run-command.con commit howto/using-merge-subtree: mention --allow-unrelated-histories (5e495f8)
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec-cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8#include "string-list.h"
   9#include "quote.h"
  10
  11void child_process_init(struct child_process *child)
  12{
  13        memset(child, 0, sizeof(*child));
  14        argv_array_init(&child->args);
  15        argv_array_init(&child->env_array);
  16}
  17
  18void child_process_clear(struct child_process *child)
  19{
  20        argv_array_clear(&child->args);
  21        argv_array_clear(&child->env_array);
  22}
  23
  24struct child_to_clean {
  25        pid_t pid;
  26        struct child_process *process;
  27        struct child_to_clean *next;
  28};
  29static struct child_to_clean *children_to_clean;
  30static int installed_child_cleanup_handler;
  31
  32static void cleanup_children(int sig, int in_signal)
  33{
  34        struct child_to_clean *children_to_wait_for = NULL;
  35
  36        while (children_to_clean) {
  37                struct child_to_clean *p = children_to_clean;
  38                children_to_clean = p->next;
  39
  40                if (p->process && !in_signal) {
  41                        struct child_process *process = p->process;
  42                        if (process->clean_on_exit_handler) {
  43                                trace_printf(
  44                                        "trace: run_command: running exit handler for pid %"
  45                                        PRIuMAX, (uintmax_t)p->pid
  46                                );
  47                                process->clean_on_exit_handler(process);
  48                        }
  49                }
  50
  51                kill(p->pid, sig);
  52
  53                if (p->process && p->process->wait_after_clean) {
  54                        p->next = children_to_wait_for;
  55                        children_to_wait_for = p;
  56                } else {
  57                        if (!in_signal)
  58                                free(p);
  59                }
  60        }
  61
  62        while (children_to_wait_for) {
  63                struct child_to_clean *p = children_to_wait_for;
  64                children_to_wait_for = p->next;
  65
  66                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  67                        ; /* spin waiting for process exit or error */
  68
  69                if (!in_signal)
  70                        free(p);
  71        }
  72}
  73
  74static void cleanup_children_on_signal(int sig)
  75{
  76        cleanup_children(sig, 1);
  77        sigchain_pop(sig);
  78        raise(sig);
  79}
  80
  81static void cleanup_children_on_exit(void)
  82{
  83        cleanup_children(SIGTERM, 0);
  84}
  85
  86static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  87{
  88        struct child_to_clean *p = xmalloc(sizeof(*p));
  89        p->pid = pid;
  90        p->process = process;
  91        p->next = children_to_clean;
  92        children_to_clean = p;
  93
  94        if (!installed_child_cleanup_handler) {
  95                atexit(cleanup_children_on_exit);
  96                sigchain_push_common(cleanup_children_on_signal);
  97                installed_child_cleanup_handler = 1;
  98        }
  99}
 100
 101static void clear_child_for_cleanup(pid_t pid)
 102{
 103        struct child_to_clean **pp;
 104
 105        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 106                struct child_to_clean *clean_me = *pp;
 107
 108                if (clean_me->pid == pid) {
 109                        *pp = clean_me->next;
 110                        free(clean_me);
 111                        return;
 112                }
 113        }
 114}
 115
 116static inline void close_pair(int fd[2])
 117{
 118        close(fd[0]);
 119        close(fd[1]);
 120}
 121
 122int is_executable(const char *name)
 123{
 124        struct stat st;
 125
 126        if (stat(name, &st) || /* stat, not lstat */
 127            !S_ISREG(st.st_mode))
 128                return 0;
 129
 130#if defined(GIT_WINDOWS_NATIVE)
 131        /*
 132         * On Windows there is no executable bit. The file extension
 133         * indicates whether it can be run as an executable, and Git
 134         * has special-handling to detect scripts and launch them
 135         * through the indicated script interpreter. We test for the
 136         * file extension first because virus scanners may make
 137         * it quite expensive to open many files.
 138         */
 139        if (ends_with(name, ".exe"))
 140                return S_IXUSR;
 141
 142{
 143        /*
 144         * Now that we know it does not have an executable extension,
 145         * peek into the file instead.
 146         */
 147        char buf[3] = { 0 };
 148        int n;
 149        int fd = open(name, O_RDONLY);
 150        st.st_mode &= ~S_IXUSR;
 151        if (fd >= 0) {
 152                n = read(fd, buf, 2);
 153                if (n == 2)
 154                        /* look for a she-bang */
 155                        if (!strcmp(buf, "#!"))
 156                                st.st_mode |= S_IXUSR;
 157                close(fd);
 158        }
 159}
 160#endif
 161        return st.st_mode & S_IXUSR;
 162}
 163
 164/*
 165 * Search $PATH for a command.  This emulates the path search that
 166 * execvp would perform, without actually executing the command so it
 167 * can be used before fork() to prepare to run a command using
 168 * execve() or after execvp() to diagnose why it failed.
 169 *
 170 * The caller should ensure that file contains no directory
 171 * separators.
 172 *
 173 * Returns the path to the command, as found in $PATH or NULL if the
 174 * command could not be found.  The caller inherits ownership of the memory
 175 * used to store the resultant path.
 176 *
 177 * This should not be used on Windows, where the $PATH search rules
 178 * are more complicated (e.g., a search for "foo" should find
 179 * "foo.exe").
 180 */
 181static char *locate_in_PATH(const char *file)
 182{
 183        const char *p = getenv("PATH");
 184        struct strbuf buf = STRBUF_INIT;
 185
 186        if (!p || !*p)
 187                return NULL;
 188
 189        while (1) {
 190                const char *end = strchrnul(p, ':');
 191
 192                strbuf_reset(&buf);
 193
 194                /* POSIX specifies an empty entry as the current directory. */
 195                if (end != p) {
 196                        strbuf_add(&buf, p, end - p);
 197                        strbuf_addch(&buf, '/');
 198                }
 199                strbuf_addstr(&buf, file);
 200
 201                if (is_executable(buf.buf))
 202                        return strbuf_detach(&buf, NULL);
 203
 204                if (!*end)
 205                        break;
 206                p = end + 1;
 207        }
 208
 209        strbuf_release(&buf);
 210        return NULL;
 211}
 212
 213static int exists_in_PATH(const char *file)
 214{
 215        char *r = locate_in_PATH(file);
 216        free(r);
 217        return r != NULL;
 218}
 219
 220int sane_execvp(const char *file, char * const argv[])
 221{
 222        if (!execvp(file, argv))
 223                return 0; /* cannot happen ;-) */
 224
 225        /*
 226         * When a command can't be found because one of the directories
 227         * listed in $PATH is unsearchable, execvp reports EACCES, but
 228         * careful usability testing (read: analysis of occasional bug
 229         * reports) reveals that "No such file or directory" is more
 230         * intuitive.
 231         *
 232         * We avoid commands with "/", because execvp will not do $PATH
 233         * lookups in that case.
 234         *
 235         * The reassignment of EACCES to errno looks like a no-op below,
 236         * but we need to protect against exists_in_PATH overwriting errno.
 237         */
 238        if (errno == EACCES && !strchr(file, '/'))
 239                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 240        else if (errno == ENOTDIR && !strchr(file, '/'))
 241                errno = ENOENT;
 242        return -1;
 243}
 244
 245static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 246{
 247        if (!argv[0])
 248                BUG("shell command is empty");
 249
 250        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 251#ifndef GIT_WINDOWS_NATIVE
 252                argv_array_push(out, SHELL_PATH);
 253#else
 254                argv_array_push(out, "sh");
 255#endif
 256                argv_array_push(out, "-c");
 257
 258                /*
 259                 * If we have no extra arguments, we do not even need to
 260                 * bother with the "$@" magic.
 261                 */
 262                if (!argv[1])
 263                        argv_array_push(out, argv[0]);
 264                else
 265                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 266        }
 267
 268        argv_array_pushv(out, argv);
 269        return out->argv;
 270}
 271
 272#ifndef GIT_WINDOWS_NATIVE
 273static int child_notifier = -1;
 274
 275enum child_errcode {
 276        CHILD_ERR_CHDIR,
 277        CHILD_ERR_DUP2,
 278        CHILD_ERR_CLOSE,
 279        CHILD_ERR_SIGPROCMASK,
 280        CHILD_ERR_ENOENT,
 281        CHILD_ERR_SILENT,
 282        CHILD_ERR_ERRNO
 283};
 284
 285struct child_err {
 286        enum child_errcode err;
 287        int syserr; /* errno */
 288};
 289
 290static void child_die(enum child_errcode err)
 291{
 292        struct child_err buf;
 293
 294        buf.err = err;
 295        buf.syserr = errno;
 296
 297        /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
 298        xwrite(child_notifier, &buf, sizeof(buf));
 299        _exit(1);
 300}
 301
 302static void child_dup2(int fd, int to)
 303{
 304        if (dup2(fd, to) < 0)
 305                child_die(CHILD_ERR_DUP2);
 306}
 307
 308static void child_close(int fd)
 309{
 310        if (close(fd))
 311                child_die(CHILD_ERR_CLOSE);
 312}
 313
 314static void child_close_pair(int fd[2])
 315{
 316        child_close(fd[0]);
 317        child_close(fd[1]);
 318}
 319
 320/*
 321 * parent will make it look like the child spewed a fatal error and died
 322 * this is needed to prevent changes to t0061.
 323 */
 324static void fake_fatal(const char *err, va_list params)
 325{
 326        vreportf("fatal: ", err, params);
 327}
 328
 329static void child_error_fn(const char *err, va_list params)
 330{
 331        const char msg[] = "error() should not be called in child\n";
 332        xwrite(2, msg, sizeof(msg) - 1);
 333}
 334
 335static void child_warn_fn(const char *err, va_list params)
 336{
 337        const char msg[] = "warn() should not be called in child\n";
 338        xwrite(2, msg, sizeof(msg) - 1);
 339}
 340
 341static void NORETURN child_die_fn(const char *err, va_list params)
 342{
 343        const char msg[] = "die() should not be called in child\n";
 344        xwrite(2, msg, sizeof(msg) - 1);
 345        _exit(2);
 346}
 347
 348/* this runs in the parent process */
 349static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
 350{
 351        static void (*old_errfn)(const char *err, va_list params);
 352
 353        old_errfn = get_error_routine();
 354        set_error_routine(fake_fatal);
 355        errno = cerr->syserr;
 356
 357        switch (cerr->err) {
 358        case CHILD_ERR_CHDIR:
 359                error_errno("exec '%s': cd to '%s' failed",
 360                            cmd->argv[0], cmd->dir);
 361                break;
 362        case CHILD_ERR_DUP2:
 363                error_errno("dup2() in child failed");
 364                break;
 365        case CHILD_ERR_CLOSE:
 366                error_errno("close() in child failed");
 367                break;
 368        case CHILD_ERR_SIGPROCMASK:
 369                error_errno("sigprocmask failed restoring signals");
 370                break;
 371        case CHILD_ERR_ENOENT:
 372                error_errno("cannot run %s", cmd->argv[0]);
 373                break;
 374        case CHILD_ERR_SILENT:
 375                break;
 376        case CHILD_ERR_ERRNO:
 377                error_errno("cannot exec '%s'", cmd->argv[0]);
 378                break;
 379        }
 380        set_error_routine(old_errfn);
 381}
 382
 383static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 384{
 385        if (!cmd->argv[0])
 386                BUG("command is empty");
 387
 388        /*
 389         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 390         * attempt to interpret the command with 'sh'.
 391         */
 392        argv_array_push(out, SHELL_PATH);
 393
 394        if (cmd->git_cmd) {
 395                argv_array_push(out, "git");
 396                argv_array_pushv(out, cmd->argv);
 397        } else if (cmd->use_shell) {
 398                prepare_shell_cmd(out, cmd->argv);
 399        } else {
 400                argv_array_pushv(out, cmd->argv);
 401        }
 402
 403        /*
 404         * If there are no '/' characters in the command then perform a path
 405         * lookup and use the resolved path as the command to exec.  If there
 406         * are no '/' characters or if the command wasn't found in the path,
 407         * have exec attempt to invoke the command directly.
 408         */
 409        if (!strchr(out->argv[1], '/')) {
 410                char *program = locate_in_PATH(out->argv[1]);
 411                if (program) {
 412                        free((char *)out->argv[1]);
 413                        out->argv[1] = program;
 414                }
 415        }
 416}
 417
 418static char **prep_childenv(const char *const *deltaenv)
 419{
 420        extern char **environ;
 421        char **childenv;
 422        struct string_list env = STRING_LIST_INIT_DUP;
 423        struct strbuf key = STRBUF_INIT;
 424        const char *const *p;
 425        int i;
 426
 427        /* Construct a sorted string list consisting of the current environ */
 428        for (p = (const char *const *) environ; p && *p; p++) {
 429                const char *equals = strchr(*p, '=');
 430
 431                if (equals) {
 432                        strbuf_reset(&key);
 433                        strbuf_add(&key, *p, equals - *p);
 434                        string_list_append(&env, key.buf)->util = (void *) *p;
 435                } else {
 436                        string_list_append(&env, *p)->util = (void *) *p;
 437                }
 438        }
 439        string_list_sort(&env);
 440
 441        /* Merge in 'deltaenv' with the current environ */
 442        for (p = deltaenv; p && *p; p++) {
 443                const char *equals = strchr(*p, '=');
 444
 445                if (equals) {
 446                        /* ('key=value'), insert or replace entry */
 447                        strbuf_reset(&key);
 448                        strbuf_add(&key, *p, equals - *p);
 449                        string_list_insert(&env, key.buf)->util = (void *) *p;
 450                } else {
 451                        /* otherwise ('key') remove existing entry */
 452                        string_list_remove(&env, *p, 0);
 453                }
 454        }
 455
 456        /* Create an array of 'char *' to be used as the childenv */
 457        ALLOC_ARRAY(childenv, env.nr + 1);
 458        for (i = 0; i < env.nr; i++)
 459                childenv[i] = env.items[i].util;
 460        childenv[env.nr] = NULL;
 461
 462        string_list_clear(&env, 0);
 463        strbuf_release(&key);
 464        return childenv;
 465}
 466
 467struct atfork_state {
 468#ifndef NO_PTHREADS
 469        int cs;
 470#endif
 471        sigset_t old;
 472};
 473
 474#define CHECK_BUG(err, msg) \
 475        do { \
 476                int e = (err); \
 477                if (e) \
 478                        BUG("%s: %s", msg, strerror(e)); \
 479        } while(0)
 480
 481static void atfork_prepare(struct atfork_state *as)
 482{
 483        sigset_t all;
 484
 485        if (sigfillset(&all))
 486                die_errno("sigfillset");
 487#ifdef NO_PTHREADS
 488        if (sigprocmask(SIG_SETMASK, &all, &as->old))
 489                die_errno("sigprocmask");
 490#else
 491        CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
 492                "blocking all signals");
 493        CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
 494                "disabling cancellation");
 495#endif
 496}
 497
 498static void atfork_parent(struct atfork_state *as)
 499{
 500#ifdef NO_PTHREADS
 501        if (sigprocmask(SIG_SETMASK, &as->old, NULL))
 502                die_errno("sigprocmask");
 503#else
 504        CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
 505                "re-enabling cancellation");
 506        CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
 507                "restoring signal mask");
 508#endif
 509}
 510#endif /* GIT_WINDOWS_NATIVE */
 511
 512static inline void set_cloexec(int fd)
 513{
 514        int flags = fcntl(fd, F_GETFD);
 515        if (flags >= 0)
 516                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 517}
 518
 519static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 520{
 521        int status, code = -1;
 522        pid_t waiting;
 523        int failed_errno = 0;
 524
 525        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 526                ;       /* nothing */
 527        if (in_signal)
 528                return 0;
 529
 530        if (waiting < 0) {
 531                failed_errno = errno;
 532                error_errno("waitpid for %s failed", argv0);
 533        } else if (waiting != pid) {
 534                error("waitpid is confused (%s)", argv0);
 535        } else if (WIFSIGNALED(status)) {
 536                code = WTERMSIG(status);
 537                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 538                        error("%s died of signal %d", argv0, code);
 539                /*
 540                 * This return value is chosen so that code & 0xff
 541                 * mimics the exit code that a POSIX shell would report for
 542                 * a program that died from this signal.
 543                 */
 544                code += 128;
 545        } else if (WIFEXITED(status)) {
 546                code = WEXITSTATUS(status);
 547        } else {
 548                error("waitpid is confused (%s)", argv0);
 549        }
 550
 551        clear_child_for_cleanup(pid);
 552
 553        errno = failed_errno;
 554        return code;
 555}
 556
 557static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
 558{
 559        struct string_list envs = STRING_LIST_INIT_DUP;
 560        const char *const *e;
 561        int i;
 562        int printed_unset = 0;
 563
 564        /* Last one wins, see run-command.c:prep_childenv() for context */
 565        for (e = deltaenv; e && *e; e++) {
 566                struct strbuf key = STRBUF_INIT;
 567                char *equals = strchr(*e, '=');
 568
 569                if (equals) {
 570                        strbuf_add(&key, *e, equals - *e);
 571                        string_list_insert(&envs, key.buf)->util = equals + 1;
 572                } else {
 573                        string_list_insert(&envs, *e)->util = NULL;
 574                }
 575                strbuf_release(&key);
 576        }
 577
 578        /* "unset X Y...;" */
 579        for (i = 0; i < envs.nr; i++) {
 580                const char *var = envs.items[i].string;
 581                const char *val = envs.items[i].util;
 582
 583                if (val || !getenv(var))
 584                        continue;
 585
 586                if (!printed_unset) {
 587                        strbuf_addstr(dst, " unset");
 588                        printed_unset = 1;
 589                }
 590                strbuf_addf(dst, " %s", var);
 591        }
 592        if (printed_unset)
 593                strbuf_addch(dst, ';');
 594
 595        /* ... followed by "A=B C=D ..." */
 596        for (i = 0; i < envs.nr; i++) {
 597                const char *var = envs.items[i].string;
 598                const char *val = envs.items[i].util;
 599                const char *oldval;
 600
 601                if (!val)
 602                        continue;
 603
 604                oldval = getenv(var);
 605                if (oldval && !strcmp(val, oldval))
 606                        continue;
 607
 608                strbuf_addf(dst, " %s=", var);
 609                sq_quote_buf_pretty(dst, val);
 610        }
 611        string_list_clear(&envs, 0);
 612}
 613
 614static void trace_run_command(const struct child_process *cp)
 615{
 616        struct strbuf buf = STRBUF_INIT;
 617
 618        if (!trace_want(&trace_default_key))
 619                return;
 620
 621        strbuf_addstr(&buf, "trace: run_command:");
 622        if (cp->dir) {
 623                strbuf_addstr(&buf, " cd ");
 624                sq_quote_buf_pretty(&buf, cp->dir);
 625                strbuf_addch(&buf, ';');
 626        }
 627        /*
 628         * The caller is responsible for initializing cp->env from
 629         * cp->env_array if needed. We only check one place.
 630         */
 631        if (cp->env)
 632                trace_add_env(&buf, cp->env);
 633        if (cp->git_cmd)
 634                strbuf_addstr(&buf, " git");
 635        sq_quote_argv_pretty(&buf, cp->argv);
 636
 637        trace_printf("%s", buf.buf);
 638        strbuf_release(&buf);
 639}
 640
 641int start_command(struct child_process *cmd)
 642{
 643        int need_in, need_out, need_err;
 644        int fdin[2], fdout[2], fderr[2];
 645        int failed_errno;
 646        char *str;
 647
 648        if (!cmd->argv)
 649                cmd->argv = cmd->args.argv;
 650        if (!cmd->env)
 651                cmd->env = cmd->env_array.argv;
 652
 653        /*
 654         * In case of errors we must keep the promise to close FDs
 655         * that have been passed in via ->in and ->out.
 656         */
 657
 658        need_in = !cmd->no_stdin && cmd->in < 0;
 659        if (need_in) {
 660                if (pipe(fdin) < 0) {
 661                        failed_errno = errno;
 662                        if (cmd->out > 0)
 663                                close(cmd->out);
 664                        str = "standard input";
 665                        goto fail_pipe;
 666                }
 667                cmd->in = fdin[1];
 668        }
 669
 670        need_out = !cmd->no_stdout
 671                && !cmd->stdout_to_stderr
 672                && cmd->out < 0;
 673        if (need_out) {
 674                if (pipe(fdout) < 0) {
 675                        failed_errno = errno;
 676                        if (need_in)
 677                                close_pair(fdin);
 678                        else if (cmd->in)
 679                                close(cmd->in);
 680                        str = "standard output";
 681                        goto fail_pipe;
 682                }
 683                cmd->out = fdout[0];
 684        }
 685
 686        need_err = !cmd->no_stderr && cmd->err < 0;
 687        if (need_err) {
 688                if (pipe(fderr) < 0) {
 689                        failed_errno = errno;
 690                        if (need_in)
 691                                close_pair(fdin);
 692                        else if (cmd->in)
 693                                close(cmd->in);
 694                        if (need_out)
 695                                close_pair(fdout);
 696                        else if (cmd->out)
 697                                close(cmd->out);
 698                        str = "standard error";
 699fail_pipe:
 700                        error("cannot create %s pipe for %s: %s",
 701                                str, cmd->argv[0], strerror(failed_errno));
 702                        child_process_clear(cmd);
 703                        errno = failed_errno;
 704                        return -1;
 705                }
 706                cmd->err = fderr[0];
 707        }
 708
 709        trace_run_command(cmd);
 710
 711        fflush(NULL);
 712
 713#ifndef GIT_WINDOWS_NATIVE
 714{
 715        int notify_pipe[2];
 716        int null_fd = -1;
 717        char **childenv;
 718        struct argv_array argv = ARGV_ARRAY_INIT;
 719        struct child_err cerr;
 720        struct atfork_state as;
 721
 722        if (pipe(notify_pipe))
 723                notify_pipe[0] = notify_pipe[1] = -1;
 724
 725        if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
 726                null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
 727                if (null_fd < 0)
 728                        die_errno(_("open /dev/null failed"));
 729                set_cloexec(null_fd);
 730        }
 731
 732        prepare_cmd(&argv, cmd);
 733        childenv = prep_childenv(cmd->env);
 734        atfork_prepare(&as);
 735
 736        /*
 737         * NOTE: In order to prevent deadlocking when using threads special
 738         * care should be taken with the function calls made in between the
 739         * fork() and exec() calls.  No calls should be made to functions which
 740         * require acquiring a lock (e.g. malloc) as the lock could have been
 741         * held by another thread at the time of forking, causing the lock to
 742         * never be released in the child process.  This means only
 743         * Async-Signal-Safe functions are permitted in the child.
 744         */
 745        cmd->pid = fork();
 746        failed_errno = errno;
 747        if (!cmd->pid) {
 748                int sig;
 749                /*
 750                 * Ensure the default die/error/warn routines do not get
 751                 * called, they can take stdio locks and malloc.
 752                 */
 753                set_die_routine(child_die_fn);
 754                set_error_routine(child_error_fn);
 755                set_warn_routine(child_warn_fn);
 756
 757                close(notify_pipe[0]);
 758                set_cloexec(notify_pipe[1]);
 759                child_notifier = notify_pipe[1];
 760
 761                if (cmd->no_stdin)
 762                        child_dup2(null_fd, 0);
 763                else if (need_in) {
 764                        child_dup2(fdin[0], 0);
 765                        child_close_pair(fdin);
 766                } else if (cmd->in) {
 767                        child_dup2(cmd->in, 0);
 768                        child_close(cmd->in);
 769                }
 770
 771                if (cmd->no_stderr)
 772                        child_dup2(null_fd, 2);
 773                else if (need_err) {
 774                        child_dup2(fderr[1], 2);
 775                        child_close_pair(fderr);
 776                } else if (cmd->err > 1) {
 777                        child_dup2(cmd->err, 2);
 778                        child_close(cmd->err);
 779                }
 780
 781                if (cmd->no_stdout)
 782                        child_dup2(null_fd, 1);
 783                else if (cmd->stdout_to_stderr)
 784                        child_dup2(2, 1);
 785                else if (need_out) {
 786                        child_dup2(fdout[1], 1);
 787                        child_close_pair(fdout);
 788                } else if (cmd->out > 1) {
 789                        child_dup2(cmd->out, 1);
 790                        child_close(cmd->out);
 791                }
 792
 793                if (cmd->dir && chdir(cmd->dir))
 794                        child_die(CHILD_ERR_CHDIR);
 795
 796                /*
 797                 * restore default signal handlers here, in case
 798                 * we catch a signal right before execve below
 799                 */
 800                for (sig = 1; sig < NSIG; sig++) {
 801                        /* ignored signals get reset to SIG_DFL on execve */
 802                        if (signal(sig, SIG_DFL) == SIG_IGN)
 803                                signal(sig, SIG_IGN);
 804                }
 805
 806                if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
 807                        child_die(CHILD_ERR_SIGPROCMASK);
 808
 809                /*
 810                 * Attempt to exec using the command and arguments starting at
 811                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 812                 * be used in the event exec failed with ENOEXEC at which point
 813                 * we will try to interpret the command using 'sh'.
 814                 */
 815                execve(argv.argv[1], (char *const *) argv.argv + 1,
 816                       (char *const *) childenv);
 817                if (errno == ENOEXEC)
 818                        execve(argv.argv[0], (char *const *) argv.argv,
 819                               (char *const *) childenv);
 820
 821                if (errno == ENOENT) {
 822                        if (cmd->silent_exec_failure)
 823                                child_die(CHILD_ERR_SILENT);
 824                        child_die(CHILD_ERR_ENOENT);
 825                } else {
 826                        child_die(CHILD_ERR_ERRNO);
 827                }
 828        }
 829        atfork_parent(&as);
 830        if (cmd->pid < 0)
 831                error_errno("cannot fork() for %s", cmd->argv[0]);
 832        else if (cmd->clean_on_exit)
 833                mark_child_for_cleanup(cmd->pid, cmd);
 834
 835        /*
 836         * Wait for child's exec. If the exec succeeds (or if fork()
 837         * failed), EOF is seen immediately by the parent. Otherwise, the
 838         * child process sends a child_err struct.
 839         * Note that use of this infrastructure is completely advisory,
 840         * therefore, we keep error checks minimal.
 841         */
 842        close(notify_pipe[1]);
 843        if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
 844                /*
 845                 * At this point we know that fork() succeeded, but exec()
 846                 * failed. Errors have been reported to our stderr.
 847                 */
 848                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 849                child_err_spew(cmd, &cerr);
 850                failed_errno = errno;
 851                cmd->pid = -1;
 852        }
 853        close(notify_pipe[0]);
 854
 855        if (null_fd >= 0)
 856                close(null_fd);
 857        argv_array_clear(&argv);
 858        free(childenv);
 859}
 860#else
 861{
 862        int fhin = 0, fhout = 1, fherr = 2;
 863        const char **sargv = cmd->argv;
 864        struct argv_array nargv = ARGV_ARRAY_INIT;
 865
 866        if (cmd->no_stdin)
 867                fhin = open("/dev/null", O_RDWR);
 868        else if (need_in)
 869                fhin = dup(fdin[0]);
 870        else if (cmd->in)
 871                fhin = dup(cmd->in);
 872
 873        if (cmd->no_stderr)
 874                fherr = open("/dev/null", O_RDWR);
 875        else if (need_err)
 876                fherr = dup(fderr[1]);
 877        else if (cmd->err > 2)
 878                fherr = dup(cmd->err);
 879
 880        if (cmd->no_stdout)
 881                fhout = open("/dev/null", O_RDWR);
 882        else if (cmd->stdout_to_stderr)
 883                fhout = dup(fherr);
 884        else if (need_out)
 885                fhout = dup(fdout[1]);
 886        else if (cmd->out > 1)
 887                fhout = dup(cmd->out);
 888
 889        if (cmd->git_cmd)
 890                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 891        else if (cmd->use_shell)
 892                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 893
 894        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 895                        cmd->dir, fhin, fhout, fherr);
 896        failed_errno = errno;
 897        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 898                error_errno("cannot spawn %s", cmd->argv[0]);
 899        if (cmd->clean_on_exit && cmd->pid >= 0)
 900                mark_child_for_cleanup(cmd->pid, cmd);
 901
 902        argv_array_clear(&nargv);
 903        cmd->argv = sargv;
 904        if (fhin != 0)
 905                close(fhin);
 906        if (fhout != 1)
 907                close(fhout);
 908        if (fherr != 2)
 909                close(fherr);
 910}
 911#endif
 912
 913        if (cmd->pid < 0) {
 914                if (need_in)
 915                        close_pair(fdin);
 916                else if (cmd->in)
 917                        close(cmd->in);
 918                if (need_out)
 919                        close_pair(fdout);
 920                else if (cmd->out)
 921                        close(cmd->out);
 922                if (need_err)
 923                        close_pair(fderr);
 924                else if (cmd->err)
 925                        close(cmd->err);
 926                child_process_clear(cmd);
 927                errno = failed_errno;
 928                return -1;
 929        }
 930
 931        if (need_in)
 932                close(fdin[0]);
 933        else if (cmd->in)
 934                close(cmd->in);
 935
 936        if (need_out)
 937                close(fdout[1]);
 938        else if (cmd->out)
 939                close(cmd->out);
 940
 941        if (need_err)
 942                close(fderr[1]);
 943        else if (cmd->err)
 944                close(cmd->err);
 945
 946        return 0;
 947}
 948
 949int finish_command(struct child_process *cmd)
 950{
 951        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 952        child_process_clear(cmd);
 953        return ret;
 954}
 955
 956int finish_command_in_signal(struct child_process *cmd)
 957{
 958        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 959}
 960
 961
 962int run_command(struct child_process *cmd)
 963{
 964        int code;
 965
 966        if (cmd->out < 0 || cmd->err < 0)
 967                BUG("run_command with a pipe can cause deadlock");
 968
 969        code = start_command(cmd);
 970        if (code)
 971                return code;
 972        return finish_command(cmd);
 973}
 974
 975int run_command_v_opt(const char **argv, int opt)
 976{
 977        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 978}
 979
 980int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 981{
 982        struct child_process cmd = CHILD_PROCESS_INIT;
 983        cmd.argv = argv;
 984        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
 985        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
 986        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
 987        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
 988        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
 989        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
 990        cmd.dir = dir;
 991        cmd.env = env;
 992        return run_command(&cmd);
 993}
 994
 995#ifndef NO_PTHREADS
 996static pthread_t main_thread;
 997static int main_thread_set;
 998static pthread_key_t async_key;
 999static pthread_key_t async_die_counter;
1000
1001static void *run_thread(void *data)
1002{
1003        struct async *async = data;
1004        intptr_t ret;
1005
1006        if (async->isolate_sigpipe) {
1007                sigset_t mask;
1008                sigemptyset(&mask);
1009                sigaddset(&mask, SIGPIPE);
1010                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1011                        ret = error("unable to block SIGPIPE in async thread");
1012                        return (void *)ret;
1013                }
1014        }
1015
1016        pthread_setspecific(async_key, async);
1017        ret = async->proc(async->proc_in, async->proc_out, async->data);
1018        return (void *)ret;
1019}
1020
1021static NORETURN void die_async(const char *err, va_list params)
1022{
1023        vreportf("fatal: ", err, params);
1024
1025        if (in_async()) {
1026                struct async *async = pthread_getspecific(async_key);
1027                if (async->proc_in >= 0)
1028                        close(async->proc_in);
1029                if (async->proc_out >= 0)
1030                        close(async->proc_out);
1031                pthread_exit((void *)128);
1032        }
1033
1034        exit(128);
1035}
1036
1037static int async_die_is_recursing(void)
1038{
1039        void *ret = pthread_getspecific(async_die_counter);
1040        pthread_setspecific(async_die_counter, (void *)1);
1041        return ret != NULL;
1042}
1043
1044int in_async(void)
1045{
1046        if (!main_thread_set)
1047                return 0; /* no asyncs started yet */
1048        return !pthread_equal(main_thread, pthread_self());
1049}
1050
1051static void NORETURN async_exit(int code)
1052{
1053        pthread_exit((void *)(intptr_t)code);
1054}
1055
1056#else
1057
1058static struct {
1059        void (**handlers)(void);
1060        size_t nr;
1061        size_t alloc;
1062} git_atexit_hdlrs;
1063
1064static int git_atexit_installed;
1065
1066static void git_atexit_dispatch(void)
1067{
1068        size_t i;
1069
1070        for (i=git_atexit_hdlrs.nr ; i ; i--)
1071                git_atexit_hdlrs.handlers[i-1]();
1072}
1073
1074static void git_atexit_clear(void)
1075{
1076        free(git_atexit_hdlrs.handlers);
1077        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1078        git_atexit_installed = 0;
1079}
1080
1081#undef atexit
1082int git_atexit(void (*handler)(void))
1083{
1084        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1085        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1086        if (!git_atexit_installed) {
1087                if (atexit(&git_atexit_dispatch))
1088                        return -1;
1089                git_atexit_installed = 1;
1090        }
1091        return 0;
1092}
1093#define atexit git_atexit
1094
1095static int process_is_async;
1096int in_async(void)
1097{
1098        return process_is_async;
1099}
1100
1101static void NORETURN async_exit(int code)
1102{
1103        exit(code);
1104}
1105
1106#endif
1107
1108void check_pipe(int err)
1109{
1110        if (err == EPIPE) {
1111                if (in_async())
1112                        async_exit(141);
1113
1114                signal(SIGPIPE, SIG_DFL);
1115                raise(SIGPIPE);
1116                /* Should never happen, but just in case... */
1117                exit(141);
1118        }
1119}
1120
1121int start_async(struct async *async)
1122{
1123        int need_in, need_out;
1124        int fdin[2], fdout[2];
1125        int proc_in, proc_out;
1126
1127        need_in = async->in < 0;
1128        if (need_in) {
1129                if (pipe(fdin) < 0) {
1130                        if (async->out > 0)
1131                                close(async->out);
1132                        return error_errno("cannot create pipe");
1133                }
1134                async->in = fdin[1];
1135        }
1136
1137        need_out = async->out < 0;
1138        if (need_out) {
1139                if (pipe(fdout) < 0) {
1140                        if (need_in)
1141                                close_pair(fdin);
1142                        else if (async->in)
1143                                close(async->in);
1144                        return error_errno("cannot create pipe");
1145                }
1146                async->out = fdout[0];
1147        }
1148
1149        if (need_in)
1150                proc_in = fdin[0];
1151        else if (async->in)
1152                proc_in = async->in;
1153        else
1154                proc_in = -1;
1155
1156        if (need_out)
1157                proc_out = fdout[1];
1158        else if (async->out)
1159                proc_out = async->out;
1160        else
1161                proc_out = -1;
1162
1163#ifdef NO_PTHREADS
1164        /* Flush stdio before fork() to avoid cloning buffers */
1165        fflush(NULL);
1166
1167        async->pid = fork();
1168        if (async->pid < 0) {
1169                error_errno("fork (async) failed");
1170                goto error;
1171        }
1172        if (!async->pid) {
1173                if (need_in)
1174                        close(fdin[1]);
1175                if (need_out)
1176                        close(fdout[0]);
1177                git_atexit_clear();
1178                process_is_async = 1;
1179                exit(!!async->proc(proc_in, proc_out, async->data));
1180        }
1181
1182        mark_child_for_cleanup(async->pid, NULL);
1183
1184        if (need_in)
1185                close(fdin[0]);
1186        else if (async->in)
1187                close(async->in);
1188
1189        if (need_out)
1190                close(fdout[1]);
1191        else if (async->out)
1192                close(async->out);
1193#else
1194        if (!main_thread_set) {
1195                /*
1196                 * We assume that the first time that start_async is called
1197                 * it is from the main thread.
1198                 */
1199                main_thread_set = 1;
1200                main_thread = pthread_self();
1201                pthread_key_create(&async_key, NULL);
1202                pthread_key_create(&async_die_counter, NULL);
1203                set_die_routine(die_async);
1204                set_die_is_recursing_routine(async_die_is_recursing);
1205        }
1206
1207        if (proc_in >= 0)
1208                set_cloexec(proc_in);
1209        if (proc_out >= 0)
1210                set_cloexec(proc_out);
1211        async->proc_in = proc_in;
1212        async->proc_out = proc_out;
1213        {
1214                int err = pthread_create(&async->tid, NULL, run_thread, async);
1215                if (err) {
1216                        error_errno("cannot create thread");
1217                        goto error;
1218                }
1219        }
1220#endif
1221        return 0;
1222
1223error:
1224        if (need_in)
1225                close_pair(fdin);
1226        else if (async->in)
1227                close(async->in);
1228
1229        if (need_out)
1230                close_pair(fdout);
1231        else if (async->out)
1232                close(async->out);
1233        return -1;
1234}
1235
1236int finish_async(struct async *async)
1237{
1238#ifdef NO_PTHREADS
1239        return wait_or_whine(async->pid, "child process", 0);
1240#else
1241        void *ret = (void *)(intptr_t)(-1);
1242
1243        if (pthread_join(async->tid, &ret))
1244                error("pthread_join failed");
1245        return (int)(intptr_t)ret;
1246#endif
1247}
1248
1249const char *find_hook(const char *name)
1250{
1251        static struct strbuf path = STRBUF_INIT;
1252
1253        strbuf_reset(&path);
1254        strbuf_git_path(&path, "hooks/%s", name);
1255        if (access(path.buf, X_OK) < 0) {
1256                int err = errno;
1257
1258#ifdef STRIP_EXTENSION
1259                strbuf_addstr(&path, STRIP_EXTENSION);
1260                if (access(path.buf, X_OK) >= 0)
1261                        return path.buf;
1262                if (errno == EACCES)
1263                        err = errno;
1264#endif
1265
1266                if (err == EACCES && advice_ignored_hook) {
1267                        static struct string_list advise_given = STRING_LIST_INIT_DUP;
1268
1269                        if (!string_list_lookup(&advise_given, name)) {
1270                                string_list_insert(&advise_given, name);
1271                                advise(_("The '%s' hook was ignored because "
1272                                         "it's not set as executable.\n"
1273                                         "You can disable this warning with "
1274                                         "`git config advice.ignoredHook false`."),
1275                                       path.buf);
1276                        }
1277                }
1278                return NULL;
1279        }
1280        return path.buf;
1281}
1282
1283int run_hook_ve(const char *const *env, const char *name, va_list args)
1284{
1285        struct child_process hook = CHILD_PROCESS_INIT;
1286        const char *p;
1287
1288        p = find_hook(name);
1289        if (!p)
1290                return 0;
1291
1292        argv_array_push(&hook.args, p);
1293        while ((p = va_arg(args, const char *)))
1294                argv_array_push(&hook.args, p);
1295        hook.env = env;
1296        hook.no_stdin = 1;
1297        hook.stdout_to_stderr = 1;
1298
1299        return run_command(&hook);
1300}
1301
1302int run_hook_le(const char *const *env, const char *name, ...)
1303{
1304        va_list args;
1305        int ret;
1306
1307        va_start(args, name);
1308        ret = run_hook_ve(env, name, args);
1309        va_end(args);
1310
1311        return ret;
1312}
1313
1314struct io_pump {
1315        /* initialized by caller */
1316        int fd;
1317        int type; /* POLLOUT or POLLIN */
1318        union {
1319                struct {
1320                        const char *buf;
1321                        size_t len;
1322                } out;
1323                struct {
1324                        struct strbuf *buf;
1325                        size_t hint;
1326                } in;
1327        } u;
1328
1329        /* returned by pump_io */
1330        int error; /* 0 for success, otherwise errno */
1331
1332        /* internal use */
1333        struct pollfd *pfd;
1334};
1335
1336static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1337{
1338        int pollsize = 0;
1339        int i;
1340
1341        for (i = 0; i < nr; i++) {
1342                struct io_pump *io = &slots[i];
1343                if (io->fd < 0)
1344                        continue;
1345                pfd[pollsize].fd = io->fd;
1346                pfd[pollsize].events = io->type;
1347                io->pfd = &pfd[pollsize++];
1348        }
1349
1350        if (!pollsize)
1351                return 0;
1352
1353        if (poll(pfd, pollsize, -1) < 0) {
1354                if (errno == EINTR)
1355                        return 1;
1356                die_errno("poll failed");
1357        }
1358
1359        for (i = 0; i < nr; i++) {
1360                struct io_pump *io = &slots[i];
1361
1362                if (io->fd < 0)
1363                        continue;
1364
1365                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1366                        continue;
1367
1368                if (io->type == POLLOUT) {
1369                        ssize_t len = xwrite(io->fd,
1370                                             io->u.out.buf, io->u.out.len);
1371                        if (len < 0) {
1372                                io->error = errno;
1373                                close(io->fd);
1374                                io->fd = -1;
1375                        } else {
1376                                io->u.out.buf += len;
1377                                io->u.out.len -= len;
1378                                if (!io->u.out.len) {
1379                                        close(io->fd);
1380                                        io->fd = -1;
1381                                }
1382                        }
1383                }
1384
1385                if (io->type == POLLIN) {
1386                        ssize_t len = strbuf_read_once(io->u.in.buf,
1387                                                       io->fd, io->u.in.hint);
1388                        if (len < 0)
1389                                io->error = errno;
1390                        if (len <= 0) {
1391                                close(io->fd);
1392                                io->fd = -1;
1393                        }
1394                }
1395        }
1396
1397        return 1;
1398}
1399
1400static int pump_io(struct io_pump *slots, int nr)
1401{
1402        struct pollfd *pfd;
1403        int i;
1404
1405        for (i = 0; i < nr; i++)
1406                slots[i].error = 0;
1407
1408        ALLOC_ARRAY(pfd, nr);
1409        while (pump_io_round(slots, nr, pfd))
1410                ; /* nothing */
1411        free(pfd);
1412
1413        /* There may be multiple errno values, so just pick the first. */
1414        for (i = 0; i < nr; i++) {
1415                if (slots[i].error) {
1416                        errno = slots[i].error;
1417                        return -1;
1418                }
1419        }
1420        return 0;
1421}
1422
1423
1424int pipe_command(struct child_process *cmd,
1425                 const char *in, size_t in_len,
1426                 struct strbuf *out, size_t out_hint,
1427                 struct strbuf *err, size_t err_hint)
1428{
1429        struct io_pump io[3];
1430        int nr = 0;
1431
1432        if (in)
1433                cmd->in = -1;
1434        if (out)
1435                cmd->out = -1;
1436        if (err)
1437                cmd->err = -1;
1438
1439        if (start_command(cmd) < 0)
1440                return -1;
1441
1442        if (in) {
1443                io[nr].fd = cmd->in;
1444                io[nr].type = POLLOUT;
1445                io[nr].u.out.buf = in;
1446                io[nr].u.out.len = in_len;
1447                nr++;
1448        }
1449        if (out) {
1450                io[nr].fd = cmd->out;
1451                io[nr].type = POLLIN;
1452                io[nr].u.in.buf = out;
1453                io[nr].u.in.hint = out_hint;
1454                nr++;
1455        }
1456        if (err) {
1457                io[nr].fd = cmd->err;
1458                io[nr].type = POLLIN;
1459                io[nr].u.in.buf = err;
1460                io[nr].u.in.hint = err_hint;
1461                nr++;
1462        }
1463
1464        if (pump_io(io, nr) < 0) {
1465                finish_command(cmd); /* throw away exit code */
1466                return -1;
1467        }
1468
1469        return finish_command(cmd);
1470}
1471
1472enum child_state {
1473        GIT_CP_FREE,
1474        GIT_CP_WORKING,
1475        GIT_CP_WAIT_CLEANUP,
1476};
1477
1478struct parallel_processes {
1479        void *data;
1480
1481        int max_processes;
1482        int nr_processes;
1483
1484        get_next_task_fn get_next_task;
1485        start_failure_fn start_failure;
1486        task_finished_fn task_finished;
1487
1488        struct {
1489                enum child_state state;
1490                struct child_process process;
1491                struct strbuf err;
1492                void *data;
1493        } *children;
1494        /*
1495         * The struct pollfd is logically part of *children,
1496         * but the system call expects it as its own array.
1497         */
1498        struct pollfd *pfd;
1499
1500        unsigned shutdown : 1;
1501
1502        int output_owner;
1503        struct strbuf buffered_output; /* of finished children */
1504};
1505
1506static int default_start_failure(struct strbuf *out,
1507                                 void *pp_cb,
1508                                 void *pp_task_cb)
1509{
1510        return 0;
1511}
1512
1513static int default_task_finished(int result,
1514                                 struct strbuf *out,
1515                                 void *pp_cb,
1516                                 void *pp_task_cb)
1517{
1518        return 0;
1519}
1520
1521static void kill_children(struct parallel_processes *pp, int signo)
1522{
1523        int i, n = pp->max_processes;
1524
1525        for (i = 0; i < n; i++)
1526                if (pp->children[i].state == GIT_CP_WORKING)
1527                        kill(pp->children[i].process.pid, signo);
1528}
1529
1530static struct parallel_processes *pp_for_signal;
1531
1532static void handle_children_on_signal(int signo)
1533{
1534        kill_children(pp_for_signal, signo);
1535        sigchain_pop(signo);
1536        raise(signo);
1537}
1538
1539static void pp_init(struct parallel_processes *pp,
1540                    int n,
1541                    get_next_task_fn get_next_task,
1542                    start_failure_fn start_failure,
1543                    task_finished_fn task_finished,
1544                    void *data)
1545{
1546        int i;
1547
1548        if (n < 1)
1549                n = online_cpus();
1550
1551        pp->max_processes = n;
1552
1553        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1554
1555        pp->data = data;
1556        if (!get_next_task)
1557                BUG("you need to specify a get_next_task function");
1558        pp->get_next_task = get_next_task;
1559
1560        pp->start_failure = start_failure ? start_failure : default_start_failure;
1561        pp->task_finished = task_finished ? task_finished : default_task_finished;
1562
1563        pp->nr_processes = 0;
1564        pp->output_owner = 0;
1565        pp->shutdown = 0;
1566        pp->children = xcalloc(n, sizeof(*pp->children));
1567        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1568        strbuf_init(&pp->buffered_output, 0);
1569
1570        for (i = 0; i < n; i++) {
1571                strbuf_init(&pp->children[i].err, 0);
1572                child_process_init(&pp->children[i].process);
1573                pp->pfd[i].events = POLLIN | POLLHUP;
1574                pp->pfd[i].fd = -1;
1575        }
1576
1577        pp_for_signal = pp;
1578        sigchain_push_common(handle_children_on_signal);
1579}
1580
1581static void pp_cleanup(struct parallel_processes *pp)
1582{
1583        int i;
1584
1585        trace_printf("run_processes_parallel: done");
1586        for (i = 0; i < pp->max_processes; i++) {
1587                strbuf_release(&pp->children[i].err);
1588                child_process_clear(&pp->children[i].process);
1589        }
1590
1591        free(pp->children);
1592        free(pp->pfd);
1593
1594        /*
1595         * When get_next_task added messages to the buffer in its last
1596         * iteration, the buffered output is non empty.
1597         */
1598        strbuf_write(&pp->buffered_output, stderr);
1599        strbuf_release(&pp->buffered_output);
1600
1601        sigchain_pop_common();
1602}
1603
1604/* returns
1605 *  0 if a new task was started.
1606 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1607 *    problem with starting a new command)
1608 * <0 no new job was started, user wishes to shutdown early. Use negative code
1609 *    to signal the children.
1610 */
1611static int pp_start_one(struct parallel_processes *pp)
1612{
1613        int i, code;
1614
1615        for (i = 0; i < pp->max_processes; i++)
1616                if (pp->children[i].state == GIT_CP_FREE)
1617                        break;
1618        if (i == pp->max_processes)
1619                BUG("bookkeeping is hard");
1620
1621        code = pp->get_next_task(&pp->children[i].process,
1622                                 &pp->children[i].err,
1623                                 pp->data,
1624                                 &pp->children[i].data);
1625        if (!code) {
1626                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1627                strbuf_reset(&pp->children[i].err);
1628                return 1;
1629        }
1630        pp->children[i].process.err = -1;
1631        pp->children[i].process.stdout_to_stderr = 1;
1632        pp->children[i].process.no_stdin = 1;
1633
1634        if (start_command(&pp->children[i].process)) {
1635                code = pp->start_failure(&pp->children[i].err,
1636                                         pp->data,
1637                                         pp->children[i].data);
1638                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1639                strbuf_reset(&pp->children[i].err);
1640                if (code)
1641                        pp->shutdown = 1;
1642                return code;
1643        }
1644
1645        pp->nr_processes++;
1646        pp->children[i].state = GIT_CP_WORKING;
1647        pp->pfd[i].fd = pp->children[i].process.err;
1648        return 0;
1649}
1650
1651static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1652{
1653        int i;
1654
1655        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1656                if (errno == EINTR)
1657                        continue;
1658                pp_cleanup(pp);
1659                die_errno("poll");
1660        }
1661
1662        /* Buffer output from all pipes. */
1663        for (i = 0; i < pp->max_processes; i++) {
1664                if (pp->children[i].state == GIT_CP_WORKING &&
1665                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1666                        int n = strbuf_read_once(&pp->children[i].err,
1667                                                 pp->children[i].process.err, 0);
1668                        if (n == 0) {
1669                                close(pp->children[i].process.err);
1670                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1671                        } else if (n < 0)
1672                                if (errno != EAGAIN)
1673                                        die_errno("read");
1674                }
1675        }
1676}
1677
1678static void pp_output(struct parallel_processes *pp)
1679{
1680        int i = pp->output_owner;
1681        if (pp->children[i].state == GIT_CP_WORKING &&
1682            pp->children[i].err.len) {
1683                strbuf_write(&pp->children[i].err, stderr);
1684                strbuf_reset(&pp->children[i].err);
1685        }
1686}
1687
1688static int pp_collect_finished(struct parallel_processes *pp)
1689{
1690        int i, code;
1691        int n = pp->max_processes;
1692        int result = 0;
1693
1694        while (pp->nr_processes > 0) {
1695                for (i = 0; i < pp->max_processes; i++)
1696                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1697                                break;
1698                if (i == pp->max_processes)
1699                        break;
1700
1701                code = finish_command(&pp->children[i].process);
1702
1703                code = pp->task_finished(code,
1704                                         &pp->children[i].err, pp->data,
1705                                         pp->children[i].data);
1706
1707                if (code)
1708                        result = code;
1709                if (code < 0)
1710                        break;
1711
1712                pp->nr_processes--;
1713                pp->children[i].state = GIT_CP_FREE;
1714                pp->pfd[i].fd = -1;
1715                child_process_init(&pp->children[i].process);
1716
1717                if (i != pp->output_owner) {
1718                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1719                        strbuf_reset(&pp->children[i].err);
1720                } else {
1721                        strbuf_write(&pp->children[i].err, stderr);
1722                        strbuf_reset(&pp->children[i].err);
1723
1724                        /* Output all other finished child processes */
1725                        strbuf_write(&pp->buffered_output, stderr);
1726                        strbuf_reset(&pp->buffered_output);
1727
1728                        /*
1729                         * Pick next process to output live.
1730                         * NEEDSWORK:
1731                         * For now we pick it randomly by doing a round
1732                         * robin. Later we may want to pick the one with
1733                         * the most output or the longest or shortest
1734                         * running process time.
1735                         */
1736                        for (i = 0; i < n; i++)
1737                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1738                                        break;
1739                        pp->output_owner = (pp->output_owner + i) % n;
1740                }
1741        }
1742        return result;
1743}
1744
1745int run_processes_parallel(int n,
1746                           get_next_task_fn get_next_task,
1747                           start_failure_fn start_failure,
1748                           task_finished_fn task_finished,
1749                           void *pp_cb)
1750{
1751        int i, code;
1752        int output_timeout = 100;
1753        int spawn_cap = 4;
1754        struct parallel_processes pp;
1755
1756        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1757        while (1) {
1758                for (i = 0;
1759                    i < spawn_cap && !pp.shutdown &&
1760                    pp.nr_processes < pp.max_processes;
1761                    i++) {
1762                        code = pp_start_one(&pp);
1763                        if (!code)
1764                                continue;
1765                        if (code < 0) {
1766                                pp.shutdown = 1;
1767                                kill_children(&pp, -code);
1768                        }
1769                        break;
1770                }
1771                if (!pp.nr_processes)
1772                        break;
1773                pp_buffer_stderr(&pp, output_timeout);
1774                pp_output(&pp);
1775                code = pp_collect_finished(&pp);
1776                if (code) {
1777                        pp.shutdown = 1;
1778                        if (code < 0)
1779                                kill_children(&pp, -code);
1780                }
1781        }
1782
1783        pp_cleanup(&pp);
1784        return 0;
1785}