/* Don't try contiguous path in the future */4028}40294030RELEASE_MALLOC_GLOBAL_LOCK();4031}40324033if(HAVE_MMAP && tbase == CMFAIL) {/* Try MMAP */4034size_t rsize =granularity_align(nb + SYS_ALLOC_PADDING);4035if(rsize > nb) {/* Fail if wraps around zero */4036char* mp = (char*)(CALL_MMAP(rsize));4037if(mp != CMFAIL) {4038 tbase = mp;4039 tsize = rsize;4040 mmap_flag = IS_MMAPPED_BIT;4041}4042}4043}40444045if(HAVE_MORECORE && tbase == CMFAIL) {/* Try noncontiguous MORECORE */4046size_t asize =granularity_align(nb + SYS_ALLOC_PADDING);4047if(asize < HALF_MAX_SIZE_T) {4048char* br = CMFAIL;4049char* end = CMFAIL;4050ACQUIRE_MALLOC_GLOBAL_LOCK();4051 br = (char*)(CALL_MORECORE(asize));4052 end = (char*)(CALL_MORECORE(0));4053RELEASE_MALLOC_GLOBAL_LOCK();4054if(br != CMFAIL && end != CMFAIL && br < end) {4055size_t ssize = end - br;4056if(ssize > nb + TOP_FOOT_SIZE) {4057 tbase = br;4058 tsize = ssize;4059}4060}4061}4062}40634064if(tbase != CMFAIL) {40654066if((m->footprint += tsize) > m->max_footprint)4067 m->max_footprint = m->footprint;40684069if(!is_initialized(m)) {/* first-time initialization */4070 m->seg.base = m->least_addr = tbase;4071 m->seg.size = tsize;4072 m->seg.sflags = mmap_flag;4073 m->magic = mparams.magic;4074 m->release_checks = MAX_RELEASE_CHECK_RATE;4075init_bins(m);4076#if !ONLY_MSPACES4077if(is_global(m))4078init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);4079else4080#endif4081{4082/* Offset top by embedded malloc_state */4083 mchunkptr mn =next_chunk(mem2chunk(m));4084init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);4085}4086}40874088else{4089/* Try to merge with an existing segment */4090 msegmentptr sp = &m->seg;4091/* Only consider most recent segment if traversal suppressed */4092while(sp !=0&& tbase != sp->base + sp->size)4093 sp = (NO_SEGMENT_TRAVERSAL) ?0: sp->next;4094if(sp !=0&&4095!is_extern_segment(sp) &&4096(sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&4097segment_holds(sp, m->top)) {/* append */4098 sp->size += tsize;4099init_top(m, m->top, m->topsize + tsize);4100}4101else{4102if(tbase < m->least_addr)4103 m->least_addr = tbase;4104 sp = &m->seg;4105while(sp !=0&& sp->base != tbase + tsize)4106 sp = (NO_SEGMENT_TRAVERSAL) ?0: sp->next;4107if(sp !=0&&4108!is_extern_segment(sp) &&4109(sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {4110char* oldbase = sp->base;4111 sp->base = tbase;4112 sp->size += tsize;4113returnprepend_alloc(m, tbase, oldbase, nb);4114}4115else4116add_segment(m, tbase, tsize, mmap_flag);4117}4118}41194120if(nb < m->topsize) {/* Allocate from new or extended top space */4121size_t rsize = m->topsize -= nb;4122 mchunkptr p = m->top;4123 mchunkptr r = m->top =chunk_plus_offset(p, nb);4124 r->head = rsize | PINUSE_BIT;4125set_size_and_pinuse_of_inuse_chunk(m, p, nb);4126check_top_chunk(m, m->top);4127check_malloced_chunk(m,chunk2mem(p), nb);4128returnchunk2mem(p);4129}4130}41314132 MALLOC_FAILURE_ACTION;4133return0;4134}41354136/* ----------------------- system deallocation -------------------------- */41374138/* Unmap and unlink any mmapped segments that don't contain used chunks */4139static size_trelease_unused_segments(mstate m) {4140size_t released =0;4141int nsegs =0;4142 msegmentptr pred = &m->seg;4143 msegmentptr sp = pred->next;4144while(sp !=0) {4145char* base = sp->base;4146size_t size = sp->size;4147 msegmentptr next = sp->next;4148++nsegs;4149if(is_mmapped_segment(sp) && !is_extern_segment(sp)) {4150 mchunkptr p =align_as_chunk(base);4151size_t psize =chunksize(p);4152/* Can unmap if first chunk holds entire segment and not pinned */4153if(!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {4154 tchunkptr tp = (tchunkptr)p;4155assert(segment_holds(sp, (char*)sp));4156if(p == m->dv) {4157 m->dv =0;4158 m->dvsize =0;4159}4160else{4161unlink_large_chunk(m, tp);4162}4163if(CALL_MUNMAP(base, size) ==0) {4164 released += size;4165 m->footprint -= size;4166/* unlink obsoleted record */4167 sp = pred;4168 sp->next = next;4169}4170else{/* back out if cannot unmap */4171insert_large_chunk(m, tp, psize);4172}4173}4174}4175if(NO_SEGMENT_TRAVERSAL)/* scan only first segment */4176break;4177 pred = sp;4178 sp = next;4179}4180/* Reset check counter */4181 m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?4182 nsegs : MAX_RELEASE_CHECK_RATE);4183return released;4184}41854186static intsys_trim(mstate m,size_t pad) {4187size_t released =0;4188ensure_initialization();4189if(pad < MAX_REQUEST &&is_initialized(m)) {4190 pad += TOP_FOOT_SIZE;/* ensure enough room for segment overhead */41914192if(m->topsize > pad) {4193/* Shrink top space in granularity-size units, keeping at least one */4194size_t unit = mparams.granularity;4195size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -4196 SIZE_T_ONE) * unit;4197 msegmentptr sp =segment_holding(m, (char*)m->top);41984199if(!is_extern_segment(sp)) {4200if(is_mmapped_segment(sp)) {4201if(HAVE_MMAP &&4202 sp->size >= extra &&4203!has_segment_link(m, sp)) {/* can't shrink if pinned */4204size_t newsize = sp->size - extra;4205/* Prefer mremap, fall back to munmap */4206if((CALL_MREMAP(sp->base, sp->size, newsize,0) != MFAIL) ||4207(CALL_MUNMAP(sp->base + newsize, extra) ==0)) {4208 released = extra;4209}4210}4211}4212else if(HAVE_MORECORE) {4213if(extra >= HALF_MAX_SIZE_T)/* Avoid wrapping negative */4214 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;4215ACQUIRE_MALLOC_GLOBAL_LOCK();4216{4217/* Make sure end of memory is where we last set it. */4218char* old_br = (char*)(CALL_MORECORE(0));4219if(old_br == sp->base + sp->size) {4220char* rel_br = (char*)(CALL_MORECORE(-extra));4221char* new_br = (char*)(CALL_MORECORE(0));4222if(rel_br != CMFAIL && new_br < old_br)4223 released = old_br - new_br;4224}4225}4226RELEASE_MALLOC_GLOBAL_LOCK();4227}4228}42294230if(released !=0) {4231 sp->size -= released;4232 m->footprint -= released;4233init_top(m, m->top, m->topsize - released);4234check_top_chunk(m, m->top);4235}4236}42374238/* Unmap any unused mmapped segments */4239if(HAVE_MMAP)4240 released +=release_unused_segments(m);42414242/* On failure, disable autotrim to avoid repeated failed future calls */4243if(released ==0&& m->topsize > m->trim_check)4244 m->trim_check = MAX_SIZE_T;4245}42464247return(released !=0)?1:0;4248}424942504251/* ---------------------------- malloc support --------------------------- */42524253/* allocate a large request from the best fitting chunk in a treebin */4254static void*tmalloc_large(mstate m,size_t nb) {4255 tchunkptr v =0;4256size_t rsize = -nb;/* Unsigned negation */4257 tchunkptr t;4258 bindex_t idx;4259compute_tree_index(nb, idx);4260if((t = *treebin_at(m, idx)) !=0) {4261/* Traverse tree for this bin looking for node with size == nb */4262size_t sizebits = nb <<leftshift_for_tree_index(idx);4263 tchunkptr rst =0;/* The deepest untaken right subtree */4264for(;;) {4265 tchunkptr rt;4266size_t trem =chunksize(t) - nb;4267if(trem < rsize) {4268 v = t;4269if((rsize = trem) ==0)4270break;4271}4272 rt = t->child[1];4273 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) &1];4274if(rt !=0&& rt != t)4275 rst = rt;4276if(t ==0) {4277 t = rst;/* set t to least subtree holding sizes > nb */4278break;4279}4280 sizebits <<=1;4281}4282}4283if(t ==0&& v ==0) {/* set t to root of next non-empty treebin */4284 binmap_t leftbits =left_bits(idx2bit(idx)) & m->treemap;4285if(leftbits !=0) {4286 bindex_t i;4287 binmap_t leastbit =least_bit(leftbits);4288compute_bit2idx(leastbit, i);4289 t = *treebin_at(m, i);4290}4291}42924293while(t !=0) {/* find smallest of tree or subtree */4294size_t trem =chunksize(t) - nb;4295if(trem < rsize) {4296 rsize = trem;4297 v = t;4298}4299 t =leftmost_child(t);4300}43014302/* If dv is a better fit, return 0 so malloc will use it */4303if(v !=0&& rsize < (size_t)(m->dvsize - nb)) {4304if(RTCHECK(ok_address(m, v))) {/* split */4305 mchunkptr r =chunk_plus_offset(v, nb);4306assert(chunksize(v) == rsize + nb);4307if(RTCHECK(ok_next(v, r))) {4308unlink_large_chunk(m, v);4309if(rsize < MIN_CHUNK_SIZE)4310set_inuse_and_pinuse(m, v, (rsize + nb));4311else{4312set_size_and_pinuse_of_inuse_chunk(m, v, nb);4313set_size_and_pinuse_of_free_chunk(r, rsize);4314insert_chunk(m, r, rsize);4315}4316returnchunk2mem(v);4317}4318}4319CORRUPTION_ERROR_ACTION(m);4320}4321return0;4322}43234324/* allocate a small request from the best fitting chunk in a treebin */4325static void*tmalloc_small(mstate m,size_t nb) {4326 tchunkptr t, v;4327size_t rsize;4328 bindex_t i;4329 binmap_t leastbit =least_bit(m->treemap);4330compute_bit2idx(leastbit, i);4331 v = t = *treebin_at(m, i);4332 rsize =chunksize(t) - nb;43334334while((t =leftmost_child(t)) !=0) {4335size_t trem =chunksize(t) - nb;4336if(trem < rsize) {4337 rsize = trem;4338 v = t;4339}4340}43414342if(RTCHECK(ok_address(m, v))) {4343 mchunkptr r =chunk_plus_offset(v, nb);4344assert(chunksize(v) == rsize + nb);4345if(RTCHECK(ok_next(v, r))) {4346unlink_large_chunk(m, v);4347if(rsize < MIN_CHUNK_SIZE)4348set_inuse_and_pinuse(m, v, (rsize + nb));4349else{4350set_size_and_pinuse_of_inuse_chunk(m, v, nb);4351set_size_and_pinuse_of_free_chunk(r, rsize);4352replace_dv(m, r, rsize);4353}4354returnchunk2mem(v);4355}4356}43574358CORRUPTION_ERROR_ACTION(m);4359return0;4360}43614362/* --------------------------- realloc support --------------------------- */43634364static void*internal_realloc(mstate m,void* oldmem,size_t bytes) {4365if(bytes >= MAX_REQUEST) {4366 MALLOC_FAILURE_ACTION;4367return0;4368}4369if(!PREACTION(m)) {4370 mchunkptr oldp =mem2chunk(oldmem);4371size_t oldsize =chunksize(oldp);4372 mchunkptr next =chunk_plus_offset(oldp, oldsize);4373 mchunkptr newp =0;4374void* extra =0;43754376/* Try to either shrink or extend into top. Else malloc-copy-free */43774378if(RTCHECK(ok_address(m, oldp) &&ok_cinuse(oldp) &&4379ok_next(oldp, next) &&ok_pinuse(next))) {4380size_t nb =request2size(bytes);4381if(is_mmapped(oldp))4382 newp =mmap_resize(m, oldp, nb);4383else if(oldsize >= nb) {/* already big enough */4384size_t rsize = oldsize - nb;4385 newp = oldp;4386if(rsize >= MIN_CHUNK_SIZE) {4387 mchunkptr remainder =chunk_plus_offset(newp, nb);4388set_inuse(m, newp, nb);4389set_inuse(m, remainder, rsize);4390 extra =chunk2mem(remainder);4391}4392}4393else if(next == m->top && oldsize + m->topsize > nb) {4394/* Expand into top */4395size_t newsize = oldsize + m->topsize;4396size_t newtopsize = newsize - nb;4397 mchunkptr newtop =chunk_plus_offset(oldp, nb);4398set_inuse(m, oldp, nb);4399 newtop->head = newtopsize |PINUSE_BIT;4400 m->top = newtop;4401 m->topsize = newtopsize;4402 newp = oldp;4403}4404}4405else{4406USAGE_ERROR_ACTION(m, oldmem);4407POSTACTION(m);4408return0;4409}44104411POSTACTION(m);44124413if(newp !=0) {4414if(extra !=0) {4415internal_free(m, extra);4416}4417check_inuse_chunk(m, newp);4418returnchunk2mem(newp);4419}4420else{4421void* newmem =internal_malloc(m, bytes);4422if(newmem !=0) {4423size_t oc = oldsize -overhead_for(oldp);4424memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);4425internal_free(m, oldmem);4426}4427return newmem;4428}4429}4430return0;4431}44324433/* --------------------------- memalign support -------------------------- */44344435static void*internal_memalign(mstate m,size_t alignment,size_t bytes) {4436if(alignment <= MALLOC_ALIGNMENT)/* Can just use malloc */4437returninternal_malloc(m, bytes);4438if(alignment < MIN_CHUNK_SIZE)/* must be at least a minimum chunk size */4439 alignment = MIN_CHUNK_SIZE;4440if((alignment & (alignment-SIZE_T_ONE)) !=0) {/* Ensure a power of 2 */4441size_t a = MALLOC_ALIGNMENT <<1;4442while(a < alignment) a <<=1;4443 alignment = a;4444}44454446if(bytes >= MAX_REQUEST - alignment) {4447if(m !=0) {/* Test isn't needed but avoids compiler warning */4448 MALLOC_FAILURE_ACTION;4449}4450}4451else{4452size_t nb =request2size(bytes);4453size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;4454char* mem = (char*)internal_malloc(m, req);4455if(mem !=0) {4456void* leader =0;4457void* trailer =0;4458 mchunkptr p =mem2chunk(mem);44594460if(PREACTION(m))return0;4461if((((size_t)(mem)) % alignment) !=0) {/* misaligned */4462/*4463 Find an aligned spot inside chunk. Since we need to give4464 back leading space in a chunk of at least MIN_CHUNK_SIZE, if4465 the first calculation places us at a spot with less than4466 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.4467 We've allocated enough total room so that this is always4468 possible.4469 */4470char* br = (char*)mem2chunk((size_t)(((size_t)(mem +4471 alignment -4472 SIZE_T_ONE)) &4473-alignment));4474char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?4475 br : br+alignment;4476 mchunkptr newp = (mchunkptr)pos;4477size_t leadsize = pos - (char*)(p);4478size_t newsize =chunksize(p) - leadsize;44794480if(is_mmapped(p)) {/* For mmapped chunks, just adjust offset */4481 newp->prev_foot = p->prev_foot + leadsize;4482 newp->head = (newsize|CINUSE_BIT);4483}4484else{/* Otherwise, give back leader, use the rest */4485set_inuse(m, newp, newsize);4486set_inuse(m, p, leadsize);4487 leader =chunk2mem(p);4488}4489 p = newp;4490}44914492/* Give back spare room at the end */4493if(!is_mmapped(p)) {4494size_t size =chunksize(p);4495if(size > nb + MIN_CHUNK_SIZE) {4496size_t remainder_size = size - nb;4497 mchunkptr remainder =chunk_plus_offset(p, nb);4498set_inuse(m, p, nb);4499set_inuse(m, remainder, remainder_size);4500 trailer =chunk2mem(remainder);4501}4502}45034504assert(chunksize(p) >= nb);4505assert((((size_t)(chunk2mem(p))) % alignment) ==0);4506check_inuse_chunk(m, p);4507POSTACTION(m);4508if(leader !=0) {4509internal_free(m, leader);4510}4511if(trailer !=0) {4512internal_free(m, trailer);4513}4514returnchunk2mem(p);4515}4516}4517return0;4518}45194520/* ------------------------ comalloc/coalloc support --------------------- */45214522static void**ialloc(mstate m,4523size_t n_elements,4524size_t* sizes,4525int opts,4526void* chunks[]) {4527/*4528 This provides common support for independent_X routines, handling4529 all of the combinations that can result.45304531 The opts arg has:4532 bit 0 set if all elements are same size (using sizes[0])4533 bit 1 set if elements should be zeroed4534 */45354536size_t element_size;/* chunksize of each element, if all same */4537size_t contents_size;/* total size of elements */4538size_t array_size;/* request size of pointer array */4539void* mem;/* malloced aggregate space */4540 mchunkptr p;/* corresponding chunk */4541size_t remainder_size;/* remaining bytes while splitting */4542void** marray;/* either "chunks" or malloced ptr array */4543 mchunkptr array_chunk;/* chunk for malloced ptr array */4544 flag_t was_enabled;/* to disable mmap */4545size_t size;4546size_t i;45474548ensure_initialization();4549/* compute array length, if needed */4550if(chunks !=0) {4551if(n_elements ==0)4552return chunks;/* nothing to do */4553 marray = chunks;4554 array_size =0;4555}4556else{4557/* if empty req, must still return chunk representing empty array */4558if(n_elements ==0)4559return(void**)internal_malloc(m,0);4560 marray =0;4561 array_size =request2size(n_elements * (sizeof(void*)));4562}45634564/* compute total element size */4565if(opts &0x1) {/* all-same-size */4566 element_size =request2size(*sizes);4567 contents_size = n_elements * element_size;4568}4569else{/* add up all the sizes */4570 element_size =0;4571 contents_size =0;4572for(i =0; i != n_elements; ++i)4573 contents_size +=request2size(sizes[i]);4574}45754576 size = contents_size + array_size;45774578/*4579 Allocate the aggregate chunk. First disable direct-mmapping so4580 malloc won't use it, since we would not be able to later4581 free/realloc space internal to a segregated mmap region.4582 */4583 was_enabled =use_mmap(m);4584disable_mmap(m);4585 mem =internal_malloc(m, size - CHUNK_OVERHEAD);4586if(was_enabled)4587enable_mmap(m);4588if(mem ==0)4589return0;45904591if(PREACTION(m))return0;4592 p =mem2chunk(mem);4593 remainder_size =chunksize(p);45944595assert(!is_mmapped(p));45964597if(opts &0x2) {/* optionally clear the elements */4598memset((size_t*)mem,0, remainder_size - SIZE_T_SIZE - array_size);4599}46004601/* If not provided, allocate the pointer array as final part of chunk */4602if(marray ==0) {4603size_t array_chunk_size;4604 array_chunk =chunk_plus_offset(p, contents_size);4605 array_chunk_size = remainder_size - contents_size;4606 marray = (void**) (chunk2mem(array_chunk));4607set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);4608 remainder_size = contents_size;4609}46104611/* split out elements */4612for(i =0; ; ++i) {4613 marray[i] =chunk2mem(p);4614if(i != n_elements-1) {4615if(element_size !=0)4616 size = element_size;4617else4618 size =request2size(sizes[i]);4619 remainder_size -= size;4620set_size_and_pinuse_of_inuse_chunk(m, p, size);4621 p =chunk_plus_offset(p, size);4622}4623else{/* the final element absorbs any overallocation slop */4624set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);4625break;4626}4627}46284629#if DEBUG4630if(marray != chunks) {4631/* final element must have exactly exhausted chunk */4632if(element_size !=0) {4633assert(remainder_size == element_size);4634}4635else{4636assert(remainder_size ==request2size(sizes[i]));4637}4638check_inuse_chunk(m,mem2chunk(marray));4639}4640for(i =0; i != n_elements; ++i)4641check_inuse_chunk(m,mem2chunk(marray[i]));46424643#endif/* DEBUG */46444645POSTACTION(m);4646return marray;4647}464846494650/* -------------------------- public routines ---------------------------- */46514652#if !ONLY_MSPACES46534654void*dlmalloc(size_t bytes) {4655/*4656 Basic algorithm:4657 If a small request (< 256 bytes minus per-chunk overhead):4658 1. If one exists, use a remainderless chunk in associated smallbin.4659 (Remainderless means that there are too few excess bytes to4660 represent as a chunk.)4661 2. If it is big enough, use the dv chunk, which is normally the4662 chunk adjacent to the one used for the most recent small request.4663 3. If one exists, split the smallest available chunk in a bin,4664 saving remainder in dv.4665 4. If it is big enough, use the top chunk.4666 5. If available, get memory from system and use it4667 Otherwise, for a large request:4668 1. Find the smallest available binned chunk that fits, and use it4669 if it is better fitting than dv chunk, splitting if necessary.4670 2. If better fitting than any binned chunk, use the dv chunk.4671 3. If it is big enough, use the top chunk.4672 4. If request size >= mmap threshold, try to directly mmap this chunk.4673 5. If available, get memory from system and use it46744675 The ugly goto's here ensure that postaction occurs along all paths.4676 */46774678#if USE_LOCKS4679ensure_initialization();/* initialize in sys_alloc if not using locks */4680#endif46814682if(!PREACTION(gm)) {4683void* mem;4684size_t nb;4685if(bytes <= MAX_SMALL_REQUEST) {4686 bindex_t idx;4687 binmap_t smallbits;4688 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE :pad_request(bytes);4689 idx =small_index(nb);4690 smallbits = gm->smallmap >> idx;46914692if((smallbits &0x3U) !=0) {/* Remainderless fit to a smallbin. */4693 mchunkptr b, p;4694 idx += ~smallbits &1;/* Uses next bin if idx empty */4695 b =smallbin_at(gm, idx);4696 p = b->fd;4697assert(chunksize(p) ==small_index2size(idx));4698unlink_first_small_chunk(gm, b, p, idx);4699set_inuse_and_pinuse(gm, p,small_index2size(idx));4700 mem =chunk2mem(p);4701check_malloced_chunk(gm, mem, nb);4702goto postaction;4703}47044705else if(nb > gm->dvsize) {4706if(smallbits !=0) {/* Use chunk in next nonempty smallbin */4707 mchunkptr b, p, r;4708size_t rsize;4709 bindex_t i;4710 binmap_t leftbits = (smallbits << idx) &left_bits(idx2bit(idx));4711 binmap_t leastbit =least_bit(leftbits);4712compute_bit2idx(leastbit, i);4713 b =smallbin_at(gm, i);4714 p = b->fd;4715assert(chunksize(p) ==small_index2size(i));4716unlink_first_small_chunk(gm, b, p, i);4717 rsize =small_index2size(i) - nb;4718/* Fit here cannot be remainderless if 4byte sizes */4719if(SIZE_T_SIZE !=4&& rsize < MIN_CHUNK_SIZE)4720set_inuse_and_pinuse(gm, p,small_index2size(i));4721else{4722set_size_and_pinuse_of_inuse_chunk(gm, p, nb);4723 r =chunk_plus_offset(p, nb);4724set_size_and_pinuse_of_free_chunk(r, rsize);4725replace_dv(gm, r, rsize);4726}4727 mem =chunk2mem(p);4728check_malloced_chunk(gm, mem, nb);4729goto postaction;4730}47314732else if(gm->treemap !=0&& (mem =tmalloc_small(gm, nb)) !=0) {4733check_malloced_chunk(gm, mem, nb);4734goto postaction;4735}4736}4737}4738else if(bytes >= MAX_REQUEST)4739 nb = MAX_SIZE_T;/* Too big to allocate. Force failure (in sys alloc) */4740else{4741 nb =pad_request(bytes);4742if(gm->treemap !=0&& (mem =tmalloc_large(gm, nb)) !=0) {4743check_malloced_chunk(gm, mem, nb);4744goto postaction;4745}4746}47474748if(nb <= gm->dvsize) {4749size_t rsize = gm->dvsize - nb;4750 mchunkptr p = gm->dv;4751if(rsize >= MIN_CHUNK_SIZE) {/* split dv */4752 mchunkptr r = gm->dv =chunk_plus_offset(p, nb);4753 gm->dvsize = rsize;4754set_size_and_pinuse_of_free_chunk(r, rsize);4755set_size_and_pinuse_of_inuse_chunk(gm, p, nb);4756}4757else{/* exhaust dv */4758size_t dvs = gm->dvsize;4759 gm->dvsize =0;4760 gm->dv =0;4761set_inuse_and_pinuse(gm, p, dvs);4762}4763 mem =chunk2mem(p);4764check_malloced_chunk(gm, mem, nb);4765goto postaction;4766}47674768else if(nb < gm->topsize) {/* Split top */4769size_t rsize = gm->topsize -= nb;4770 mchunkptr p = gm->top;4771 mchunkptr r = gm->top =chunk_plus_offset(p, nb);4772 r->head = rsize | PINUSE_BIT;4773set_size_and_pinuse_of_inuse_chunk(gm, p, nb);4774 mem =chunk2mem(p);4775check_top_chunk(gm, gm->top);4776check_malloced_chunk(gm, mem, nb);4777goto postaction;4778}47794780 mem =sys_alloc(gm, nb);47814782 postaction:4783POSTACTION(gm);4784return mem;4785}47864787return0;4788}47894790voiddlfree(void* mem) {4791/*4792 Consolidate freed chunks with preceding or succeeding bordering4793 free chunks, if they exist, and then place in a bin. Intermixed4794 with special cases for top, dv, mmapped chunks, and usage errors.4795 */47964797if(mem !=0) {4798 mchunkptr p =mem2chunk(mem);4799#if FOOTERS4800 mstate fm =get_mstate_for(p);4801if(!ok_magic(fm)) {4802USAGE_ERROR_ACTION(fm, p);4803return;4804}4805#else/* FOOTERS */4806#define fm gm4807#endif/* FOOTERS */4808if(!PREACTION(fm)) {4809check_inuse_chunk(fm, p);4810if(RTCHECK(ok_address(fm, p) &&ok_cinuse(p))) {4811size_t psize =chunksize(p);4812 mchunkptr next =chunk_plus_offset(p, psize);4813if(!pinuse(p)) {4814size_t prevsize = p->prev_foot;4815if((prevsize & IS_MMAPPED_BIT) !=0) {4816 prevsize &= ~IS_MMAPPED_BIT;4817 psize += prevsize + MMAP_FOOT_PAD;4818if(CALL_MUNMAP((char*)p - prevsize, psize) ==0)4819 fm->footprint -= psize;4820goto postaction;4821}4822else{4823 mchunkptr prev =chunk_minus_offset(p, prevsize);4824 psize += prevsize;4825 p = prev;4826if(RTCHECK(ok_address(fm, prev))) {/* consolidate backward */4827if(p != fm->dv) {4828unlink_chunk(fm, p, prevsize);4829}4830else if((next->head & INUSE_BITS) == INUSE_BITS) {4831 fm->dvsize = psize;4832set_free_with_pinuse(p, psize, next);4833goto postaction;4834}4835}4836else4837goto erroraction;4838}4839}48404841if(RTCHECK(ok_next(p, next) &&ok_pinuse(next))) {4842if(!cinuse(next)) {/* consolidate forward */4843if(next == fm->top) {4844size_t tsize = fm->topsize += psize;4845 fm->top = p;4846 p->head = tsize | PINUSE_BIT;4847if(p == fm->dv) {4848 fm->dv =0;4849 fm->dvsize =0;4850}4851if(should_trim(fm, tsize))4852sys_trim(fm,0);4853goto postaction;4854}4855else if(next == fm->dv) {4856size_t dsize = fm->dvsize += psize;4857 fm->dv = p;4858set_size_and_pinuse_of_free_chunk(p, dsize);4859goto postaction;4860}4861else{4862size_t nsize =chunksize(next);4863 psize += nsize;4864unlink_chunk(fm, next, nsize);4865set_size_and_pinuse_of_free_chunk(p, psize);4866if(p == fm->dv) {4867 fm->dvsize = psize;4868goto postaction;4869}4870}4871}4872else4873set_free_with_pinuse(p, psize, next);48744875if(is_small(psize)) {4876insert_small_chunk(fm, p, psize);4877check_free_chunk(fm, p);4878}4879else{4880 tchunkptr tp = (tchunkptr)p;4881insert_large_chunk(fm, tp, psize);4882check_free_chunk(fm, p);4883if(--fm->release_checks ==0)4884release_unused_segments(fm);4885}4886goto postaction;4887}4888}4889 erroraction:4890USAGE_ERROR_ACTION(fm, p);4891 postaction:4892POSTACTION(fm);4893}4894}4895#if !FOOTERS4896#undef fm4897#endif/* FOOTERS */4898}48994900void*dlcalloc(size_t n_elements,size_t elem_size) {4901void* mem;4902size_t req =0;4903if(n_elements !=0) {4904 req = n_elements * elem_size;4905if(((n_elements | elem_size) & ~(size_t)0xffff) &&4906(req / n_elements != elem_size))4907 req = MAX_SIZE_T;/* force downstream failure on overflow */4908}4909 mem =dlmalloc(req);4910if(mem !=0&&calloc_must_clear(mem2chunk(mem)))4911memset(mem,0, req);4912return mem;4913}49144915void*dlrealloc(void* oldmem,size_t bytes) {4916if(oldmem ==0)4917returndlmalloc(bytes);4918#ifdef REALLOC_ZERO_BYTES_FREES4919if(bytes ==0) {4920dlfree(oldmem);4921return0;4922}4923#endif/* REALLOC_ZERO_BYTES_FREES */4924else{4925#if ! FOOTERS4926 mstate m = gm;4927#else/* FOOTERS */4928 mstate m =get_mstate_for(mem2chunk(oldmem));4929if(!ok_magic(m)) {4930USAGE_ERROR_ACTION(m, oldmem);4931return0;4932}4933#endif/* FOOTERS */4934returninternal_realloc(m, oldmem, bytes);4935}4936}49374938void*dlmemalign(size_t alignment,size_t bytes) {4939returninternal_memalign(gm, alignment, bytes);4940}49414942void**dlindependent_calloc(size_t n_elements,size_t elem_size,4943void* chunks[]) {4944size_t sz = elem_size;/* serves as 1-element array */4945returnialloc(gm, n_elements, &sz,3, chunks);4946}49474948void**dlindependent_comalloc(size_t n_elements,size_t sizes[],4949void* chunks[]) {4950returnialloc(gm, n_elements, sizes,0, chunks);4951}49524953void*dlvalloc(size_t bytes) {4954size_t pagesz;4955ensure_initialization();4956 pagesz = mparams.page_size;4957returndlmemalign(pagesz, bytes);4958}49594960void*dlpvalloc(size_t bytes) {4961size_t pagesz;4962ensure_initialization();4963 pagesz = mparams.page_size;4964returndlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));4965}49664967intdlmalloc_trim(size_t pad) {4968ensure_initialization();4969int result =0;4970if(!PREACTION(gm)) {4971 result =sys_trim(gm, pad);4972POSTACTION(gm);4973}4974return result;4975}49764977size_tdlmalloc_footprint(void) {4978return gm->footprint;4979}49804981size_tdlmalloc_max_footprint(void) {4982return gm->max_footprint;4983}49844985#if !NO_MALLINFO4986struct mallinfo dlmallinfo(void) {4987returninternal_mallinfo(gm);4988}4989#endif/* NO_MALLINFO */49904991voiddlmalloc_stats() {4992internal_malloc_stats(gm);4993}49944995intdlmallopt(int param_number,int value) {4996returnchange_mparam(param_number, value);4997}49984999#endif/* !ONLY_MSPACES */50005001size_tdlmalloc_usable_size(void* mem) {5002if(mem !=0) {5003 mchunkptr p =mem2chunk(mem);5004if(cinuse(p))5005returnchunksize(p) -overhead_for(p);5006}5007return0;5008}50095010/* ----------------------------- user mspaces ---------------------------- */50115012#if MSPACES50135014static mstate init_user_mstate(char* tbase,size_t tsize) {5015size_t msize =pad_request(sizeof(struct malloc_state));5016 mchunkptr mn;5017 mchunkptr msp =align_as_chunk(tbase);5018 mstate m = (mstate)(chunk2mem(msp));5019memset(m,0, msize);5020(void)INITIAL_LOCK(&m->mutex);5021 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);5022 m->seg.base = m->least_addr = tbase;5023 m->seg.size = m->footprint = m->max_footprint = tsize;5024 m->magic = mparams.magic;5025 m->release_checks = MAX_RELEASE_CHECK_RATE;5026 m->mflags = mparams.default_mflags;5027 m->extp =0;5028 m->exts =0;5029disable_contiguous(m);5030init_bins(m);5031 mn =next_chunk(mem2chunk(m));5032init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);5033check_top_chunk(m, m->top);5034return m;5035}50365037mspace create_mspace(size_t capacity,int locked) {5038 mstate m =0;5039size_t msize;5040ensure_initialization();5041 msize =pad_request(sizeof(struct malloc_state));5042if(capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {5043size_t rs = ((capacity ==0)? mparams.granularity :5044(capacity + TOP_FOOT_SIZE + msize));5045size_t tsize =granularity_align(rs);5046char* tbase = (char*)(CALL_MMAP(tsize));5047if(tbase != CMFAIL) {5048 m =init_user_mstate(tbase, tsize);5049 m->seg.sflags = IS_MMAPPED_BIT;5050set_lock(m, locked);5051}5052}5053return(mspace)m;5054}50555056mspace create_mspace_with_base(void* base,size_t capacity,int locked) {5057 mstate m =0;5058size_t msize;5059ensure_initialization();5060 msize =pad_request(sizeof(struct malloc_state));5061if(capacity > msize + TOP_FOOT_SIZE &&5062 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {5063 m =init_user_mstate((char*)base, capacity);5064 m->seg.sflags = EXTERN_BIT;5065set_lock(m, locked);5066}5067return(mspace)m;5068}50695070intmspace_mmap_large_chunks(mspace msp,int enable) {5071int ret =0;5072 mstate ms = (mstate)msp;5073if(!PREACTION(ms)) {5074if(use_mmap(ms))5075 ret =1;5076if(enable)5077enable_mmap(ms);5078else5079disable_mmap(ms);5080POSTACTION(ms);5081}5082return ret;5083}50845085size_tdestroy_mspace(mspace msp) {5086size_t freed =0;5087 mstate ms = (mstate)msp;5088if(ok_magic(ms)) {5089 msegmentptr sp = &ms->seg;5090while(sp !=0) {5091char* base = sp->base;5092size_t size = sp->size;5093 flag_t flag = sp->sflags;5094 sp = sp->next;5095if((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&5096CALL_MUNMAP(base, size) ==0)5097 freed += size;5098}5099}5100else{5101USAGE_ERROR_ACTION(ms,ms);5102}5103return freed;5104}51055106/*5107 mspace versions of routines are near-clones of the global5108 versions. This is not so nice but better than the alternatives.5109*/511051115112void*mspace_malloc(mspace msp,size_t bytes) {5113 mstate ms = (mstate)msp;5114if(!ok_magic(ms)) {5115USAGE_ERROR_ACTION(ms,ms);5116return0;5117}5118if(!PREACTION(ms)) {5119void* mem;5120size_t nb;5121if(bytes <= MAX_SMALL_REQUEST) {5122 bindex_t idx;5123 binmap_t smallbits;5124 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE :pad_request(bytes);5125 idx =small_index(nb);5126 smallbits = ms->smallmap >> idx;51275128if((smallbits &0x3U) !=0) {/* Remainderless fit to a smallbin. */5129 mchunkptr b, p;5130 idx += ~smallbits &1;/* Uses next bin if idx empty */5131 b =smallbin_at(ms, idx);5132 p = b->fd;5133assert(chunksize(p) ==small_index2size(idx));5134unlink_first_small_chunk(ms, b, p, idx);5135set_inuse_and_pinuse(ms, p,small_index2size(idx));5136 mem =chunk2mem(p);5137check_malloced_chunk(ms, mem, nb);5138goto postaction;5139}51405141else if(nb > ms->dvsize) {5142if(smallbits !=0) {/* Use chunk in next nonempty smallbin */5143 mchunkptr b, p, r;5144size_t rsize;5145 bindex_t i;5146 binmap_t leftbits = (smallbits << idx) &left_bits(idx2bit(idx));5147 binmap_t leastbit =least_bit(leftbits);5148compute_bit2idx(leastbit, i);5149 b =smallbin_at(ms, i);5150 p = b->fd;5151assert(chunksize(p) ==small_index2size(i));5152unlink_first_small_chunk(ms, b, p, i);5153 rsize =small_index2size(i) - nb;5154/* Fit here cannot be remainderless if 4byte sizes */5155if(SIZE_T_SIZE !=4&& rsize < MIN_CHUNK_SIZE)5156set_inuse_and_pinuse(ms, p,small_index2size(i));5157else{5158set_size_and_pinuse_of_inuse_chunk(ms, p, nb);5159 r =chunk_plus_offset(p, nb);5160set_size_and_pinuse_of_free_chunk(r, rsize);5161replace_dv(ms, r, rsize);5162}5163 mem =chunk2mem(p);5164check_malloced_chunk(ms, mem, nb);5165goto postaction;5166}51675168else if(ms->treemap !=0&& (mem =tmalloc_small(ms, nb)) !=0) {5169check_malloced_chunk(ms, mem, nb);5170goto postaction;5171}5172}5173}5174else if(bytes >= MAX_REQUEST)5175 nb = MAX_SIZE_T;/* Too big to allocate. Force failure (in sys alloc) */5176else{5177 nb =pad_request(bytes);5178if(ms->treemap !=0&& (mem =tmalloc_large(ms, nb)) !=0) {5179check_malloced_chunk(ms, mem, nb);5180goto postaction;5181}5182}51835184if(nb <= ms->dvsize) {5185size_t rsize = ms->dvsize - nb;5186 mchunkptr p = ms->dv;5187if(rsize >= MIN_CHUNK_SIZE) {/* split dv */5188 mchunkptr r = ms->dv =chunk_plus_offset(p, nb);5189 ms->dvsize = rsize;5190set_size_and_pinuse_of_free_chunk(r, rsize);5191set_size_and_pinuse_of_inuse_chunk(ms, p, nb);5192}5193else{/* exhaust dv */5194size_t dvs = ms->dvsize;5195 ms->dvsize =0;5196 ms->dv =0;5197set_inuse_and_pinuse(ms, p, dvs);5198}5199 mem =chunk2mem(p);5200check_malloced_chunk(ms, mem, nb);5201goto postaction;5202}52035204else if(nb < ms->topsize) {/* Split top */5205size_t rsize = ms->topsize -= nb;5206 mchunkptr p = ms->top;5207 mchunkptr r = ms->top =chunk_plus_offset(p, nb);5208 r->head = rsize | PINUSE_BIT;5209set_size_and_pinuse_of_inuse_chunk(ms, p, nb);5210 mem =chunk2mem(p);5211check_top_chunk(ms, ms->top);5212check_malloced_chunk(ms, mem, nb);5213goto postaction;5214}52155216 mem =sys_alloc(ms, nb);52175218 postaction:5219POSTACTION(ms);5220return mem;5221}52225223return0;5224}52255226voidmspace_free(mspace msp,void* mem) {5227if(mem !=0) {5228 mchunkptr p =mem2chunk(mem);5229#if FOOTERS5230 mstate fm =get_mstate_for(p);5231#else/* FOOTERS */5232 mstate fm = (mstate)msp;5233#endif/* FOOTERS */5234if(!ok_magic(fm)) {5235USAGE_ERROR_ACTION(fm, p);5236return;5237}5238if(!PREACTION(fm)) {5239check_inuse_chunk(fm, p);5240if(RTCHECK(ok_address(fm, p) &&ok_cinuse(p))) {5241size_t psize =chunksize(p);5242 mchunkptr next =chunk_plus_offset(p, psize);5243if(!pinuse(p)) {5244size_t prevsize = p->prev_foot;5245if((prevsize & IS_MMAPPED_BIT) !=0) {5246 prevsize &= ~IS_MMAPPED_BIT;5247 psize += prevsize + MMAP_FOOT_PAD;5248if(CALL_MUNMAP((char*)p - prevsize, psize) ==0)5249 fm->footprint -= psize;5250goto postaction;5251}5252else{5253 mchunkptr prev =chunk_minus_offset(p, prevsize);5254 psize += prevsize;5255 p = prev;5256if(RTCHECK(ok_address(fm, prev))) {/* consolidate backward */5257if(p != fm->dv) {5258unlink_chunk(fm, p, prevsize);5259}5260else if((next->head & INUSE_BITS) == INUSE_BITS) {5261 fm->dvsize = psize;5262set_free_with_pinuse(p, psize, next);5263goto postaction;5264}5265}5266else5267goto erroraction;5268}5269}52705271if(RTCHECK(ok_next(p, next) &&ok_pinuse(next))) {5272if(!cinuse(next)) {/* consolidate forward */5273if(next == fm->top) {5274size_t tsize = fm->topsize += psize;5275 fm->top = p;5276 p->head = tsize | PINUSE_BIT;5277if(p == fm->dv) {5278 fm->dv =0;5279 fm->dvsize =0;5280}5281if(should_trim(fm, tsize))5282sys_trim(fm,0);5283goto postaction;5284}5285else if(next == fm->dv) {5286size_t dsize = fm->dvsize += psize;5287 fm->dv = p;5288set_size_and_pinuse_of_free_chunk(p, dsize);5289goto postaction;5290}5291else{5292size_t nsize =chunksize(next);5293 psize += nsize;5294unlink_chunk(fm, next, nsize);5295set_size_and_pinuse_of_free_chunk(p, psize);5296if(p == fm->dv) {5297 fm->dvsize = psize;5298goto postaction;5299}5300}5301}5302else5303set_free_with_pinuse(p, psize, next);53045305if(is_small(psize)) {5306insert_small_chunk(fm, p, psize);5307check_free_chunk(fm, p);5308}5309else{5310 tchunkptr tp = (tchunkptr)p;5311insert_large_chunk(fm, tp, psize);5312check_free_chunk(fm, p);5313if(--fm->release_checks ==0)5314release_unused_segments(fm);5315}5316goto postaction;5317}5318}5319 erroraction:5320USAGE_ERROR_ACTION(fm, p);5321 postaction:5322POSTACTION(fm);5323}5324}5325}53265327void*mspace_calloc(mspace msp,size_t n_elements,size_t elem_size) {5328void* mem;5329size_t req =0;5330 mstate ms = (mstate)msp;5331if(!ok_magic(ms)) {5332USAGE_ERROR_ACTION(ms,ms);5333return0;5334}5335if(n_elements !=0) {5336 req = n_elements * elem_size;5337if(((n_elements | elem_size) & ~(size_t)0xffff) &&5338(req / n_elements != elem_size))5339 req = MAX_SIZE_T;/* force downstream failure on overflow */5340}5341 mem =internal_malloc(ms, req);5342if(mem !=0&&calloc_must_clear(mem2chunk(mem)))5343memset(mem,0, req);5344return mem;5345}53465347void*mspace_realloc(mspace msp,void* oldmem,size_t bytes) {5348if(oldmem ==0)5349returnmspace_malloc(msp, bytes);5350#ifdef REALLOC_ZERO_BYTES_FREES5351if(bytes ==0) {5352mspace_free(msp, oldmem);5353return0;5354}5355#endif/* REALLOC_ZERO_BYTES_FREES */5356else{5357#if FOOTERS5358 mchunkptr p =mem2chunk(oldmem);5359 mstate ms =get_mstate_for(p);5360#else/* FOOTERS */5361 mstate ms = (mstate)msp;5362#endif/* FOOTERS */5363if(!ok_magic(ms)) {5364USAGE_ERROR_ACTION(ms,ms);5365return0;5366}5367returninternal_realloc(ms, oldmem, bytes);5368}5369}53705371void*mspace_memalign(mspace msp,size_t alignment,size_t bytes) {5372 mstate ms = (mstate)msp;5373if(!ok_magic(ms)) {5374USAGE_ERROR_ACTION(ms,ms);5375return0;5376}5377returninternal_memalign(ms, alignment, bytes);5378}53795380void**mspace_independent_calloc(mspace msp,size_t n_elements,5381size_t elem_size,void* chunks[]) {5382size_t sz = elem_size;/* serves as 1-element array */5383 mstate ms = (mstate)msp;5384if(!ok_magic(ms)) {5385USAGE_ERROR_ACTION(ms,ms);5386return0;5387}5388returnialloc(ms, n_elements, &sz,3, chunks);5389}53905391void**mspace_independent_comalloc(mspace msp,size_t n_elements,5392size_t sizes[],void* chunks[]) {5393 mstate ms = (mstate)msp;5394if(!ok_magic(ms)) {5395USAGE_ERROR_ACTION(ms,ms);5396return0;5397}5398returnialloc(ms, n_elements, sizes,0, chunks);5399}54005401intmspace_trim(mspace msp,size_t pad) {5402int result =0;5403 mstate ms = (mstate)msp;5404if(ok_magic(ms)) {5405if(!PREACTION(ms)) {5406 result =sys_trim(ms, pad);5407POSTACTION(ms);5408}5409}5410else{5411USAGE_ERROR_ACTION(ms,ms);5412}5413return result;5414}54155416voidmspace_malloc_stats(mspace msp) {5417 mstate ms = (mstate)msp;5418if(ok_magic(ms)) {5419internal_malloc_stats(ms);5420}5421else{5422USAGE_ERROR_ACTION(ms,ms);5423}5424}54255426size_tmspace_footprint(mspace msp) {5427size_t result =0;5428 mstate ms = (mstate)msp;5429if(ok_magic(ms)) {5430 result = ms->footprint;5431}5432else{5433USAGE_ERROR_ACTION(ms,ms);5434}5435return result;5436}543754385439size_tmspace_max_footprint(mspace msp) {5440size_t result =0;5441 mstate ms = (mstate)msp;5442if(ok_magic(ms)) {5443 result = ms->max_footprint;5444}5445else{5446USAGE_ERROR_ACTION(ms,ms);5447}5448return result;5449}545054515452#if !NO_MALLINFO5453struct mallinfo mspace_mallinfo(mspace msp) {5454 mstate ms = (mstate)msp;5455if(!ok_magic(ms)) {5456USAGE_ERROR_ACTION(ms,ms);5457}5458returninternal_mallinfo(ms);5459}5460#endif/* NO_MALLINFO */54615462size_tmspace_usable_size(void* mem) {5463if(mem !=0) {5464 mchunkptr p =mem2chunk(mem);5465if(cinuse(p))5466returnchunksize(p) -overhead_for(p);5467}5468return0;5469}54705471intmspace_mallopt(int param_number,int value) {5472returnchange_mparam(param_number, value);5473}54745475#endif/* MSPACES */54765477/* -------------------- Alternative MORECORE functions ------------------- */54785479/*5480 Guidelines for creating a custom version of MORECORE:54815482 * For best performance, MORECORE should allocate in multiples of pagesize.5483 * MORECORE may allocate more memory than requested. (Or even less,5484 but this will usually result in a malloc failure.)5485 * MORECORE must not allocate memory when given argument zero, but5486 instead return one past the end address of memory from previous5487 nonzero call.5488 * For best performance, consecutive calls to MORECORE with positive5489 arguments should return increasing addresses, indicating that5490 space has been contiguously extended.5491 * Even though consecutive calls to MORECORE need not return contiguous5492 addresses, it must be OK for malloc'ed chunks to span multiple5493 regions in those cases where they do happen to be contiguous.5494 * MORECORE need not handle negative arguments -- it may instead5495 just return MFAIL when given negative arguments.5496 Negative arguments are always multiples of pagesize. MORECORE5497 must not misinterpret negative args as large positive unsigned5498 args. You can suppress all such calls from even occurring by defining5499 MORECORE_CANNOT_TRIM,55005501 As an example alternative MORECORE, here is a custom allocator5502 kindly contributed for pre-OSX macOS. It uses virtually but not5503 necessarily physically contiguous non-paged memory (locked in,5504 present and won't get swapped out). You can use it by uncommenting5505 this section, adding some #includes, and setting up the appropriate5506 defines above:55075508 #define MORECORE osMoreCore55095510 There is also a shutdown routine that should somehow be called for5511 cleanup upon program exit.55125513 #define MAX_POOL_ENTRIES 1005514 #define MINIMUM_MORECORE_SIZE (64 * 1024U)5515 static int next_os_pool;5516 void *our_os_pools[MAX_POOL_ENTRIES];55175518 void *osMoreCore(int size)5519 {5520 void *ptr = 0;5521 static void *sbrk_top = 0;55225523 if (size > 0)5524 {5525 if (size < MINIMUM_MORECORE_SIZE)5526 size = MINIMUM_MORECORE_SIZE;5527 if (CurrentExecutionLevel() == kTaskLevel)5528 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);5529 if (ptr == 0)5530 {5531 return (void *) MFAIL;5532 }5533 // save ptrs so they can be freed during cleanup5534 our_os_pools[next_os_pool] = ptr;5535 next_os_pool++;5536 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);5537 sbrk_top = (char *) ptr + size;5538 return ptr;5539 }5540 else if (size < 0)5541 {5542 // we don't currently support shrink behavior5543 return (void *) MFAIL;5544 }5545 else5546 {5547 return sbrk_top;5548 }5549 }55505551 // cleanup any allocated memory pools5552 // called as last thing before shutting down driver55535554 void osCleanupMem(void)5555 {5556 void **ptr;55575558 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)5559 if (*ptr)5560 {5561 PoolDeallocate(*ptr);5562 *ptr = 0;5563 }5564 }55655566*/556755685569/* -----------------------------------------------------------------------5570History:5571 V2.8.4 (not yet released)5572 * Add mspace_mmap_large_chunks; thanks to Jean Brouwers5573 * Fix insufficient sys_alloc padding when using 16byte alignment5574 * Fix bad error check in mspace_footprint5575 * Adaptations for ptmalloc, courtesy of Wolfram Gloger.5576 * Reentrant spin locks, courtesy of Earl Chew and others5577 * Win32 improvements, courtesy of Niall Douglas and Earl Chew5578 * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options5579 * Extension hook in malloc_state5580 * Various small adjustments to reduce warnings on some compilers5581 * Various configuration extensions/changes for more platforms. Thanks5582 to all who contributed these.55835584 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)5585 * Add max_footprint functions5586 * Ensure all appropriate literals are size_t5587 * Fix conditional compilation problem for some #define settings5588 * Avoid concatenating segments with the one provided5589 in create_mspace_with_base5590 * Rename some variables to avoid compiler shadowing warnings5591 * Use explicit lock initialization.5592 * Better handling of sbrk interference.5593 * Simplify and fix segment insertion, trimming and mspace_destroy5594 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x5595 * Thanks especially to Dennis Flanagan for help on these.55965597 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)5598 * Fix memalign brace error.55995600 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)5601 * Fix improper #endif nesting in C++5602 * Add explicit casts needed for C++56035604 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)5605 * Use trees for large bins5606 * Support mspaces5607 * Use segments to unify sbrk-based and mmap-based system allocation,5608 removing need for emulation on most platforms without sbrk.5609 * Default safety checks5610 * Optional footer checks. Thanks to William Robertson for the idea.5611 * Internal code refactoring5612 * Incorporate suggestions and platform-specific changes.5613 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,5614 Aaron Bachmann, Emery Berger, and others.5615 * Speed up non-fastbin processing enough to remove fastbins.5616 * Remove useless cfree() to avoid conflicts with other apps.5617 * Remove internal memcpy, memset. Compilers handle builtins better.5618 * Remove some options that no one ever used and rename others.56195620 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)5621 * Fix malloc_state bitmap array misdeclaration56225623 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)5624 * Allow tuning of FIRST_SORTED_BIN_SIZE5625 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.5626 * Better detection and support for non-contiguousness of MORECORE.5627 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger5628 * Bypass most of malloc if no frees. Thanks To Emery Berger.5629 * Fix freeing of old top non-contiguous chunk im sysmalloc.5630 * Raised default trim and map thresholds to 256K.5631 * Fix mmap-related #defines. Thanks to Lubos Lunak.5632 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.5633 * Branch-free bin calculation5634 * Default trim and mmap thresholds now 256K.56355636 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)5637 * Introduce independent_comalloc and independent_calloc.5638 Thanks to Michael Pachos for motivation and help.5639 * Make optional .h file available5640 * Allow > 2GB requests on 32bit systems.5641 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.5642 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,5643 and Anonymous.5644 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for5645 helping test this.)5646 * memalign: check alignment arg5647 * realloc: don't try to shift chunks backwards, since this5648 leads to more fragmentation in some programs and doesn't5649 seem to help in any others.5650 * Collect all cases in malloc requiring system memory into sysmalloc5651 * Use mmap as backup to sbrk5652 * Place all internal state in malloc_state5653 * Introduce fastbins (although similar to 2.5.1)5654 * Many minor tunings and cosmetic improvements5655 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK5656 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS5657 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.5658 * Include errno.h to support default failure action.56595660 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)5661 * return null for negative arguments5662 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>5663 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'5664 (e.g. WIN32 platforms)5665 * Cleanup header file inclusion for WIN32 platforms5666 * Cleanup code to avoid Microsoft Visual C++ compiler complaints5667 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing5668 memory allocation routines5669 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)5670 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to5671 usage of 'assert' in non-WIN32 code5672 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to5673 avoid infinite loop5674 * Always call 'fREe()' rather than 'free()'56755676 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)5677 * Fixed ordering problem with boundary-stamping56785679 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)5680 * Added pvalloc, as recommended by H.J. Liu5681 * Added 64bit pointer support mainly from Wolfram Gloger5682 * Added anonymously donated WIN32 sbrk emulation5683 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen5684 * malloc_extend_top: fix mask error that caused wastage after5685 foreign sbrks5686 * Add linux mremap support code from HJ Liu56875688 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)5689 * Integrated most documentation with the code.5690 * Add support for mmap, with help from5691 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).5692 * Use last_remainder in more cases.5693 * Pack bins using idea from colin@nyx10.cs.du.edu5694 * Use ordered bins instead of best-fit threshold5695 * Eliminate block-local decls to simplify tracing and debugging.5696 * Support another case of realloc via move into top5697 * Fix error occurring when initial sbrk_base not word-aligned.5698 * Rely on page size for units instead of SBRK_UNIT to5699 avoid surprises about sbrk alignment conventions.5700 * Add mallinfo, mallopt. Thanks to Raymond Nijssen5701 (raymond@es.ele.tue.nl) for the suggestion.5702 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.5703 * More precautions for cases where other routines call sbrk,5704 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).5705 * Added macros etc., allowing use in linux libc from5706 H.J. Lu (hjl@gnu.ai.mit.edu)5707 * Inverted this history list57085709 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)5710 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.5711 * Removed all preallocation code since under current scheme5712 the work required to undo bad preallocations exceeds5713 the work saved in good cases for most test programs.5714 * No longer use return list or unconsolidated bins since5715 no scheme using them consistently outperforms those that don't5716 given above changes.5717 * Use best fit for very large chunks to prevent some worst-cases.5718 * Added some support for debugging57195720 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)5721 * Removed footers when chunks are in use. Thanks to5722 Paul Wilson (wilson@cs.texas.edu) for the suggestion.57235724 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)5725 * Added malloc_trim, with help from Wolfram Gloger5726 (wmglo@Dent.MED.Uni-Muenchen.DE).57275728 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)57295730 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)5731 * realloc: try to expand in both directions5732 * malloc: swap order of clean-bin strategy;5733 * realloc: only conditionally expand backwards5734 * Try not to scavenge used bins5735 * Use bin counts as a guide to preallocation5736 * Occasionally bin return list chunks in first scan5737 * Add a few optimizations from colin@nyx10.cs.du.edu57385739 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)5740 * faster bin computation & slightly different binning5741 * merged all consolidations to one part of malloc proper5742 (eliminating old malloc_find_space & malloc_clean_bin)5743 * Scan 2 returns chunks (not just 1)5744 * Propagate failure in realloc if malloc returns 05745 * Add stuff to allow compilation on non-ANSI compilers5746 from kpv@research.att.com57475748 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)5749 * removed potential for odd address access in prev_chunk5750 * removed dependency on getpagesize.h5751 * misc cosmetics and a bit more internal documentation5752 * anticosmetics: mangled names in macros to evade debugger strangeness5753 * tested on sparc, hp-700, dec-mips, rs60005754 with gcc & native cc (hp, dec only) allowing5755 Detlefs & Zorn comparison study (in SIGPLAN Notices.)57565757 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)5758 * Based loosely on libg++-1.2X malloc. (It retains some of the overall5759 structure of old version, but most details differ.)57605761*/