notes.con commit notes: convert internal structures to struct object_id (5dcc969)
   1#include "cache.h"
   2#include "notes.h"
   3#include "blob.h"
   4#include "tree.h"
   5#include "utf8.h"
   6#include "strbuf.h"
   7#include "tree-walk.h"
   8#include "string-list.h"
   9#include "refs.h"
  10
  11/*
  12 * Use a non-balancing simple 16-tree structure with struct int_node as
  13 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  14 * 16-array of pointers to its children.
  15 * The bottom 2 bits of each pointer is used to identify the pointer type
  16 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  17 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  18 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  19 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  20 *
  21 * The root node is a statically allocated struct int_node.
  22 */
  23struct int_node {
  24        void *a[16];
  25};
  26
  27/*
  28 * Leaf nodes come in two variants, note entries and subtree entries,
  29 * distinguished by the LSb of the leaf node pointer (see above).
  30 * As a note entry, the key is the SHA1 of the referenced object, and the
  31 * value is the SHA1 of the note object.
  32 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  33 * referenced object, using the last byte of the key to store the length of
  34 * the prefix. The value is the SHA1 of the tree object containing the notes
  35 * subtree.
  36 */
  37struct leaf_node {
  38        struct object_id key_oid;
  39        struct object_id val_oid;
  40};
  41
  42/*
  43 * A notes tree may contain entries that are not notes, and that do not follow
  44 * the naming conventions of notes. There are typically none/few of these, but
  45 * we still need to keep track of them. Keep a simple linked list sorted alpha-
  46 * betically on the non-note path. The list is populated when parsing tree
  47 * objects in load_subtree(), and the non-notes are correctly written back into
  48 * the tree objects produced by write_notes_tree().
  49 */
  50struct non_note {
  51        struct non_note *next; /* grounded (last->next == NULL) */
  52        char *path;
  53        unsigned int mode;
  54        struct object_id oid;
  55};
  56
  57#define PTR_TYPE_NULL     0
  58#define PTR_TYPE_INTERNAL 1
  59#define PTR_TYPE_NOTE     2
  60#define PTR_TYPE_SUBTREE  3
  61
  62#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  63#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  64#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  65
  66#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
  67
  68#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  69        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  70
  71struct notes_tree default_notes_tree;
  72
  73static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
  74static struct notes_tree **display_notes_trees;
  75
  76static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
  77                struct int_node *node, unsigned int n);
  78
  79/*
  80 * Search the tree until the appropriate location for the given key is found:
  81 * 1. Start at the root node, with n = 0
  82 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  83 *    subtree entry and remove it; restart search at the current level.
  84 * 3. Use the nth nibble of the key as an index into a:
  85 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  86 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  87 *      restart search at the current level.
  88 *    - Otherwise, we have found one of the following:
  89 *      - a subtree entry which does not match the key
  90 *      - a note entry which may or may not match the key
  91 *      - an unused leaf node (NULL)
  92 *      In any case, set *tree and *n, and return pointer to the tree location.
  93 */
  94static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
  95                unsigned char *n, const unsigned char *key_sha1)
  96{
  97        struct leaf_node *l;
  98        unsigned char i;
  99        void *p = (*tree)->a[0];
 100
 101        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
 102                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 103                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
 104                        /* unpack tree and resume search */
 105                        (*tree)->a[0] = NULL;
 106                        load_subtree(t, l, *tree, *n);
 107                        free(l);
 108                        return note_tree_search(t, tree, n, key_sha1);
 109                }
 110        }
 111
 112        i = GET_NIBBLE(*n, key_sha1);
 113        p = (*tree)->a[i];
 114        switch (GET_PTR_TYPE(p)) {
 115        case PTR_TYPE_INTERNAL:
 116                *tree = CLR_PTR_TYPE(p);
 117                (*n)++;
 118                return note_tree_search(t, tree, n, key_sha1);
 119        case PTR_TYPE_SUBTREE:
 120                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 121                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
 122                        /* unpack tree and resume search */
 123                        (*tree)->a[i] = NULL;
 124                        load_subtree(t, l, *tree, *n);
 125                        free(l);
 126                        return note_tree_search(t, tree, n, key_sha1);
 127                }
 128                /* fall through */
 129        default:
 130                return &((*tree)->a[i]);
 131        }
 132}
 133
 134/*
 135 * To find a leaf_node:
 136 * Search to the tree location appropriate for the given key:
 137 * If a note entry with matching key, return the note entry, else return NULL.
 138 */
 139static struct leaf_node *note_tree_find(struct notes_tree *t,
 140                struct int_node *tree, unsigned char n,
 141                const unsigned char *key_sha1)
 142{
 143        void **p = note_tree_search(t, &tree, &n, key_sha1);
 144        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 145                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 146                if (!hashcmp(key_sha1, l->key_oid.hash))
 147                        return l;
 148        }
 149        return NULL;
 150}
 151
 152/*
 153 * How to consolidate an int_node:
 154 * If there are > 1 non-NULL entries, give up and return non-zero.
 155 * Otherwise replace the int_node at the given index in the given parent node
 156 * with the only NOTE entry (or a NULL entry if no entries) from the given
 157 * tree, and return 0.
 158 */
 159static int note_tree_consolidate(struct int_node *tree,
 160        struct int_node *parent, unsigned char index)
 161{
 162        unsigned int i;
 163        void *p = NULL;
 164
 165        assert(tree && parent);
 166        assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 167
 168        for (i = 0; i < 16; i++) {
 169                if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 170                        if (p) /* more than one entry */
 171                                return -2;
 172                        p = tree->a[i];
 173                }
 174        }
 175
 176        if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
 177                return -2;
 178        /* replace tree with p in parent[index] */
 179        parent->a[index] = p;
 180        free(tree);
 181        return 0;
 182}
 183
 184/*
 185 * To remove a leaf_node:
 186 * Search to the tree location appropriate for the given leaf_node's key:
 187 * - If location does not hold a matching entry, abort and do nothing.
 188 * - Copy the matching entry's value into the given entry.
 189 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 190 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 191 */
 192static void note_tree_remove(struct notes_tree *t,
 193                struct int_node *tree, unsigned char n,
 194                struct leaf_node *entry)
 195{
 196        struct leaf_node *l;
 197        struct int_node *parent_stack[20];
 198        unsigned char i, j;
 199        void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
 200
 201        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 202        if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 203                return; /* type mismatch, nothing to remove */
 204        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 205        if (oidcmp(&l->key_oid, &entry->key_oid))
 206                return; /* key mismatch, nothing to remove */
 207
 208        /* we have found a matching entry */
 209        oidcpy(&entry->val_oid, &l->val_oid);
 210        free(l);
 211        *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 212
 213        /* consolidate this tree level, and parent levels, if possible */
 214        if (!n)
 215                return; /* cannot consolidate top level */
 216        /* first, build stack of ancestors between root and current node */
 217        parent_stack[0] = t->root;
 218        for (i = 0; i < n; i++) {
 219                j = GET_NIBBLE(i, entry->key_oid.hash);
 220                parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 221        }
 222        assert(i == n && parent_stack[i] == tree);
 223        /* next, unwind stack until note_tree_consolidate() is done */
 224        while (i > 0 &&
 225               !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 226                                      GET_NIBBLE(i - 1, entry->key_oid.hash)))
 227                i--;
 228}
 229
 230/*
 231 * To insert a leaf_node:
 232 * Search to the tree location appropriate for the given leaf_node's key:
 233 * - If location is unused (NULL), store the tweaked pointer directly there
 234 * - If location holds a note entry that matches the note-to-be-inserted, then
 235 *   combine the two notes (by calling the given combine_notes function).
 236 * - If location holds a note entry that matches the subtree-to-be-inserted,
 237 *   then unpack the subtree-to-be-inserted into the location.
 238 * - If location holds a matching subtree entry, unpack the subtree at that
 239 *   location, and restart the insert operation from that level.
 240 * - Else, create a new int_node, holding both the node-at-location and the
 241 *   node-to-be-inserted, and store the new int_node into the location.
 242 */
 243static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
 244                unsigned char n, struct leaf_node *entry, unsigned char type,
 245                combine_notes_fn combine_notes)
 246{
 247        struct int_node *new_node;
 248        struct leaf_node *l;
 249        void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
 250        int ret = 0;
 251
 252        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 253        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 254        switch (GET_PTR_TYPE(*p)) {
 255        case PTR_TYPE_NULL:
 256                assert(!*p);
 257                if (is_null_oid(&entry->val_oid))
 258                        free(entry);
 259                else
 260                        *p = SET_PTR_TYPE(entry, type);
 261                return 0;
 262        case PTR_TYPE_NOTE:
 263                switch (type) {
 264                case PTR_TYPE_NOTE:
 265                        if (!oidcmp(&l->key_oid, &entry->key_oid)) {
 266                                /* skip concatenation if l == entry */
 267                                if (!oidcmp(&l->val_oid, &entry->val_oid))
 268                                        return 0;
 269
 270                                ret = combine_notes(l->val_oid.hash,
 271                                                    entry->val_oid.hash);
 272                                if (!ret && is_null_oid(&l->val_oid))
 273                                        note_tree_remove(t, tree, n, entry);
 274                                free(entry);
 275                                return ret;
 276                        }
 277                        break;
 278                case PTR_TYPE_SUBTREE:
 279                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
 280                                                    entry->key_oid.hash)) {
 281                                /* unpack 'entry' */
 282                                load_subtree(t, entry, tree, n);
 283                                free(entry);
 284                                return 0;
 285                        }
 286                        break;
 287                }
 288                break;
 289        case PTR_TYPE_SUBTREE:
 290                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
 291                        /* unpack 'l' and restart insert */
 292                        *p = NULL;
 293                        load_subtree(t, l, tree, n);
 294                        free(l);
 295                        return note_tree_insert(t, tree, n, entry, type,
 296                                                combine_notes);
 297                }
 298                break;
 299        }
 300
 301        /* non-matching leaf_node */
 302        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 303               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 304        if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
 305                free(entry);
 306                return 0;
 307        }
 308        new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
 309        ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
 310                               combine_notes);
 311        if (ret)
 312                return ret;
 313        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 314        return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
 315}
 316
 317/* Free the entire notes data contained in the given tree */
 318static void note_tree_free(struct int_node *tree)
 319{
 320        unsigned int i;
 321        for (i = 0; i < 16; i++) {
 322                void *p = tree->a[i];
 323                switch (GET_PTR_TYPE(p)) {
 324                case PTR_TYPE_INTERNAL:
 325                        note_tree_free(CLR_PTR_TYPE(p));
 326                        /* fall through */
 327                case PTR_TYPE_NOTE:
 328                case PTR_TYPE_SUBTREE:
 329                        free(CLR_PTR_TYPE(p));
 330                }
 331        }
 332}
 333
 334/*
 335 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 336 * - hex      - Partial SHA1 segment in ASCII hex format
 337 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 338 * - sha1     - Partial SHA1 value is written here
 339 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 340 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 341 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 342 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 343 */
 344static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 345                unsigned char *sha1, unsigned int sha1_len)
 346{
 347        unsigned int i, len = hex_len >> 1;
 348        if (hex_len % 2 != 0 || len > sha1_len)
 349                return -1;
 350        for (i = 0; i < len; i++) {
 351                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 352                if (val & ~0xff)
 353                        return -1;
 354                *sha1++ = val;
 355                hex += 2;
 356        }
 357        for (; i < sha1_len; i++)
 358                *sha1++ = 0;
 359        return len;
 360}
 361
 362static int non_note_cmp(const struct non_note *a, const struct non_note *b)
 363{
 364        return strcmp(a->path, b->path);
 365}
 366
 367/* note: takes ownership of path string */
 368static void add_non_note(struct notes_tree *t, char *path,
 369                unsigned int mode, const unsigned char *sha1)
 370{
 371        struct non_note *p = t->prev_non_note, *n;
 372        n = (struct non_note *) xmalloc(sizeof(struct non_note));
 373        n->next = NULL;
 374        n->path = path;
 375        n->mode = mode;
 376        hashcpy(n->oid.hash, sha1);
 377        t->prev_non_note = n;
 378
 379        if (!t->first_non_note) {
 380                t->first_non_note = n;
 381                return;
 382        }
 383
 384        if (non_note_cmp(p, n) < 0)
 385                ; /* do nothing  */
 386        else if (non_note_cmp(t->first_non_note, n) <= 0)
 387                p = t->first_non_note;
 388        else {
 389                /* n sorts before t->first_non_note */
 390                n->next = t->first_non_note;
 391                t->first_non_note = n;
 392                return;
 393        }
 394
 395        /* n sorts equal or after p */
 396        while (p->next && non_note_cmp(p->next, n) <= 0)
 397                p = p->next;
 398
 399        if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
 400                assert(strcmp(p->path, n->path) == 0);
 401                p->mode = n->mode;
 402                oidcpy(&p->oid, &n->oid);
 403                free(n);
 404                t->prev_non_note = p;
 405                return;
 406        }
 407
 408        /* n sorts between p and p->next */
 409        n->next = p->next;
 410        p->next = n;
 411}
 412
 413static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 414                struct int_node *node, unsigned int n)
 415{
 416        unsigned char object_sha1[20];
 417        unsigned int prefix_len;
 418        void *buf;
 419        struct tree_desc desc;
 420        struct name_entry entry;
 421        int len, path_len;
 422        unsigned char type;
 423        struct leaf_node *l;
 424
 425        buf = fill_tree_descriptor(&desc, subtree->val_oid.hash);
 426        if (!buf)
 427                die("Could not read %s for notes-index",
 428                     oid_to_hex(&subtree->val_oid));
 429
 430        prefix_len = subtree->key_oid.hash[19];
 431        assert(prefix_len * 2 >= n);
 432        memcpy(object_sha1, subtree->key_oid.hash, prefix_len);
 433        while (tree_entry(&desc, &entry)) {
 434                path_len = strlen(entry.path);
 435                len = get_sha1_hex_segment(entry.path, path_len,
 436                                object_sha1 + prefix_len, 20 - prefix_len);
 437                if (len < 0)
 438                        goto handle_non_note; /* entry.path is not a SHA1 */
 439                len += prefix_len;
 440
 441                /*
 442                 * If object SHA1 is complete (len == 20), assume note object
 443                 * If object SHA1 is incomplete (len < 20), and current
 444                 * component consists of 2 hex chars, assume note subtree
 445                 */
 446                if (len <= 20) {
 447                        type = PTR_TYPE_NOTE;
 448                        l = (struct leaf_node *)
 449                                xcalloc(1, sizeof(struct leaf_node));
 450                        hashcpy(l->key_oid.hash, object_sha1);
 451                        oidcpy(&l->val_oid, entry.oid);
 452                        if (len < 20) {
 453                                if (!S_ISDIR(entry.mode) || path_len != 2)
 454                                        goto handle_non_note; /* not subtree */
 455                                l->key_oid.hash[19] = (unsigned char) len;
 456                                type = PTR_TYPE_SUBTREE;
 457                        }
 458                        if (note_tree_insert(t, node, n, l, type,
 459                                             combine_notes_concatenate))
 460                                die("Failed to load %s %s into notes tree "
 461                                    "from %s",
 462                                    type == PTR_TYPE_NOTE ? "note" : "subtree",
 463                                    oid_to_hex(&l->key_oid), t->ref);
 464                }
 465                continue;
 466
 467handle_non_note:
 468                /*
 469                 * Determine full path for this non-note entry:
 470                 * The filename is already found in entry.path, but the
 471                 * directory part of the path must be deduced from the subtree
 472                 * containing this entry. We assume here that the overall notes
 473                 * tree follows a strict byte-based progressive fanout
 474                 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
 475                 * e.g. 4/36 fanout). This means that if a non-note is found at
 476                 * path "dead/beef", the following code will register it as
 477                 * being found on "de/ad/beef".
 478                 * On the other hand, if you use such non-obvious non-note
 479                 * paths in the middle of a notes tree, you deserve what's
 480                 * coming to you ;). Note that for non-notes that are not
 481                 * SHA1-like at the top level, there will be no problems.
 482                 *
 483                 * To conclude, it is strongly advised to make sure non-notes
 484                 * have at least one non-hex character in the top-level path
 485                 * component.
 486                 */
 487                {
 488                        struct strbuf non_note_path = STRBUF_INIT;
 489                        const char *q = oid_to_hex(&subtree->key_oid);
 490                        int i;
 491                        for (i = 0; i < prefix_len; i++) {
 492                                strbuf_addch(&non_note_path, *q++);
 493                                strbuf_addch(&non_note_path, *q++);
 494                                strbuf_addch(&non_note_path, '/');
 495                        }
 496                        strbuf_addstr(&non_note_path, entry.path);
 497                        add_non_note(t, strbuf_detach(&non_note_path, NULL),
 498                                     entry.mode, entry.oid->hash);
 499                }
 500        }
 501        free(buf);
 502}
 503
 504/*
 505 * Determine optimal on-disk fanout for this part of the notes tree
 506 *
 507 * Given a (sub)tree and the level in the internal tree structure, determine
 508 * whether or not the given existing fanout should be expanded for this
 509 * (sub)tree.
 510 *
 511 * Values of the 'fanout' variable:
 512 * - 0: No fanout (all notes are stored directly in the root notes tree)
 513 * - 1: 2/38 fanout
 514 * - 2: 2/2/36 fanout
 515 * - 3: 2/2/2/34 fanout
 516 * etc.
 517 */
 518static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 519                unsigned char fanout)
 520{
 521        /*
 522         * The following is a simple heuristic that works well in practice:
 523         * For each even-numbered 16-tree level (remember that each on-disk
 524         * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 525         * entries at that tree level. If all of them are either int_nodes or
 526         * subtree entries, then there are likely plenty of notes below this
 527         * level, so we return an incremented fanout.
 528         */
 529        unsigned int i;
 530        if ((n % 2) || (n > 2 * fanout))
 531                return fanout;
 532        for (i = 0; i < 16; i++) {
 533                switch (GET_PTR_TYPE(tree->a[i])) {
 534                case PTR_TYPE_SUBTREE:
 535                case PTR_TYPE_INTERNAL:
 536                        continue;
 537                default:
 538                        return fanout;
 539                }
 540        }
 541        return fanout + 1;
 542}
 543
 544/* hex SHA1 + 19 * '/' + NUL */
 545#define FANOUT_PATH_MAX 40 + 19 + 1
 546
 547static void construct_path_with_fanout(const unsigned char *sha1,
 548                unsigned char fanout, char *path)
 549{
 550        unsigned int i = 0, j = 0;
 551        const char *hex_sha1 = sha1_to_hex(sha1);
 552        assert(fanout < 20);
 553        while (fanout) {
 554                path[i++] = hex_sha1[j++];
 555                path[i++] = hex_sha1[j++];
 556                path[i++] = '/';
 557                fanout--;
 558        }
 559        xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
 560}
 561
 562static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
 563                unsigned char n, unsigned char fanout, int flags,
 564                each_note_fn fn, void *cb_data)
 565{
 566        unsigned int i;
 567        void *p;
 568        int ret = 0;
 569        struct leaf_node *l;
 570        static char path[FANOUT_PATH_MAX];
 571
 572        fanout = determine_fanout(tree, n, fanout);
 573        for (i = 0; i < 16; i++) {
 574redo:
 575                p = tree->a[i];
 576                switch (GET_PTR_TYPE(p)) {
 577                case PTR_TYPE_INTERNAL:
 578                        /* recurse into int_node */
 579                        ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
 580                                fanout, flags, fn, cb_data);
 581                        break;
 582                case PTR_TYPE_SUBTREE:
 583                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 584                        /*
 585                         * Subtree entries in the note tree represent parts of
 586                         * the note tree that have not yet been explored. There
 587                         * is a direct relationship between subtree entries at
 588                         * level 'n' in the tree, and the 'fanout' variable:
 589                         * Subtree entries at level 'n <= 2 * fanout' should be
 590                         * preserved, since they correspond exactly to a fanout
 591                         * directory in the on-disk structure. However, subtree
 592                         * entries at level 'n > 2 * fanout' should NOT be
 593                         * preserved, but rather consolidated into the above
 594                         * notes tree level. We achieve this by unconditionally
 595                         * unpacking subtree entries that exist below the
 596                         * threshold level at 'n = 2 * fanout'.
 597                         */
 598                        if (n <= 2 * fanout &&
 599                            flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 600                                /* invoke callback with subtree */
 601                                unsigned int path_len =
 602                                        l->key_oid.hash[19] * 2 + fanout;
 603                                assert(path_len < FANOUT_PATH_MAX - 1);
 604                                construct_path_with_fanout(l->key_oid.hash,
 605                                                           fanout,
 606                                                           path);
 607                                /* Create trailing slash, if needed */
 608                                if (path[path_len - 1] != '/')
 609                                        path[path_len++] = '/';
 610                                path[path_len] = '\0';
 611                                ret = fn(l->key_oid.hash, l->val_oid.hash,
 612                                         path,
 613                                         cb_data);
 614                        }
 615                        if (n > fanout * 2 ||
 616                            !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 617                                /* unpack subtree and resume traversal */
 618                                tree->a[i] = NULL;
 619                                load_subtree(t, l, tree, n);
 620                                free(l);
 621                                goto redo;
 622                        }
 623                        break;
 624                case PTR_TYPE_NOTE:
 625                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 626                        construct_path_with_fanout(l->key_oid.hash, fanout,
 627                                                   path);
 628                        ret = fn(l->key_oid.hash, l->val_oid.hash, path,
 629                                 cb_data);
 630                        break;
 631                }
 632                if (ret)
 633                        return ret;
 634        }
 635        return 0;
 636}
 637
 638struct tree_write_stack {
 639        struct tree_write_stack *next;
 640        struct strbuf buf;
 641        char path[2]; /* path to subtree in next, if any */
 642};
 643
 644static inline int matches_tree_write_stack(struct tree_write_stack *tws,
 645                const char *full_path)
 646{
 647        return  full_path[0] == tws->path[0] &&
 648                full_path[1] == tws->path[1] &&
 649                full_path[2] == '/';
 650}
 651
 652static void write_tree_entry(struct strbuf *buf, unsigned int mode,
 653                const char *path, unsigned int path_len, const
 654                unsigned char *sha1)
 655{
 656        strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
 657        strbuf_add(buf, sha1, 20);
 658}
 659
 660static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
 661                const char *path)
 662{
 663        struct tree_write_stack *n;
 664        assert(!tws->next);
 665        assert(tws->path[0] == '\0' && tws->path[1] == '\0');
 666        n = (struct tree_write_stack *)
 667                xmalloc(sizeof(struct tree_write_stack));
 668        n->next = NULL;
 669        strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
 670        n->path[0] = n->path[1] = '\0';
 671        tws->next = n;
 672        tws->path[0] = path[0];
 673        tws->path[1] = path[1];
 674}
 675
 676static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
 677{
 678        int ret;
 679        struct tree_write_stack *n = tws->next;
 680        unsigned char s[20];
 681        if (n) {
 682                ret = tree_write_stack_finish_subtree(n);
 683                if (ret)
 684                        return ret;
 685                ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
 686                if (ret)
 687                        return ret;
 688                strbuf_release(&n->buf);
 689                free(n);
 690                tws->next = NULL;
 691                write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
 692                tws->path[0] = tws->path[1] = '\0';
 693        }
 694        return 0;
 695}
 696
 697static int write_each_note_helper(struct tree_write_stack *tws,
 698                const char *path, unsigned int mode,
 699                const unsigned char *sha1)
 700{
 701        size_t path_len = strlen(path);
 702        unsigned int n = 0;
 703        int ret;
 704
 705        /* Determine common part of tree write stack */
 706        while (tws && 3 * n < path_len &&
 707               matches_tree_write_stack(tws, path + 3 * n)) {
 708                n++;
 709                tws = tws->next;
 710        }
 711
 712        /* tws point to last matching tree_write_stack entry */
 713        ret = tree_write_stack_finish_subtree(tws);
 714        if (ret)
 715                return ret;
 716
 717        /* Start subtrees needed to satisfy path */
 718        while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
 719                tree_write_stack_init_subtree(tws, path + 3 * n);
 720                n++;
 721                tws = tws->next;
 722        }
 723
 724        /* There should be no more directory components in the given path */
 725        assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 726
 727        /* Finally add given entry to the current tree object */
 728        write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
 729                         sha1);
 730
 731        return 0;
 732}
 733
 734struct write_each_note_data {
 735        struct tree_write_stack *root;
 736        struct non_note *next_non_note;
 737};
 738
 739static int write_each_non_note_until(const char *note_path,
 740                struct write_each_note_data *d)
 741{
 742        struct non_note *n = d->next_non_note;
 743        int cmp = 0, ret;
 744        while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
 745                if (note_path && cmp == 0)
 746                        ; /* do nothing, prefer note to non-note */
 747                else {
 748                        ret = write_each_note_helper(d->root, n->path, n->mode,
 749                                                     n->oid.hash);
 750                        if (ret)
 751                                return ret;
 752                }
 753                n = n->next;
 754        }
 755        d->next_non_note = n;
 756        return 0;
 757}
 758
 759static int write_each_note(const unsigned char *object_sha1,
 760                const unsigned char *note_sha1, char *note_path,
 761                void *cb_data)
 762{
 763        struct write_each_note_data *d =
 764                (struct write_each_note_data *) cb_data;
 765        size_t note_path_len = strlen(note_path);
 766        unsigned int mode = 0100644;
 767
 768        if (note_path[note_path_len - 1] == '/') {
 769                /* subtree entry */
 770                note_path_len--;
 771                note_path[note_path_len] = '\0';
 772                mode = 040000;
 773        }
 774        assert(note_path_len <= 40 + 19);
 775
 776        /* Weave non-note entries into note entries */
 777        return  write_each_non_note_until(note_path, d) ||
 778                write_each_note_helper(d->root, note_path, mode, note_sha1);
 779}
 780
 781struct note_delete_list {
 782        struct note_delete_list *next;
 783        const unsigned char *sha1;
 784};
 785
 786static int prune_notes_helper(const unsigned char *object_sha1,
 787                const unsigned char *note_sha1, char *note_path,
 788                void *cb_data)
 789{
 790        struct note_delete_list **l = (struct note_delete_list **) cb_data;
 791        struct note_delete_list *n;
 792
 793        if (has_sha1_file(object_sha1))
 794                return 0; /* nothing to do for this note */
 795
 796        /* failed to find object => prune this note */
 797        n = (struct note_delete_list *) xmalloc(sizeof(*n));
 798        n->next = *l;
 799        n->sha1 = object_sha1;
 800        *l = n;
 801        return 0;
 802}
 803
 804int combine_notes_concatenate(unsigned char *cur_sha1,
 805                const unsigned char *new_sha1)
 806{
 807        char *cur_msg = NULL, *new_msg = NULL, *buf;
 808        unsigned long cur_len, new_len, buf_len;
 809        enum object_type cur_type, new_type;
 810        int ret;
 811
 812        /* read in both note blob objects */
 813        if (!is_null_sha1(new_sha1))
 814                new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 815        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 816                free(new_msg);
 817                return 0;
 818        }
 819        if (!is_null_sha1(cur_sha1))
 820                cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 821        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 822                free(cur_msg);
 823                free(new_msg);
 824                hashcpy(cur_sha1, new_sha1);
 825                return 0;
 826        }
 827
 828        /* we will separate the notes by two newlines anyway */
 829        if (cur_msg[cur_len - 1] == '\n')
 830                cur_len--;
 831
 832        /* concatenate cur_msg and new_msg into buf */
 833        buf_len = cur_len + 2 + new_len;
 834        buf = (char *) xmalloc(buf_len);
 835        memcpy(buf, cur_msg, cur_len);
 836        buf[cur_len] = '\n';
 837        buf[cur_len + 1] = '\n';
 838        memcpy(buf + cur_len + 2, new_msg, new_len);
 839        free(cur_msg);
 840        free(new_msg);
 841
 842        /* create a new blob object from buf */
 843        ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
 844        free(buf);
 845        return ret;
 846}
 847
 848int combine_notes_overwrite(unsigned char *cur_sha1,
 849                const unsigned char *new_sha1)
 850{
 851        hashcpy(cur_sha1, new_sha1);
 852        return 0;
 853}
 854
 855int combine_notes_ignore(unsigned char *cur_sha1,
 856                const unsigned char *new_sha1)
 857{
 858        return 0;
 859}
 860
 861/*
 862 * Add the lines from the named object to list, with trailing
 863 * newlines removed.
 864 */
 865static int string_list_add_note_lines(struct string_list *list,
 866                                      const unsigned char *sha1)
 867{
 868        char *data;
 869        unsigned long len;
 870        enum object_type t;
 871
 872        if (is_null_sha1(sha1))
 873                return 0;
 874
 875        /* read_sha1_file NUL-terminates */
 876        data = read_sha1_file(sha1, &t, &len);
 877        if (t != OBJ_BLOB || !data || !len) {
 878                free(data);
 879                return t != OBJ_BLOB || !data;
 880        }
 881
 882        /*
 883         * If the last line of the file is EOL-terminated, this will
 884         * add an empty string to the list.  But it will be removed
 885         * later, along with any empty strings that came from empty
 886         * lines within the file.
 887         */
 888        string_list_split(list, data, '\n', -1);
 889        free(data);
 890        return 0;
 891}
 892
 893static int string_list_join_lines_helper(struct string_list_item *item,
 894                                         void *cb_data)
 895{
 896        struct strbuf *buf = cb_data;
 897        strbuf_addstr(buf, item->string);
 898        strbuf_addch(buf, '\n');
 899        return 0;
 900}
 901
 902int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
 903                const unsigned char *new_sha1)
 904{
 905        struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
 906        struct strbuf buf = STRBUF_INIT;
 907        int ret = 1;
 908
 909        /* read both note blob objects into unique_lines */
 910        if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
 911                goto out;
 912        if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
 913                goto out;
 914        string_list_remove_empty_items(&sort_uniq_list, 0);
 915        string_list_sort(&sort_uniq_list);
 916        string_list_remove_duplicates(&sort_uniq_list, 0);
 917
 918        /* create a new blob object from sort_uniq_list */
 919        if (for_each_string_list(&sort_uniq_list,
 920                                 string_list_join_lines_helper, &buf))
 921                goto out;
 922
 923        ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
 924
 925out:
 926        strbuf_release(&buf);
 927        string_list_clear(&sort_uniq_list, 0);
 928        return ret;
 929}
 930
 931static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
 932                                   int flag, void *cb)
 933{
 934        struct string_list *refs = cb;
 935        if (!unsorted_string_list_has_string(refs, refname))
 936                string_list_append(refs, refname);
 937        return 0;
 938}
 939
 940/*
 941 * The list argument must have strdup_strings set on it.
 942 */
 943void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
 944{
 945        assert(list->strdup_strings);
 946        if (has_glob_specials(glob)) {
 947                for_each_glob_ref(string_list_add_one_ref, glob, list);
 948        } else {
 949                unsigned char sha1[20];
 950                if (get_sha1(glob, sha1))
 951                        warning("notes ref %s is invalid", glob);
 952                if (!unsorted_string_list_has_string(list, glob))
 953                        string_list_append(list, glob);
 954        }
 955}
 956
 957void string_list_add_refs_from_colon_sep(struct string_list *list,
 958                                         const char *globs)
 959{
 960        struct string_list split = STRING_LIST_INIT_NODUP;
 961        char *globs_copy = xstrdup(globs);
 962        int i;
 963
 964        string_list_split_in_place(&split, globs_copy, ':', -1);
 965        string_list_remove_empty_items(&split, 0);
 966
 967        for (i = 0; i < split.nr; i++)
 968                string_list_add_refs_by_glob(list, split.items[i].string);
 969
 970        string_list_clear(&split, 0);
 971        free(globs_copy);
 972}
 973
 974static int notes_display_config(const char *k, const char *v, void *cb)
 975{
 976        int *load_refs = cb;
 977
 978        if (*load_refs && !strcmp(k, "notes.displayref")) {
 979                if (!v)
 980                        config_error_nonbool(k);
 981                string_list_add_refs_by_glob(&display_notes_refs, v);
 982        }
 983
 984        return 0;
 985}
 986
 987const char *default_notes_ref(void)
 988{
 989        const char *notes_ref = NULL;
 990        if (!notes_ref)
 991                notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 992        if (!notes_ref)
 993                notes_ref = notes_ref_name; /* value of core.notesRef config */
 994        if (!notes_ref)
 995                notes_ref = GIT_NOTES_DEFAULT_REF;
 996        return notes_ref;
 997}
 998
 999void init_notes(struct notes_tree *t, const char *notes_ref,
1000                combine_notes_fn combine_notes, int flags)
1001{
1002        struct object_id oid, object_oid;
1003        unsigned mode;
1004        struct leaf_node root_tree;
1005
1006        if (!t)
1007                t = &default_notes_tree;
1008        assert(!t->initialized);
1009
1010        if (!notes_ref)
1011                notes_ref = default_notes_ref();
1012
1013        if (!combine_notes)
1014                combine_notes = combine_notes_concatenate;
1015
1016        t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1017        t->first_non_note = NULL;
1018        t->prev_non_note = NULL;
1019        t->ref = xstrdup_or_null(notes_ref);
1020        t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1021        t->combine_notes = combine_notes;
1022        t->initialized = 1;
1023        t->dirty = 0;
1024
1025        if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1026            get_sha1_treeish(notes_ref, object_oid.hash))
1027                return;
1028        if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1029                die("Cannot use notes ref %s", notes_ref);
1030        if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1031                die("Failed to read notes tree referenced by %s (%s)",
1032                    notes_ref, oid_to_hex(&object_oid));
1033
1034        oidclr(&root_tree.key_oid);
1035        oidcpy(&root_tree.val_oid, &oid);
1036        load_subtree(t, &root_tree, t->root, 0);
1037}
1038
1039struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1040{
1041        struct string_list_item *item;
1042        int counter = 0;
1043        struct notes_tree **trees;
1044        ALLOC_ARRAY(trees, refs->nr + 1);
1045        for_each_string_list_item(item, refs) {
1046                struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1047                init_notes(t, item->string, combine_notes_ignore, flags);
1048                trees[counter++] = t;
1049        }
1050        trees[counter] = NULL;
1051        return trees;
1052}
1053
1054void init_display_notes(struct display_notes_opt *opt)
1055{
1056        char *display_ref_env;
1057        int load_config_refs = 0;
1058        display_notes_refs.strdup_strings = 1;
1059
1060        assert(!display_notes_trees);
1061
1062        if (!opt || opt->use_default_notes > 0 ||
1063            (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1064                string_list_append(&display_notes_refs, default_notes_ref());
1065                display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1066                if (display_ref_env) {
1067                        string_list_add_refs_from_colon_sep(&display_notes_refs,
1068                                                            display_ref_env);
1069                        load_config_refs = 0;
1070                } else
1071                        load_config_refs = 1;
1072        }
1073
1074        git_config(notes_display_config, &load_config_refs);
1075
1076        if (opt) {
1077                struct string_list_item *item;
1078                for_each_string_list_item(item, &opt->extra_notes_refs)
1079                        string_list_add_refs_by_glob(&display_notes_refs,
1080                                                     item->string);
1081        }
1082
1083        display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1084        string_list_clear(&display_notes_refs, 0);
1085}
1086
1087int add_note(struct notes_tree *t, const unsigned char *object_sha1,
1088                const unsigned char *note_sha1, combine_notes_fn combine_notes)
1089{
1090        struct leaf_node *l;
1091
1092        if (!t)
1093                t = &default_notes_tree;
1094        assert(t->initialized);
1095        t->dirty = 1;
1096        if (!combine_notes)
1097                combine_notes = t->combine_notes;
1098        l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1099        hashcpy(l->key_oid.hash, object_sha1);
1100        hashcpy(l->val_oid.hash, note_sha1);
1101        return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1102}
1103
1104int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1105{
1106        struct leaf_node l;
1107
1108        if (!t)
1109                t = &default_notes_tree;
1110        assert(t->initialized);
1111        hashcpy(l.key_oid.hash, object_sha1);
1112        oidclr(&l.val_oid);
1113        note_tree_remove(t, t->root, 0, &l);
1114        if (is_null_oid(&l.val_oid)) /* no note was removed */
1115                return 1;
1116        t->dirty = 1;
1117        return 0;
1118}
1119
1120const unsigned char *get_note(struct notes_tree *t,
1121                const unsigned char *object_sha1)
1122{
1123        struct leaf_node *found;
1124
1125        if (!t)
1126                t = &default_notes_tree;
1127        assert(t->initialized);
1128        found = note_tree_find(t, t->root, 0, object_sha1);
1129        return found ? found->val_oid.hash : NULL;
1130}
1131
1132int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1133                void *cb_data)
1134{
1135        if (!t)
1136                t = &default_notes_tree;
1137        assert(t->initialized);
1138        return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1139}
1140
1141int write_notes_tree(struct notes_tree *t, unsigned char *result)
1142{
1143        struct tree_write_stack root;
1144        struct write_each_note_data cb_data;
1145        int ret;
1146
1147        if (!t)
1148                t = &default_notes_tree;
1149        assert(t->initialized);
1150
1151        /* Prepare for traversal of current notes tree */
1152        root.next = NULL; /* last forward entry in list is grounded */
1153        strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1154        root.path[0] = root.path[1] = '\0';
1155        cb_data.root = &root;
1156        cb_data.next_non_note = t->first_non_note;
1157
1158        /* Write tree objects representing current notes tree */
1159        ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1160                                FOR_EACH_NOTE_YIELD_SUBTREES,
1161                        write_each_note, &cb_data) ||
1162                write_each_non_note_until(NULL, &cb_data) ||
1163                tree_write_stack_finish_subtree(&root) ||
1164                write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1165        strbuf_release(&root.buf);
1166        return ret;
1167}
1168
1169void prune_notes(struct notes_tree *t, int flags)
1170{
1171        struct note_delete_list *l = NULL;
1172
1173        if (!t)
1174                t = &default_notes_tree;
1175        assert(t->initialized);
1176
1177        for_each_note(t, 0, prune_notes_helper, &l);
1178
1179        while (l) {
1180                if (flags & NOTES_PRUNE_VERBOSE)
1181                        printf("%s\n", sha1_to_hex(l->sha1));
1182                if (!(flags & NOTES_PRUNE_DRYRUN))
1183                        remove_note(t, l->sha1);
1184                l = l->next;
1185        }
1186}
1187
1188void free_notes(struct notes_tree *t)
1189{
1190        if (!t)
1191                t = &default_notes_tree;
1192        if (t->root)
1193                note_tree_free(t->root);
1194        free(t->root);
1195        while (t->first_non_note) {
1196                t->prev_non_note = t->first_non_note->next;
1197                free(t->first_non_note->path);
1198                free(t->first_non_note);
1199                t->first_non_note = t->prev_non_note;
1200        }
1201        free(t->ref);
1202        memset(t, 0, sizeof(struct notes_tree));
1203}
1204
1205/*
1206 * Fill the given strbuf with the notes associated with the given object.
1207 *
1208 * If the given notes_tree structure is not initialized, it will be auto-
1209 * initialized to the default value (see documentation for init_notes() above).
1210 * If the given notes_tree is NULL, the internal/default notes_tree will be
1211 * used instead.
1212 *
1213 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1214 * for human consumption.
1215 */
1216static void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1217                        struct strbuf *sb, const char *output_encoding, int raw)
1218{
1219        static const char utf8[] = "utf-8";
1220        const unsigned char *sha1;
1221        char *msg, *msg_p;
1222        unsigned long linelen, msglen;
1223        enum object_type type;
1224
1225        if (!t)
1226                t = &default_notes_tree;
1227        if (!t->initialized)
1228                init_notes(t, NULL, NULL, 0);
1229
1230        sha1 = get_note(t, object_sha1);
1231        if (!sha1)
1232                return;
1233
1234        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) {
1235                free(msg);
1236                return;
1237        }
1238
1239        if (output_encoding && *output_encoding &&
1240            !is_encoding_utf8(output_encoding)) {
1241                char *reencoded = reencode_string(msg, output_encoding, utf8);
1242                if (reencoded) {
1243                        free(msg);
1244                        msg = reencoded;
1245                        msglen = strlen(msg);
1246                }
1247        }
1248
1249        /* we will end the annotation by a newline anyway */
1250        if (msglen && msg[msglen - 1] == '\n')
1251                msglen--;
1252
1253        if (!raw) {
1254                const char *ref = t->ref;
1255                if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1256                        strbuf_addstr(sb, "\nNotes:\n");
1257                } else {
1258                        if (starts_with(ref, "refs/"))
1259                                ref += 5;
1260                        if (starts_with(ref, "notes/"))
1261                                ref += 6;
1262                        strbuf_addf(sb, "\nNotes (%s):\n", ref);
1263                }
1264        }
1265
1266        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1267                linelen = strchrnul(msg_p, '\n') - msg_p;
1268
1269                if (!raw)
1270                        strbuf_addstr(sb, "    ");
1271                strbuf_add(sb, msg_p, linelen);
1272                strbuf_addch(sb, '\n');
1273        }
1274
1275        free(msg);
1276}
1277
1278void format_display_notes(const unsigned char *object_sha1,
1279                          struct strbuf *sb, const char *output_encoding, int raw)
1280{
1281        int i;
1282        assert(display_notes_trees);
1283        for (i = 0; display_notes_trees[i]; i++)
1284                format_note(display_notes_trees[i], object_sha1, sb,
1285                            output_encoding, raw);
1286}
1287
1288int copy_note(struct notes_tree *t,
1289              const unsigned char *from_obj, const unsigned char *to_obj,
1290              int force, combine_notes_fn combine_notes)
1291{
1292        const unsigned char *note = get_note(t, from_obj);
1293        const unsigned char *existing_note = get_note(t, to_obj);
1294
1295        if (!force && existing_note)
1296                return 1;
1297
1298        if (note)
1299                return add_note(t, to_obj, note, combine_notes);
1300        else if (existing_note)
1301                return add_note(t, to_obj, null_sha1, combine_notes);
1302
1303        return 0;
1304}
1305
1306void expand_notes_ref(struct strbuf *sb)
1307{
1308        if (starts_with(sb->buf, "refs/notes/"))
1309                return; /* we're happy */
1310        else if (starts_with(sb->buf, "notes/"))
1311                strbuf_insert(sb, 0, "refs/", 5);
1312        else
1313                strbuf_insert(sb, 0, "refs/notes/", 11);
1314}
1315
1316void expand_loose_notes_ref(struct strbuf *sb)
1317{
1318        unsigned char object[20];
1319
1320        if (get_sha1(sb->buf, object)) {
1321                /* fallback to expand_notes_ref */
1322                expand_notes_ref(sb);
1323        }
1324}