1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Used as a flag in ref_update::flags when the loose reference has 60 * been deleted. 61 */ 62#define REF_DELETED_LOOSE 0x200 63 64/* 65 * Return true iff refname is minimally safe. "Safe" here means that 66 * deleting a loose reference by this name will not do any damage, for 67 * example by causing a file that is not a reference to be deleted. 68 * This function does not check that the reference name is legal; for 69 * that, use check_refname_format(). 70 * 71 * A refname that starts with "refs/" is considered safe iff it 72 * doesn't contain any "." or ".." components or consecutive '/' 73 * characters, end with '/', or (on Windows) contain any '\' 74 * characters. Names that do not start with "refs/" are considered 75 * safe iff they consist entirely of upper case characters and '_' 76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 77 */ 78intrefname_is_safe(const char*refname); 79 80enum peel_status { 81/* object was peeled successfully: */ 82 PEEL_PEELED =0, 83 84/* 85 * object cannot be peeled because the named object (or an 86 * object referred to by a tag in the peel chain), does not 87 * exist. 88 */ 89 PEEL_INVALID = -1, 90 91/* object cannot be peeled because it is not a tag: */ 92 PEEL_NON_TAG = -2, 93 94/* ref_entry contains no peeled value because it is a symref: */ 95 PEEL_IS_SYMREF = -3, 96 97/* 98 * ref_entry cannot be peeled because it is broken (i.e., the 99 * symbolic reference cannot even be resolved to an object 100 * name): 101 */ 102 PEEL_BROKEN = -4 103}; 104 105/* 106 * Peel the named object; i.e., if the object is a tag, resolve the 107 * tag recursively until a non-tag is found. If successful, store the 108 * result to sha1 and return PEEL_PEELED. If the object is not a tag 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 110 * and leave sha1 unchanged. 111 */ 112enum peel_status peel_object(const unsigned char*name,unsigned char*sha1); 113 114/* 115 * Copy the reflog message msg to buf, which has been allocated sufficiently 116 * large, while cleaning up the whitespaces. Especially, convert LF to space, 117 * because reflog file is one line per entry. 118 */ 119intcopy_reflog_msg(char*buf,const char*msg); 120 121/** 122 * Information needed for a single ref update. Set new_sha1 to the new 123 * value or to null_sha1 to delete the ref. To check the old value 124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 126 * not exist before update. 127 */ 128struct ref_update { 129 130/* 131 * If (flags & REF_HAVE_NEW), set the reference to this value: 132 */ 133struct object_id new_oid; 134 135/* 136 * If (flags & REF_HAVE_OLD), check that the reference 137 * previously had this value: 138 */ 139struct object_id old_oid; 140 141/* 142 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 143 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, 144 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and 145 * REF_DELETED_LOOSE: 146 */ 147unsigned int flags; 148 149void*backend_data; 150unsigned int type; 151char*msg; 152 153/* 154 * If this ref_update was split off of a symref update via 155 * split_symref_update(), then this member points at that 156 * update. This is used for two purposes: 157 * 1. When reporting errors, we report the refname under which 158 * the update was originally requested. 159 * 2. When we read the old value of this reference, we 160 * propagate it back to its parent update for recording in 161 * the latter's reflog. 162 */ 163struct ref_update *parent_update; 164 165const char refname[FLEX_ARRAY]; 166}; 167 168intrefs_read_raw_ref(struct ref_store *ref_store, 169const char*refname,unsigned char*sha1, 170struct strbuf *referent,unsigned int*type); 171 172/* 173 * Write an error to `err` and return a nonzero value iff the same 174 * refname appears multiple times in `refnames`. `refnames` must be 175 * sorted on entry to this function. 176 */ 177intref_update_reject_duplicates(struct string_list *refnames, 178struct strbuf *err); 179 180/* 181 * Add a ref_update with the specified properties to transaction, and 182 * return a pointer to the new object. This function does not verify 183 * that refname is well-formed. new_sha1 and old_sha1 are only 184 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 185 * respectively, are set in flags. 186 */ 187struct ref_update *ref_transaction_add_update( 188struct ref_transaction *transaction, 189const char*refname,unsigned int flags, 190const unsigned char*new_sha1, 191const unsigned char*old_sha1, 192const char*msg); 193 194/* 195 * Transaction states. 196 * 197 * OPEN: The transaction is initialized and new updates can still be 198 * added to it. An OPEN transaction can be prepared, 199 * committed, freed, or aborted (freeing and aborting an open 200 * transaction are equivalent). 201 * 202 * PREPARED: ref_transaction_prepare(), which locks all of the 203 * references involved in the update and checks that the 204 * update has no errors, has been called successfully for the 205 * transaction. A PREPARED transaction can be committed or 206 * aborted. 207 * 208 * CLOSED: The transaction is no longer active. A transaction becomes 209 * CLOSED if there is a failure while building the transaction 210 * or if a transaction is committed or aborted. A CLOSED 211 * transaction can only be freed. 212 */ 213enum ref_transaction_state { 214 REF_TRANSACTION_OPEN =0, 215 REF_TRANSACTION_PREPARED =1, 216 REF_TRANSACTION_CLOSED =2 217}; 218 219/* 220 * Data structure for holding a reference transaction, which can 221 * consist of checks and updates to multiple references, carried out 222 * as atomically as possible. This structure is opaque to callers. 223 */ 224struct ref_transaction { 225struct ref_store *ref_store; 226struct ref_update **updates; 227size_t alloc; 228size_t nr; 229enum ref_transaction_state state; 230}; 231 232/* 233 * Check for entries in extras that are within the specified 234 * directory, where dirname is a reference directory name including 235 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 236 * conflicting references that are found in skip. If there is a 237 * conflicting reference, return its name. 238 * 239 * extras and skip must be sorted lists of reference names. Either one 240 * can be NULL, signifying the empty list. 241 */ 242const char*find_descendant_ref(const char*dirname, 243const struct string_list *extras, 244const struct string_list *skip); 245 246/* 247 * Check whether an attempt to rename old_refname to new_refname would 248 * cause a D/F conflict with any existing reference (other than 249 * possibly old_refname). If there would be a conflict, emit an error 250 * message and return false; otherwise, return true. 251 * 252 * Note that this function is not safe against all races with other 253 * processes (though rename_ref() catches some races that might get by 254 * this check). 255 */ 256intrefs_rename_ref_available(struct ref_store *refs, 257const char*old_refname, 258const char*new_refname); 259 260/* We allow "recursive" symbolic refs. Only within reason, though */ 261#define SYMREF_MAXDEPTH 5 262 263/* Include broken references in a do_for_each_ref*() iteration: */ 264#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 265 266/* 267 * Reference iterators 268 * 269 * A reference iterator encapsulates the state of an in-progress 270 * iteration over references. Create an instance of `struct 271 * ref_iterator` via one of the functions in this module. 272 * 273 * A freshly-created ref_iterator doesn't yet point at a reference. To 274 * advance the iterator, call ref_iterator_advance(). If successful, 275 * this sets the iterator's refname, oid, and flags fields to describe 276 * the next reference and returns ITER_OK. The data pointed at by 277 * refname and oid belong to the iterator; if you want to retain them 278 * after calling ref_iterator_advance() again or calling 279 * ref_iterator_abort(), you must make a copy. When the iteration has 280 * been exhausted, ref_iterator_advance() releases any resources 281 * assocated with the iteration, frees the ref_iterator object, and 282 * returns ITER_DONE. If you want to abort the iteration early, call 283 * ref_iterator_abort(), which also frees the ref_iterator object and 284 * any associated resources. If there was an internal error advancing 285 * to the next entry, ref_iterator_advance() aborts the iteration, 286 * frees the ref_iterator, and returns ITER_ERROR. 287 * 288 * The reference currently being looked at can be peeled by calling 289 * ref_iterator_peel(). This function is often faster than peel_ref(), 290 * so it should be preferred when iterating over references. 291 * 292 * Putting it all together, a typical iteration looks like this: 293 * 294 * int ok; 295 * struct ref_iterator *iter = ...; 296 * 297 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 298 * if (want_to_stop_iteration()) { 299 * ok = ref_iterator_abort(iter); 300 * break; 301 * } 302 * 303 * // Access information about the current reference: 304 * if (!(iter->flags & REF_ISSYMREF)) 305 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 306 * 307 * // If you need to peel the reference: 308 * ref_iterator_peel(iter, &oid); 309 * } 310 * 311 * if (ok != ITER_DONE) 312 * handle_error(); 313 */ 314struct ref_iterator { 315struct ref_iterator_vtable *vtable; 316const char*refname; 317const struct object_id *oid; 318unsigned int flags; 319}; 320 321/* 322 * Advance the iterator to the first or next item and return ITER_OK. 323 * If the iteration is exhausted, free the resources associated with 324 * the ref_iterator and return ITER_DONE. On errors, free the iterator 325 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 326 * call this function again after it has returned ITER_DONE or 327 * ITER_ERROR. 328 */ 329intref_iterator_advance(struct ref_iterator *ref_iterator); 330 331/* 332 * If possible, peel the reference currently being viewed by the 333 * iterator. Return 0 on success. 334 */ 335intref_iterator_peel(struct ref_iterator *ref_iterator, 336struct object_id *peeled); 337 338/* 339 * End the iteration before it has been exhausted, freeing the 340 * reference iterator and any associated resources and returning 341 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 342 */ 343intref_iterator_abort(struct ref_iterator *ref_iterator); 344 345/* 346 * An iterator over nothing (its first ref_iterator_advance() call 347 * returns ITER_DONE). 348 */ 349struct ref_iterator *empty_ref_iterator_begin(void); 350 351/* 352 * Return true iff ref_iterator is an empty_ref_iterator. 353 */ 354intis_empty_ref_iterator(struct ref_iterator *ref_iterator); 355 356/* 357 * Return an iterator that goes over each reference in `refs` for 358 * which the refname begins with prefix. If trim is non-zero, then 359 * trim that many characters off the beginning of each refname. flags 360 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in 361 * the iteration. 362 */ 363struct ref_iterator *refs_ref_iterator_begin( 364struct ref_store *refs, 365const char*prefix,int trim,int flags); 366 367/* 368 * A callback function used to instruct merge_ref_iterator how to 369 * interleave the entries from iter0 and iter1. The function should 370 * return one of the constants defined in enum iterator_selection. It 371 * must not advance either of the iterators itself. 372 * 373 * The function must be prepared to handle the case that iter0 and/or 374 * iter1 is NULL, which indicates that the corresponding sub-iterator 375 * has been exhausted. Its return value must be consistent with the 376 * current states of the iterators; e.g., it must not return 377 * ITER_SKIP_1 if iter1 has already been exhausted. 378 */ 379typedefenum iterator_selection ref_iterator_select_fn( 380struct ref_iterator *iter0,struct ref_iterator *iter1, 381void*cb_data); 382 383/* 384 * Iterate over the entries from iter0 and iter1, with the values 385 * interleaved as directed by the select function. The iterator takes 386 * ownership of iter0 and iter1 and frees them when the iteration is 387 * over. 388 */ 389struct ref_iterator *merge_ref_iterator_begin( 390struct ref_iterator *iter0,struct ref_iterator *iter1, 391 ref_iterator_select_fn *select,void*cb_data); 392 393/* 394 * An iterator consisting of the union of the entries from front and 395 * back. If there are entries common to the two sub-iterators, use the 396 * one from front. Each iterator must iterate over its entries in 397 * strcmp() order by refname for this to work. 398 * 399 * The new iterator takes ownership of its arguments and frees them 400 * when the iteration is over. As a convenience to callers, if front 401 * or back is an empty_ref_iterator, then abort that one immediately 402 * and return the other iterator directly, without wrapping it. 403 */ 404struct ref_iterator *overlay_ref_iterator_begin( 405struct ref_iterator *front,struct ref_iterator *back); 406 407/* 408 * Wrap iter0, only letting through the references whose names start 409 * with prefix. If trim is set, set iter->refname to the name of the 410 * reference with that many characters trimmed off the front; 411 * otherwise set it to the full refname. The new iterator takes over 412 * ownership of iter0 and frees it when iteration is over. It makes 413 * its own copy of prefix. 414 * 415 * As an convenience to callers, if prefix is the empty string and 416 * trim is zero, this function returns iter0 directly, without 417 * wrapping it. 418 */ 419struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 420const char*prefix, 421int trim); 422 423/* Internal implementation of reference iteration: */ 424 425/* 426 * Base class constructor for ref_iterators. Initialize the 427 * ref_iterator part of iter, setting its vtable pointer as specified. 428 * This is meant to be called only by the initializers of derived 429 * classes. 430 */ 431voidbase_ref_iterator_init(struct ref_iterator *iter, 432struct ref_iterator_vtable *vtable); 433 434/* 435 * Base class destructor for ref_iterators. Destroy the ref_iterator 436 * part of iter and shallow-free the object. This is meant to be 437 * called only by the destructors of derived classes. 438 */ 439voidbase_ref_iterator_free(struct ref_iterator *iter); 440 441/* Virtual function declarations for ref_iterators: */ 442 443typedefintref_iterator_advance_fn(struct ref_iterator *ref_iterator); 444 445typedefintref_iterator_peel_fn(struct ref_iterator *ref_iterator, 446struct object_id *peeled); 447 448/* 449 * Implementations of this function should free any resources specific 450 * to the derived class, then call base_ref_iterator_free() to clean 451 * up and free the ref_iterator object. 452 */ 453typedefintref_iterator_abort_fn(struct ref_iterator *ref_iterator); 454 455struct ref_iterator_vtable { 456 ref_iterator_advance_fn *advance; 457 ref_iterator_peel_fn *peel; 458 ref_iterator_abort_fn *abort; 459}; 460 461/* 462 * current_ref_iter is a performance hack: when iterating over 463 * references using the for_each_ref*() functions, current_ref_iter is 464 * set to the reference iterator before calling the callback function. 465 * If the callback function calls peel_ref(), then peel_ref() first 466 * checks whether the reference to be peeled is the one referred to by 467 * the iterator (it usually is) and if so, asks the iterator for the 468 * peeled version of the reference if it is available. This avoids a 469 * refname lookup in a common case. current_ref_iter is set to NULL 470 * when the iteration is over. 471 */ 472externstruct ref_iterator *current_ref_iter; 473 474/* 475 * The common backend for the for_each_*ref* functions. Call fn for 476 * each reference in iter. If the iterator itself ever returns 477 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 478 * the iteration and return that value. Otherwise, return 0. In any 479 * case, free the iterator when done. This function is basically an 480 * adapter between the callback style of reference iteration and the 481 * iterator style. 482 */ 483intdo_for_each_ref_iterator(struct ref_iterator *iter, 484 each_ref_fn fn,void*cb_data); 485 486/* 487 * Only include per-worktree refs in a do_for_each_ref*() iteration. 488 * Normally this will be used with a files ref_store, since that's 489 * where all reference backends will presumably store their 490 * per-worktree refs. 491 */ 492#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 493 494struct ref_store; 495 496/* refs backends */ 497 498/* ref_store_init flags */ 499#define REF_STORE_READ (1 << 0) 500#define REF_STORE_WRITE (1 << 1)/* can perform update operations */ 501#define REF_STORE_ODB (1 << 2)/* has access to object database */ 502#define REF_STORE_MAIN (1 << 3) 503#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ 504 REF_STORE_WRITE | \ 505 REF_STORE_ODB | \ 506 REF_STORE_MAIN) 507 508/* 509 * Initialize the ref_store for the specified gitdir. These functions 510 * should call base_ref_store_init() to initialize the shared part of 511 * the ref_store and to record the ref_store for later lookup. 512 */ 513typedefstruct ref_store *ref_store_init_fn(const char*gitdir, 514unsigned int flags); 515 516typedefintref_init_db_fn(struct ref_store *refs,struct strbuf *err); 517 518typedefintref_transaction_prepare_fn(struct ref_store *refs, 519struct ref_transaction *transaction, 520struct strbuf *err); 521 522typedefintref_transaction_finish_fn(struct ref_store *refs, 523struct ref_transaction *transaction, 524struct strbuf *err); 525 526typedefintref_transaction_abort_fn(struct ref_store *refs, 527struct ref_transaction *transaction, 528struct strbuf *err); 529 530typedefintref_transaction_commit_fn(struct ref_store *refs, 531struct ref_transaction *transaction, 532struct strbuf *err); 533 534typedefintpack_refs_fn(struct ref_store *ref_store,unsigned int flags); 535typedefintpeel_ref_fn(struct ref_store *ref_store, 536const char*refname,unsigned char*sha1); 537typedefintcreate_symref_fn(struct ref_store *ref_store, 538const char*ref_target, 539const char*refs_heads_master, 540const char*logmsg); 541typedefintdelete_refs_fn(struct ref_store *ref_store,const char*msg, 542struct string_list *refnames,unsigned int flags); 543typedefintrename_ref_fn(struct ref_store *ref_store, 544const char*oldref,const char*newref, 545const char*logmsg); 546typedefintcopy_ref_fn(struct ref_store *ref_store, 547const char*oldref,const char*newref, 548const char*logmsg); 549 550/* 551 * Iterate over the references in `ref_store` whose names start with 552 * `prefix`. `prefix` is matched as a literal string, without regard 553 * for path separators. If prefix is NULL or the empty string, iterate 554 * over all references in `ref_store`. 555 */ 556typedefstruct ref_iterator *ref_iterator_begin_fn( 557struct ref_store *ref_store, 558const char*prefix,unsigned int flags); 559 560/* reflog functions */ 561 562/* 563 * Iterate over the references in the specified ref_store that have a 564 * reflog. The refs are iterated over in arbitrary order. 565 */ 566typedefstruct ref_iterator *reflog_iterator_begin_fn( 567struct ref_store *ref_store); 568 569typedefintfor_each_reflog_ent_fn(struct ref_store *ref_store, 570const char*refname, 571 each_reflog_ent_fn fn, 572void*cb_data); 573typedefintfor_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 574const char*refname, 575 each_reflog_ent_fn fn, 576void*cb_data); 577typedefintreflog_exists_fn(struct ref_store *ref_store,const char*refname); 578typedefintcreate_reflog_fn(struct ref_store *ref_store,const char*refname, 579int force_create,struct strbuf *err); 580typedefintdelete_reflog_fn(struct ref_store *ref_store,const char*refname); 581typedefintreflog_expire_fn(struct ref_store *ref_store, 582const char*refname,const unsigned char*sha1, 583unsigned int flags, 584 reflog_expiry_prepare_fn prepare_fn, 585 reflog_expiry_should_prune_fn should_prune_fn, 586 reflog_expiry_cleanup_fn cleanup_fn, 587void*policy_cb_data); 588 589/* 590 * Read a reference from the specified reference store, non-recursively. 591 * Set type to describe the reference, and: 592 * 593 * - If refname is the name of a normal reference, fill in sha1 594 * (leaving referent unchanged). 595 * 596 * - If refname is the name of a symbolic reference, write the full 597 * name of the reference to which it refers (e.g. 598 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 599 * type (leaving sha1 unchanged). The caller is responsible for 600 * validating that referent is a valid reference name. 601 * 602 * WARNING: refname might be used as part of a filename, so it is 603 * important from a security standpoint that it be safe in the sense 604 * of refname_is_safe(). Moreover, for symrefs this function sets 605 * referent to whatever the repository says, which might not be a 606 * properly-formatted or even safe reference name. NEITHER INPUT NOR 607 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 608 * 609 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 610 * and return -1. If the ref exists but is neither a symbolic ref nor 611 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 612 * EINVAL, and return -1. If there is another error reading the ref, 613 * set errno appropriately and return -1. 614 * 615 * Backend-specific flags might be set in type as well, regardless of 616 * outcome. 617 * 618 * It is OK for refname to point into referent. If so: 619 * 620 * - if the function succeeds with REF_ISSYMREF, referent will be 621 * overwritten and the memory formerly pointed to by it might be 622 * changed or even freed. 623 * 624 * - in all other cases, referent will be untouched, and therefore 625 * refname will still be valid and unchanged. 626 */ 627typedefintread_raw_ref_fn(struct ref_store *ref_store, 628const char*refname,unsigned char*sha1, 629struct strbuf *referent,unsigned int*type); 630 631struct ref_storage_be { 632struct ref_storage_be *next; 633const char*name; 634 ref_store_init_fn *init; 635 ref_init_db_fn *init_db; 636 637 ref_transaction_prepare_fn *transaction_prepare; 638 ref_transaction_finish_fn *transaction_finish; 639 ref_transaction_abort_fn *transaction_abort; 640 ref_transaction_commit_fn *initial_transaction_commit; 641 642 pack_refs_fn *pack_refs; 643 peel_ref_fn *peel_ref; 644 create_symref_fn *create_symref; 645 delete_refs_fn *delete_refs; 646 rename_ref_fn *rename_ref; 647 copy_ref_fn *copy_ref; 648 649 ref_iterator_begin_fn *iterator_begin; 650 read_raw_ref_fn *read_raw_ref; 651 652 reflog_iterator_begin_fn *reflog_iterator_begin; 653 for_each_reflog_ent_fn *for_each_reflog_ent; 654 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 655 reflog_exists_fn *reflog_exists; 656 create_reflog_fn *create_reflog; 657 delete_reflog_fn *delete_reflog; 658 reflog_expire_fn *reflog_expire; 659}; 660 661externstruct ref_storage_be refs_be_files; 662 663/* 664 * A representation of the reference store for the main repository or 665 * a submodule. The ref_store instances for submodules are kept in a 666 * linked list. 667 */ 668struct ref_store { 669/* The backend describing this ref_store's storage scheme: */ 670const struct ref_storage_be *be; 671}; 672 673/* 674 * Fill in the generic part of refs and add it to our collection of 675 * reference stores. 676 */ 677voidbase_ref_store_init(struct ref_store *refs, 678const struct ref_storage_be *be); 679 680#endif/* REFS_REFS_INTERNAL_H */