1#ifndef HASHMAP_H 2#define HASHMAP_H 3 4/* 5 * Generic implementation of hash-based key-value mappings. 6 * 7 * An example that maps long to a string: 8 * For the sake of the example this allows to lookup exact values, too 9 * (i.e. it is operated as a set, the value is part of the key) 10 * ------------------------------------- 11 * 12 * struct hashmap map; 13 * struct long2string { 14 * struct hashmap_entry ent; // must be the first member! 15 * long key; 16 * char value[FLEX_ARRAY]; // be careful with allocating on stack! 17 * }; 18 * 19 * #define COMPARE_VALUE 1 20 * 21 * static int long2string_cmp(const struct long2string *e1, 22 * const struct long2string *e2, 23 * const void *keydata, const void *userdata) 24 * { 25 * char *string = keydata; 26 * unsigned *flags = (unsigned*)userdata; 27 * 28 * if (flags & COMPARE_VALUE) 29 * return !(e1->key == e2->key) || (keydata ? 30 * strcmp(e1->value, keydata) : strcmp(e1->value, e2->value)); 31 * else 32 * return !(e1->key == e2->key); 33 * } 34 * 35 * int main(int argc, char **argv) 36 * { 37 * long key; 38 * char *value, *action; 39 * 40 * unsigned flags = ALLOW_DUPLICATE_KEYS; 41 * 42 * hashmap_init(&map, (hashmap_cmp_fn) long2string_cmp, &flags, 0); 43 * 44 * while (scanf("%s %l %s", action, key, value)) { 45 * 46 * if (!strcmp("add", action)) { 47 * struct long2string *e; 48 * e = malloc(sizeof(struct long2string) + strlen(value)); 49 * hashmap_entry_init(e, memhash(&key, sizeof(long))); 50 * e->key = key; 51 * memcpy(e->value, value, strlen(value)); 52 * hashmap_add(&map, e); 53 * } 54 * 55 * if (!strcmp("print_all_by_key", action)) { 56 * flags &= ~COMPARE_VALUE; 57 * 58 * struct long2string k; 59 * hashmap_entry_init(&k, memhash(&key, sizeof(long))); 60 * k.key = key; 61 * 62 * struct long2string *e = hashmap_get(&map, &k, NULL); 63 * if (e) { 64 * printf("first: %l %s\n", e->key, e->value); 65 * while (e = hashmap_get_next(&map, e)) 66 * printf("found more: %l %s\n", e->key, e->value); 67 * } 68 * } 69 * 70 * if (!strcmp("has_exact_match", action)) { 71 * flags |= COMPARE_VALUE; 72 * 73 * struct long2string *e; 74 * e = malloc(sizeof(struct long2string) + strlen(value)); 75 * hashmap_entry_init(e, memhash(&key, sizeof(long))); 76 * e->key = key; 77 * memcpy(e->value, value, strlen(value)); 78 * 79 * printf("%s found\n", hashmap_get(&map, e, NULL) ? "" : "not"); 80 * } 81 * 82 * if (!strcmp("has_exact_match_no_heap_alloc", action)) { 83 * flags |= COMPARE_VALUE; 84 * 85 * struct long2string e; 86 * hashmap_entry_init(e, memhash(&key, sizeof(long))); 87 * e.key = key; 88 * 89 * printf("%s found\n", hashmap_get(&map, e, value) ? "" : "not"); 90 * } 91 * 92 * if (!strcmp("end", action)) { 93 * hashmap_free(&map, 1); 94 * break; 95 * } 96 * } 97 * } 98 */ 99 100/* 101 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see 102 * http://www.isthe.com/chongo/tech/comp/fnv). 103 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and 104 * `memihash` operate on arbitrary-length memory. 105 * `strihash` and `memihash` are case insensitive versions. 106 * `memihash_cont` is a variant of `memihash` that allows a computation to be 107 * continued with another chunk of data. 108 */ 109externunsigned intstrhash(const char*buf); 110externunsigned intstrihash(const char*buf); 111externunsigned intmemhash(const void*buf,size_t len); 112externunsigned intmemihash(const void*buf,size_t len); 113externunsigned intmemihash_cont(unsigned int hash_seed,const void*buf,size_t len); 114 115/* 116 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code 117 * for use in hash tables. Cryptographic hashes are supposed to have 118 * uniform distribution, so in contrast to `memhash()`, this just copies 119 * the first `sizeof(int)` bytes without shuffling any bits. Note that 120 * the results will be different on big-endian and little-endian 121 * platforms, so they should not be stored or transferred over the net. 122 */ 123staticinlineunsigned intsha1hash(const unsigned char*sha1) 124{ 125/* 126 * Equivalent to 'return *(unsigned int *)sha1;', but safe on 127 * platforms that don't support unaligned reads. 128 */ 129unsigned int hash; 130memcpy(&hash, sha1,sizeof(hash)); 131return hash; 132} 133 134/* 135 * struct hashmap_entry is an opaque structure representing an entry in the 136 * hash table, which must be used as first member of user data structures. 137 * Ideally it should be followed by an int-sized member to prevent unused 138 * memory on 64-bit systems due to alignment. 139 */ 140struct hashmap_entry { 141/* 142 * next points to the next entry in case of collisions (i.e. if 143 * multiple entries map to the same bucket) 144 */ 145struct hashmap_entry *next; 146 147/* entry's hash code */ 148unsigned int hash; 149}; 150 151/* 152 * User-supplied function to test two hashmap entries for equality. Shall 153 * return 0 if the entries are equal. 154 * 155 * This function is always called with non-NULL `entry` and `entry_or_key` 156 * parameters that have the same hash code. 157 * 158 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get 159 * and hashmap_remove are always passed as second `entry_or_key` and third 160 * argument `keydata`, respectively. Otherwise, `keydata` is NULL. 161 * 162 * When it is too expensive to allocate a user entry (either because it is 163 * large or varialbe sized, such that it is not on the stack), then the 164 * relevant data to check for equality should be passed via `keydata`. 165 * In this case `key` can be a stripped down version of the user key data 166 * or even just a hashmap_entry having the correct hash. 167 * 168 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function. 169 */ 170typedefint(*hashmap_cmp_fn)(const void*hashmap_cmp_fn_data, 171const void*entry,const void*entry_or_key, 172const void*keydata); 173 174/* 175 * struct hashmap is the hash table structure. Members can be used as follows, 176 * but should not be modified directly. 177 */ 178struct hashmap { 179struct hashmap_entry **table; 180 181/* Stores the comparison function specified in `hashmap_init()`. */ 182 hashmap_cmp_fn cmpfn; 183const void*cmpfn_data; 184 185/* total number of entries (0 means the hashmap is empty) */ 186unsigned int private_size;/* use hashmap_get_size() */ 187 188/* 189 * tablesize is the allocated size of the hash table. A non-0 value 190 * indicates that the hashmap is initialized. It may also be useful 191 * for statistical purposes (i.e. `size / tablesize` is the current 192 * load factor). 193 */ 194unsigned int tablesize; 195 196unsigned int grow_at; 197unsigned int shrink_at; 198 199unsigned int do_count_items :1; 200}; 201 202/* hashmap functions */ 203 204/* 205 * Initializes a hashmap structure. 206 * 207 * `map` is the hashmap to initialize. 208 * 209 * The `equals_function` can be specified to compare two entries for equality. 210 * If NULL, entries are considered equal if their hash codes are equal. 211 * 212 * The `equals_function_data` parameter can be used to provide additional data 213 * (a callback cookie) that will be passed to `equals_function` each time it 214 * is called. This allows a single `equals_function` to implement multiple 215 * comparison functions. 216 * 217 * If the total number of entries is known in advance, the `initial_size` 218 * parameter may be used to preallocate a sufficiently large table and thus 219 * prevent expensive resizing. If 0, the table is dynamically resized. 220 */ 221externvoidhashmap_init(struct hashmap *map, 222 hashmap_cmp_fn equals_function, 223const void*equals_function_data, 224size_t initial_size); 225 226/* 227 * Frees a hashmap structure and allocated memory. 228 * 229 * If `free_entries` is true, each hashmap_entry in the map is freed as well 230 * using stdlibs free(). 231 */ 232externvoidhashmap_free(struct hashmap *map,int free_entries); 233 234/* hashmap_entry functions */ 235 236/* 237 * Initializes a hashmap_entry structure. 238 * 239 * `entry` points to the entry to initialize. 240 * `hash` is the hash code of the entry. 241 * 242 * The hashmap_entry structure does not hold references to external resources, 243 * and it is safe to just discard it once you are done with it (i.e. if 244 * your structure was allocated with xmalloc(), you can just free(3) it, 245 * and if it is on stack, you can just let it go out of scope). 246 */ 247staticinlinevoidhashmap_entry_init(void*entry,unsigned int hash) 248{ 249struct hashmap_entry *e = entry; 250 e->hash = hash; 251 e->next = NULL; 252} 253 254/* 255 * Return the number of items in the map. 256 */ 257staticinlineunsigned inthashmap_get_size(struct hashmap *map) 258{ 259if(map->do_count_items) 260return map->private_size; 261 262BUG("hashmap_get_size: size not set"); 263return0; 264} 265 266/* 267 * Returns the hashmap entry for the specified key, or NULL if not found. 268 * 269 * `map` is the hashmap structure. 270 * 271 * `key` is a user data structure that starts with hashmap_entry that has at 272 * least been initialized with the proper hash code (via `hashmap_entry_init`). 273 * 274 * `keydata` is a data structure that holds just enough information to check 275 * for equality to a given entry. 276 * 277 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large, 278 * it is undesirable to create a full-fledged entry structure on the heap and 279 * copy all the key data into the structure. 280 * 281 * In this case, the `keydata` parameter can be used to pass 282 * variable-sized key data directly to the comparison function, and the `key` 283 * parameter can be a stripped-down, fixed size entry structure allocated on the 284 * stack. 285 * 286 * If an entry with matching hash code is found, `key` and `keydata` are passed 287 * to `hashmap_cmp_fn` to decide whether the entry matches the key. 288 */ 289externvoid*hashmap_get(const struct hashmap *map,const void*key, 290const void*keydata); 291 292/* 293 * Returns the hashmap entry for the specified hash code and key data, 294 * or NULL if not found. 295 * 296 * `map` is the hashmap structure. 297 * `hash` is the hash code of the entry to look up. 298 * 299 * If an entry with matching hash code is found, `keydata` is passed to 300 * `hashmap_cmp_fn` to decide whether the entry matches the key. The 301 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry 302 * structure that should not be used in the comparison. 303 */ 304staticinlinevoid*hashmap_get_from_hash(const struct hashmap *map, 305unsigned int hash, 306const void*keydata) 307{ 308struct hashmap_entry key; 309hashmap_entry_init(&key, hash); 310returnhashmap_get(map, &key, keydata); 311} 312 313/* 314 * Returns the next equal hashmap entry, or NULL if not found. This can be 315 * used to iterate over duplicate entries (see `hashmap_add`). 316 * 317 * `map` is the hashmap structure. 318 * `entry` is the hashmap_entry to start the search from, obtained via a previous 319 * call to `hashmap_get` or `hashmap_get_next`. 320 */ 321externvoid*hashmap_get_next(const struct hashmap *map,const void*entry); 322 323/* 324 * Adds a hashmap entry. This allows to add duplicate entries (i.e. 325 * separate values with the same key according to hashmap_cmp_fn). 326 * 327 * `map` is the hashmap structure. 328 * `entry` is the entry to add. 329 */ 330externvoidhashmap_add(struct hashmap *map,void*entry); 331 332/* 333 * Adds or replaces a hashmap entry. If the hashmap contains duplicate 334 * entries equal to the specified entry, only one of them will be replaced. 335 * 336 * `map` is the hashmap structure. 337 * `entry` is the entry to add or replace. 338 * Returns the replaced entry, or NULL if not found (i.e. the entry was added). 339 */ 340externvoid*hashmap_put(struct hashmap *map,void*entry); 341 342/* 343 * Removes a hashmap entry matching the specified key. If the hashmap contains 344 * duplicate entries equal to the specified key, only one of them will be 345 * removed. Returns the removed entry, or NULL if not found. 346 * 347 * Argument explanation is the same as in `hashmap_get`. 348 */ 349externvoid*hashmap_remove(struct hashmap *map,const void*key, 350const void*keydata); 351 352/* 353 * Returns the `bucket` an entry is stored in. 354 * Useful for multithreaded read access. 355 */ 356inthashmap_bucket(const struct hashmap *map,unsigned int hash); 357 358/* 359 * Used to iterate over all entries of a hashmap. Note that it is 360 * not safe to add or remove entries to the hashmap while 361 * iterating. 362 */ 363struct hashmap_iter { 364struct hashmap *map; 365struct hashmap_entry *next; 366unsigned int tablepos; 367}; 368 369/* Initializes a `hashmap_iter` structure. */ 370externvoidhashmap_iter_init(struct hashmap *map,struct hashmap_iter *iter); 371 372/* Returns the next hashmap_entry, or NULL if there are no more entries. */ 373externvoid*hashmap_iter_next(struct hashmap_iter *iter); 374 375/* Initializes the iterator and returns the first entry, if any. */ 376staticinlinevoid*hashmap_iter_first(struct hashmap *map, 377struct hashmap_iter *iter) 378{ 379hashmap_iter_init(map, iter); 380returnhashmap_iter_next(iter); 381} 382 383/* 384 * Disable item counting and automatic rehashing when adding/removing items. 385 * 386 * Normally, the hashmap keeps track of the number of items in the map 387 * and uses it to dynamically resize it. This (both the counting and 388 * the resizing) can cause problems when the map is being used by 389 * threaded callers (because the hashmap code does not know about the 390 * locking strategy used by the threaded callers and therefore, does 391 * not know how to protect the "private_size" counter). 392 */ 393staticinlinevoidhashmap_disable_item_counting(struct hashmap *map) 394{ 395 map->do_count_items =0; 396} 397 398/* 399 * Re-enable item couting when adding/removing items. 400 * If counting is currently disabled, it will force count them. 401 * It WILL NOT automatically rehash them. 402 */ 403staticinlinevoidhashmap_enable_item_counting(struct hashmap *map) 404{ 405void*item; 406unsigned int n =0; 407struct hashmap_iter iter; 408 409if(map->do_count_items) 410return; 411 412hashmap_iter_init(map, &iter); 413while((item =hashmap_iter_next(&iter))) 414 n++; 415 416 map->do_count_items =1; 417 map->private_size = n; 418} 419 420/* String interning */ 421 422/* 423 * Returns the unique, interned version of the specified string or data, 424 * similar to the `String.intern` API in Java and .NET, respectively. 425 * Interned strings remain valid for the entire lifetime of the process. 426 * 427 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned 428 * strings / data must not be modified or freed. 429 * 430 * Interned strings are best used for short strings with high probability of 431 * duplicates. 432 * 433 * Uses a hashmap to store the pool of interned strings. 434 */ 435externconst void*memintern(const void*data,size_t len); 436staticinlineconst char*strintern(const char*string) 437{ 438returnmemintern(string,strlen(string)); 439} 440 441#endif