ppc / sha1ppc.Son commit Teach Git to respect skip-worktree bit (writing part) (5203083)
   1/*
   2 * SHA-1 implementation for PowerPC.
   3 *
   4 * Copyright (C) 2005 Paul Mackerras <paulus@samba.org>
   5 */
   6
   7/*
   8 * PowerPC calling convention:
   9 * %r0 - volatile temp
  10 * %r1 - stack pointer.
  11 * %r2 - reserved
  12 * %r3-%r12 - Incoming arguments & return values; volatile.
  13 * %r13-%r31 - Callee-save registers
  14 * %lr - Return address, volatile
  15 * %ctr - volatile
  16 *
  17 * Register usage in this routine:
  18 * %r0 - temp
  19 * %r3 - argument (pointer to 5 words of SHA state)
  20 * %r4 - argument (pointer to data to hash)
  21 * %r5 - Constant K in SHA round (initially number of blocks to hash)
  22 * %r6-%r10 - Working copies of SHA variables A..E (actually E..A order)
  23 * %r11-%r26 - Data being hashed W[].
  24 * %r27-%r31 - Previous copies of A..E, for final add back.
  25 * %ctr - loop count
  26 */
  27
  28
  29/*
  30 * We roll the registers for A, B, C, D, E around on each
  31 * iteration; E on iteration t is D on iteration t+1, and so on.
  32 * We use registers 6 - 10 for this.  (Registers 27 - 31 hold
  33 * the previous values.)
  34 */
  35#define RA(t)   (((t)+4)%5+6)
  36#define RB(t)   (((t)+3)%5+6)
  37#define RC(t)   (((t)+2)%5+6)
  38#define RD(t)   (((t)+1)%5+6)
  39#define RE(t)   (((t)+0)%5+6)
  40
  41/* We use registers 11 - 26 for the W values */
  42#define W(t)    ((t)%16+11)
  43
  44/* Register 5 is used for the constant k */
  45
  46/*
  47 * The basic SHA-1 round function is:
  48 * E += ROTL(A,5) + F(B,C,D) + W[i] + K;  B = ROTL(B,30)
  49 * Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D).
  50 *
  51 * Every 20 rounds, the function F() and the constant K changes:
  52 * - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" =  (^b & d) + (b & c)
  53 * - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c
  54 * - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c)
  55 * - 20 more rounds of f1(b,c,d)
  56 *
  57 * These are all scheduled for near-optimal performance on a G4.
  58 * The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only
  59 * *consider* starting the oldest 3 instructions per cycle.  So to get
  60 * maximum performance out of it, you have to treat it as an in-order
  61 * machine.  Which means interleaving the computation round t with the
  62 * computation of W[t+4].
  63 *
  64 * The first 16 rounds use W values loaded directly from memory, while the
  65 * remaining 64 use values computed from those first 16.  We preload
  66 * 4 values before starting, so there are three kinds of rounds:
  67 * - The first 12 (all f0) also load the W values from memory.
  68 * - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1.
  69 * - The last 4 (all f1) do not do anything with W.
  70 *
  71 * Therefore, we have 6 different round functions:
  72 * STEPD0_LOAD(t,s) - Perform round t and load W(s).  s < 16
  73 * STEPD0_UPDATE(t,s) - Perform round t and compute W(s).  s >= 16.
  74 * STEPD1_UPDATE(t,s)
  75 * STEPD2_UPDATE(t,s)
  76 * STEPD1(t) - Perform round t with no load or update.
  77 *
  78 * The G5 is more fully out-of-order, and can find the parallelism
  79 * by itself.  The big limit is that it has a 2-cycle ALU latency, so
  80 * even though it's 2-way, the code has to be scheduled as if it's
  81 * 4-way, which can be a limit.  To help it, we try to schedule the
  82 * read of RA(t) as late as possible so it doesn't stall waiting for
  83 * the previous round's RE(t-1), and we try to rotate RB(t) as early
  84 * as possible while reading RC(t) (= RB(t-1)) as late as possible.
  85 */
  86
  87/* the initial loads. */
  88#define LOADW(s) \
  89        lwz     W(s),(s)*4(%r4)
  90
  91/*
  92 * Perform a step with F0, and load W(s).  Uses W(s) as a temporary
  93 * before loading it.
  94 * This is actually 10 instructions, which is an awkward fit.
  95 * It can execute grouped as listed, or delayed one instruction.
  96 * (If delayed two instructions, there is a stall before the start of the
  97 * second line.)  Thus, two iterations take 7 cycles, 3.5 cycles per round.
  98 */
  99#define STEPD0_LOAD(t,s) \
 100add RE(t),RE(t),W(t); andc   %r0,RD(t),RB(t);  and    W(s),RC(t),RB(t); \
 101add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;      rotlwi RB(t),RB(t),30;   \
 102add RE(t),RE(t),W(s); add    %r0,%r0,%r5;      lwz    W(s),(s)*4(%r4);  \
 103add RE(t),RE(t),%r0
 104
 105/*
 106 * This is likewise awkward, 13 instructions.  However, it can also
 107 * execute starting with 2 out of 3 possible moduli, so it does 2 rounds
 108 * in 9 cycles, 4.5 cycles/round.
 109 */
 110#define STEPD0_UPDATE(t,s,loadk...) \
 111add RE(t),RE(t),W(t); andc   %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
 112add RE(t),RE(t),%r0;  and    %r0,RC(t),RB(t); xor    W(s),W(s),W((s)-8);      \
 113add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     xor    W(s),W(s),W((s)-14);     \
 114add RE(t),RE(t),%r5;  loadk; rotlwi RB(t),RB(t),30;  rotlwi W(s),W(s),1;     \
 115add RE(t),RE(t),%r0
 116
 117/* Nicely optimal.  Conveniently, also the most common. */
 118#define STEPD1_UPDATE(t,s,loadk...) \
 119add RE(t),RE(t),W(t); xor    %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
 120add RE(t),RE(t),%r5;  loadk; xor %r0,%r0,RC(t);  xor W(s),W(s),W((s)-8);      \
 121add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     xor    W(s),W(s),W((s)-14);     \
 122add RE(t),RE(t),%r0;  rotlwi RB(t),RB(t),30;  rotlwi W(s),W(s),1
 123
 124/*
 125 * The naked version, no UPDATE, for the last 4 rounds.  3 cycles per.
 126 * We could use W(s) as a temp register, but we don't need it.
 127 */
 128#define STEPD1(t) \
 129                        add   RE(t),RE(t),W(t); xor    %r0,RD(t),RB(t); \
 130rotlwi RB(t),RB(t),30;  add   RE(t),RE(t),%r5;  xor    %r0,%r0,RC(t);   \
 131add    RE(t),RE(t),%r0; rotlwi %r0,RA(t),5;     /* spare slot */        \
 132add    RE(t),RE(t),%r0
 133
 134/*
 135 * 14 instructions, 5 cycles per.  The majority function is a bit
 136 * awkward to compute.  This can execute with a 1-instruction delay,
 137 * but it causes a 2-instruction delay, which triggers a stall.
 138 */
 139#define STEPD2_UPDATE(t,s,loadk...) \
 140add RE(t),RE(t),W(t); and    %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
 141add RE(t),RE(t),%r0;  xor    %r0,RD(t),RB(t); xor    W(s),W(s),W((s)-8);      \
 142add RE(t),RE(t),%r5;  loadk; and %r0,%r0,RC(t);  xor W(s),W(s),W((s)-14);     \
 143add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     rotlwi W(s),W(s),1;             \
 144add RE(t),RE(t),%r0;  rotlwi RB(t),RB(t),30
 145
 146#define STEP0_LOAD4(t,s)                \
 147        STEPD0_LOAD(t,s);               \
 148        STEPD0_LOAD((t+1),(s)+1);       \
 149        STEPD0_LOAD((t)+2,(s)+2);       \
 150        STEPD0_LOAD((t)+3,(s)+3)
 151
 152#define STEPUP4(fn, t, s, loadk...)             \
 153        STEP##fn##_UPDATE(t,s,);                \
 154        STEP##fn##_UPDATE((t)+1,(s)+1,);        \
 155        STEP##fn##_UPDATE((t)+2,(s)+2,);        \
 156        STEP##fn##_UPDATE((t)+3,(s)+3,loadk)
 157
 158#define STEPUP20(fn, t, s, loadk...)    \
 159        STEPUP4(fn, t, s,);             \
 160        STEPUP4(fn, (t)+4, (s)+4,);     \
 161        STEPUP4(fn, (t)+8, (s)+8,);     \
 162        STEPUP4(fn, (t)+12, (s)+12,);   \
 163        STEPUP4(fn, (t)+16, (s)+16, loadk)
 164
 165        .globl  ppc_sha1_core
 166ppc_sha1_core:
 167        stwu    %r1,-80(%r1)
 168        stmw    %r13,4(%r1)
 169
 170        /* Load up A - E */
 171        lmw     %r27,0(%r3)
 172
 173        mtctr   %r5
 174
 1751:
 176        LOADW(0)
 177        lis     %r5,0x5a82
 178        mr      RE(0),%r31
 179        LOADW(1)
 180        mr      RD(0),%r30
 181        mr      RC(0),%r29
 182        LOADW(2)
 183        ori     %r5,%r5,0x7999  /* K0-19 */
 184        mr      RB(0),%r28
 185        LOADW(3)
 186        mr      RA(0),%r27
 187
 188        STEP0_LOAD4(0, 4)
 189        STEP0_LOAD4(4, 8)
 190        STEP0_LOAD4(8, 12)
 191        STEPUP4(D0, 12, 16,)
 192        STEPUP4(D0, 16, 20, lis %r5,0x6ed9)
 193
 194        ori     %r5,%r5,0xeba1  /* K20-39 */
 195        STEPUP20(D1, 20, 24, lis %r5,0x8f1b)
 196
 197        ori     %r5,%r5,0xbcdc  /* K40-59 */
 198        STEPUP20(D2, 40, 44, lis %r5,0xca62)
 199
 200        ori     %r5,%r5,0xc1d6  /* K60-79 */
 201        STEPUP4(D1, 60, 64,)
 202        STEPUP4(D1, 64, 68,)
 203        STEPUP4(D1, 68, 72,)
 204        STEPUP4(D1, 72, 76,)
 205        addi    %r4,%r4,64
 206        STEPD1(76)
 207        STEPD1(77)
 208        STEPD1(78)
 209        STEPD1(79)
 210
 211        /* Add results to original values */
 212        add     %r31,%r31,RE(0)
 213        add     %r30,%r30,RD(0)
 214        add     %r29,%r29,RC(0)
 215        add     %r28,%r28,RB(0)
 216        add     %r27,%r27,RA(0)
 217
 218        bdnz    1b
 219
 220        /* Save final hash, restore registers, and return */
 221        stmw    %r27,0(%r3)
 222        lmw     %r13,4(%r1)
 223        addi    %r1,%r1,80
 224        blr