refs / refs-internal.hon commit lockfile: update lifetime requirements in documentation (5e7f01c)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return the length of time to retry acquiring a loose reference lock
  66 * before giving up, in milliseconds:
  67 */
  68long get_files_ref_lock_timeout_ms(void);
  69
  70/*
  71 * Return true iff refname is minimally safe. "Safe" here means that
  72 * deleting a loose reference by this name will not do any damage, for
  73 * example by causing a file that is not a reference to be deleted.
  74 * This function does not check that the reference name is legal; for
  75 * that, use check_refname_format().
  76 *
  77 * A refname that starts with "refs/" is considered safe iff it
  78 * doesn't contain any "." or ".." components or consecutive '/'
  79 * characters, end with '/', or (on Windows) contain any '\'
  80 * characters. Names that do not start with "refs/" are considered
  81 * safe iff they consist entirely of upper case characters and '_'
  82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  83 */
  84int refname_is_safe(const char *refname);
  85
  86/*
  87 * Helper function: return true if refname, which has the specified
  88 * oid and flags, can be resolved to an object in the database. If the
  89 * referred-to object does not exist, emit a warning and return false.
  90 */
  91int ref_resolves_to_object(const char *refname,
  92                           const struct object_id *oid,
  93                           unsigned int flags);
  94
  95enum peel_status {
  96        /* object was peeled successfully: */
  97        PEEL_PEELED = 0,
  98
  99        /*
 100         * object cannot be peeled because the named object (or an
 101         * object referred to by a tag in the peel chain), does not
 102         * exist.
 103         */
 104        PEEL_INVALID = -1,
 105
 106        /* object cannot be peeled because it is not a tag: */
 107        PEEL_NON_TAG = -2,
 108
 109        /* ref_entry contains no peeled value because it is a symref: */
 110        PEEL_IS_SYMREF = -3,
 111
 112        /*
 113         * ref_entry cannot be peeled because it is broken (i.e., the
 114         * symbolic reference cannot even be resolved to an object
 115         * name):
 116         */
 117        PEEL_BROKEN = -4
 118};
 119
 120/*
 121 * Peel the named object; i.e., if the object is a tag, resolve the
 122 * tag recursively until a non-tag is found.  If successful, store the
 123 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 124 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 125 * and leave sha1 unchanged.
 126 */
 127enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 128
 129/*
 130 * Copy the reflog message msg to buf, which has been allocated sufficiently
 131 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 132 * because reflog file is one line per entry.
 133 */
 134int copy_reflog_msg(char *buf, const char *msg);
 135
 136/**
 137 * Information needed for a single ref update. Set new_sha1 to the new
 138 * value or to null_sha1 to delete the ref. To check the old value
 139 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 140 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 141 * not exist before update.
 142 */
 143struct ref_update {
 144
 145        /*
 146         * If (flags & REF_HAVE_NEW), set the reference to this value:
 147         */
 148        struct object_id new_oid;
 149
 150        /*
 151         * If (flags & REF_HAVE_OLD), check that the reference
 152         * previously had this value:
 153         */
 154        struct object_id old_oid;
 155
 156        /*
 157         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 158         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 159         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 160         * REF_DELETED_LOOSE:
 161         */
 162        unsigned int flags;
 163
 164        void *backend_data;
 165        unsigned int type;
 166        char *msg;
 167
 168        /*
 169         * If this ref_update was split off of a symref update via
 170         * split_symref_update(), then this member points at that
 171         * update. This is used for two purposes:
 172         * 1. When reporting errors, we report the refname under which
 173         *    the update was originally requested.
 174         * 2. When we read the old value of this reference, we
 175         *    propagate it back to its parent update for recording in
 176         *    the latter's reflog.
 177         */
 178        struct ref_update *parent_update;
 179
 180        const char refname[FLEX_ARRAY];
 181};
 182
 183int refs_read_raw_ref(struct ref_store *ref_store,
 184                      const char *refname, unsigned char *sha1,
 185                      struct strbuf *referent, unsigned int *type);
 186
 187/*
 188 * Write an error to `err` and return a nonzero value iff the same
 189 * refname appears multiple times in `refnames`. `refnames` must be
 190 * sorted on entry to this function.
 191 */
 192int ref_update_reject_duplicates(struct string_list *refnames,
 193                                 struct strbuf *err);
 194
 195/*
 196 * Add a ref_update with the specified properties to transaction, and
 197 * return a pointer to the new object. This function does not verify
 198 * that refname is well-formed. new_sha1 and old_sha1 are only
 199 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 200 * respectively, are set in flags.
 201 */
 202struct ref_update *ref_transaction_add_update(
 203                struct ref_transaction *transaction,
 204                const char *refname, unsigned int flags,
 205                const unsigned char *new_sha1,
 206                const unsigned char *old_sha1,
 207                const char *msg);
 208
 209/*
 210 * Transaction states.
 211 *
 212 * OPEN:   The transaction is initialized and new updates can still be
 213 *         added to it. An OPEN transaction can be prepared,
 214 *         committed, freed, or aborted (freeing and aborting an open
 215 *         transaction are equivalent).
 216 *
 217 * PREPARED: ref_transaction_prepare(), which locks all of the
 218 *         references involved in the update and checks that the
 219 *         update has no errors, has been called successfully for the
 220 *         transaction. A PREPARED transaction can be committed or
 221 *         aborted.
 222 *
 223 * CLOSED: The transaction is no longer active. A transaction becomes
 224 *         CLOSED if there is a failure while building the transaction
 225 *         or if a transaction is committed or aborted. A CLOSED
 226 *         transaction can only be freed.
 227 */
 228enum ref_transaction_state {
 229        REF_TRANSACTION_OPEN     = 0,
 230        REF_TRANSACTION_PREPARED = 1,
 231        REF_TRANSACTION_CLOSED   = 2
 232};
 233
 234/*
 235 * Data structure for holding a reference transaction, which can
 236 * consist of checks and updates to multiple references, carried out
 237 * as atomically as possible.  This structure is opaque to callers.
 238 */
 239struct ref_transaction {
 240        struct ref_store *ref_store;
 241        struct ref_update **updates;
 242        size_t alloc;
 243        size_t nr;
 244        enum ref_transaction_state state;
 245};
 246
 247/*
 248 * Check for entries in extras that are within the specified
 249 * directory, where dirname is a reference directory name including
 250 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 251 * conflicting references that are found in skip. If there is a
 252 * conflicting reference, return its name.
 253 *
 254 * extras and skip must be sorted lists of reference names. Either one
 255 * can be NULL, signifying the empty list.
 256 */
 257const char *find_descendant_ref(const char *dirname,
 258                                const struct string_list *extras,
 259                                const struct string_list *skip);
 260
 261/*
 262 * Check whether an attempt to rename old_refname to new_refname would
 263 * cause a D/F conflict with any existing reference (other than
 264 * possibly old_refname). If there would be a conflict, emit an error
 265 * message and return false; otherwise, return true.
 266 *
 267 * Note that this function is not safe against all races with other
 268 * processes (though rename_ref() catches some races that might get by
 269 * this check).
 270 */
 271int refs_rename_ref_available(struct ref_store *refs,
 272                              const char *old_refname,
 273                              const char *new_refname);
 274
 275/* We allow "recursive" symbolic refs. Only within reason, though */
 276#define SYMREF_MAXDEPTH 5
 277
 278/* Include broken references in a do_for_each_ref*() iteration: */
 279#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 280
 281/*
 282 * Reference iterators
 283 *
 284 * A reference iterator encapsulates the state of an in-progress
 285 * iteration over references. Create an instance of `struct
 286 * ref_iterator` via one of the functions in this module.
 287 *
 288 * A freshly-created ref_iterator doesn't yet point at a reference. To
 289 * advance the iterator, call ref_iterator_advance(). If successful,
 290 * this sets the iterator's refname, oid, and flags fields to describe
 291 * the next reference and returns ITER_OK. The data pointed at by
 292 * refname and oid belong to the iterator; if you want to retain them
 293 * after calling ref_iterator_advance() again or calling
 294 * ref_iterator_abort(), you must make a copy. When the iteration has
 295 * been exhausted, ref_iterator_advance() releases any resources
 296 * assocated with the iteration, frees the ref_iterator object, and
 297 * returns ITER_DONE. If you want to abort the iteration early, call
 298 * ref_iterator_abort(), which also frees the ref_iterator object and
 299 * any associated resources. If there was an internal error advancing
 300 * to the next entry, ref_iterator_advance() aborts the iteration,
 301 * frees the ref_iterator, and returns ITER_ERROR.
 302 *
 303 * The reference currently being looked at can be peeled by calling
 304 * ref_iterator_peel(). This function is often faster than peel_ref(),
 305 * so it should be preferred when iterating over references.
 306 *
 307 * Putting it all together, a typical iteration looks like this:
 308 *
 309 *     int ok;
 310 *     struct ref_iterator *iter = ...;
 311 *
 312 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 313 *             if (want_to_stop_iteration()) {
 314 *                     ok = ref_iterator_abort(iter);
 315 *                     break;
 316 *             }
 317 *
 318 *             // Access information about the current reference:
 319 *             if (!(iter->flags & REF_ISSYMREF))
 320 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 321 *
 322 *             // If you need to peel the reference:
 323 *             ref_iterator_peel(iter, &oid);
 324 *     }
 325 *
 326 *     if (ok != ITER_DONE)
 327 *             handle_error();
 328 */
 329struct ref_iterator {
 330        struct ref_iterator_vtable *vtable;
 331        const char *refname;
 332        const struct object_id *oid;
 333        unsigned int flags;
 334};
 335
 336/*
 337 * Advance the iterator to the first or next item and return ITER_OK.
 338 * If the iteration is exhausted, free the resources associated with
 339 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 340 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 341 * call this function again after it has returned ITER_DONE or
 342 * ITER_ERROR.
 343 */
 344int ref_iterator_advance(struct ref_iterator *ref_iterator);
 345
 346/*
 347 * If possible, peel the reference currently being viewed by the
 348 * iterator. Return 0 on success.
 349 */
 350int ref_iterator_peel(struct ref_iterator *ref_iterator,
 351                      struct object_id *peeled);
 352
 353/*
 354 * End the iteration before it has been exhausted, freeing the
 355 * reference iterator and any associated resources and returning
 356 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 357 */
 358int ref_iterator_abort(struct ref_iterator *ref_iterator);
 359
 360/*
 361 * An iterator over nothing (its first ref_iterator_advance() call
 362 * returns ITER_DONE).
 363 */
 364struct ref_iterator *empty_ref_iterator_begin(void);
 365
 366/*
 367 * Return true iff ref_iterator is an empty_ref_iterator.
 368 */
 369int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 370
 371/*
 372 * Return an iterator that goes over each reference in `refs` for
 373 * which the refname begins with prefix. If trim is non-zero, then
 374 * trim that many characters off the beginning of each refname. flags
 375 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 376 * the iteration.
 377 */
 378struct ref_iterator *refs_ref_iterator_begin(
 379                struct ref_store *refs,
 380                const char *prefix, int trim, int flags);
 381
 382/*
 383 * A callback function used to instruct merge_ref_iterator how to
 384 * interleave the entries from iter0 and iter1. The function should
 385 * return one of the constants defined in enum iterator_selection. It
 386 * must not advance either of the iterators itself.
 387 *
 388 * The function must be prepared to handle the case that iter0 and/or
 389 * iter1 is NULL, which indicates that the corresponding sub-iterator
 390 * has been exhausted. Its return value must be consistent with the
 391 * current states of the iterators; e.g., it must not return
 392 * ITER_SKIP_1 if iter1 has already been exhausted.
 393 */
 394typedef enum iterator_selection ref_iterator_select_fn(
 395                struct ref_iterator *iter0, struct ref_iterator *iter1,
 396                void *cb_data);
 397
 398/*
 399 * Iterate over the entries from iter0 and iter1, with the values
 400 * interleaved as directed by the select function. The iterator takes
 401 * ownership of iter0 and iter1 and frees them when the iteration is
 402 * over.
 403 */
 404struct ref_iterator *merge_ref_iterator_begin(
 405                struct ref_iterator *iter0, struct ref_iterator *iter1,
 406                ref_iterator_select_fn *select, void *cb_data);
 407
 408/*
 409 * An iterator consisting of the union of the entries from front and
 410 * back. If there are entries common to the two sub-iterators, use the
 411 * one from front. Each iterator must iterate over its entries in
 412 * strcmp() order by refname for this to work.
 413 *
 414 * The new iterator takes ownership of its arguments and frees them
 415 * when the iteration is over. As a convenience to callers, if front
 416 * or back is an empty_ref_iterator, then abort that one immediately
 417 * and return the other iterator directly, without wrapping it.
 418 */
 419struct ref_iterator *overlay_ref_iterator_begin(
 420                struct ref_iterator *front, struct ref_iterator *back);
 421
 422/*
 423 * Wrap iter0, only letting through the references whose names start
 424 * with prefix. If trim is set, set iter->refname to the name of the
 425 * reference with that many characters trimmed off the front;
 426 * otherwise set it to the full refname. The new iterator takes over
 427 * ownership of iter0 and frees it when iteration is over. It makes
 428 * its own copy of prefix.
 429 *
 430 * As an convenience to callers, if prefix is the empty string and
 431 * trim is zero, this function returns iter0 directly, without
 432 * wrapping it.
 433 */
 434struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 435                                               const char *prefix,
 436                                               int trim);
 437
 438/* Internal implementation of reference iteration: */
 439
 440/*
 441 * Base class constructor for ref_iterators. Initialize the
 442 * ref_iterator part of iter, setting its vtable pointer as specified.
 443 * This is meant to be called only by the initializers of derived
 444 * classes.
 445 */
 446void base_ref_iterator_init(struct ref_iterator *iter,
 447                            struct ref_iterator_vtable *vtable);
 448
 449/*
 450 * Base class destructor for ref_iterators. Destroy the ref_iterator
 451 * part of iter and shallow-free the object. This is meant to be
 452 * called only by the destructors of derived classes.
 453 */
 454void base_ref_iterator_free(struct ref_iterator *iter);
 455
 456/* Virtual function declarations for ref_iterators: */
 457
 458typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 459
 460typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 461                                 struct object_id *peeled);
 462
 463/*
 464 * Implementations of this function should free any resources specific
 465 * to the derived class, then call base_ref_iterator_free() to clean
 466 * up and free the ref_iterator object.
 467 */
 468typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 469
 470struct ref_iterator_vtable {
 471        ref_iterator_advance_fn *advance;
 472        ref_iterator_peel_fn *peel;
 473        ref_iterator_abort_fn *abort;
 474};
 475
 476/*
 477 * current_ref_iter is a performance hack: when iterating over
 478 * references using the for_each_ref*() functions, current_ref_iter is
 479 * set to the reference iterator before calling the callback function.
 480 * If the callback function calls peel_ref(), then peel_ref() first
 481 * checks whether the reference to be peeled is the one referred to by
 482 * the iterator (it usually is) and if so, asks the iterator for the
 483 * peeled version of the reference if it is available. This avoids a
 484 * refname lookup in a common case. current_ref_iter is set to NULL
 485 * when the iteration is over.
 486 */
 487extern struct ref_iterator *current_ref_iter;
 488
 489/*
 490 * The common backend for the for_each_*ref* functions. Call fn for
 491 * each reference in iter. If the iterator itself ever returns
 492 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 493 * the iteration and return that value. Otherwise, return 0. In any
 494 * case, free the iterator when done. This function is basically an
 495 * adapter between the callback style of reference iteration and the
 496 * iterator style.
 497 */
 498int do_for_each_ref_iterator(struct ref_iterator *iter,
 499                             each_ref_fn fn, void *cb_data);
 500
 501/*
 502 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 503 * Normally this will be used with a files ref_store, since that's
 504 * where all reference backends will presumably store their
 505 * per-worktree refs.
 506 */
 507#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 508
 509struct ref_store;
 510
 511/* refs backends */
 512
 513/* ref_store_init flags */
 514#define REF_STORE_READ          (1 << 0)
 515#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 516#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 517#define REF_STORE_MAIN          (1 << 3)
 518#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 519                                 REF_STORE_WRITE | \
 520                                 REF_STORE_ODB | \
 521                                 REF_STORE_MAIN)
 522
 523/*
 524 * Initialize the ref_store for the specified gitdir. These functions
 525 * should call base_ref_store_init() to initialize the shared part of
 526 * the ref_store and to record the ref_store for later lookup.
 527 */
 528typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 529                                            unsigned int flags);
 530
 531typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 532
 533typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 534                                       struct ref_transaction *transaction,
 535                                       struct strbuf *err);
 536
 537typedef int ref_transaction_finish_fn(struct ref_store *refs,
 538                                      struct ref_transaction *transaction,
 539                                      struct strbuf *err);
 540
 541typedef int ref_transaction_abort_fn(struct ref_store *refs,
 542                                     struct ref_transaction *transaction,
 543                                     struct strbuf *err);
 544
 545typedef int ref_transaction_commit_fn(struct ref_store *refs,
 546                                      struct ref_transaction *transaction,
 547                                      struct strbuf *err);
 548
 549typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 550typedef int peel_ref_fn(struct ref_store *ref_store,
 551                        const char *refname, unsigned char *sha1);
 552typedef int create_symref_fn(struct ref_store *ref_store,
 553                             const char *ref_target,
 554                             const char *refs_heads_master,
 555                             const char *logmsg);
 556typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 557                           struct string_list *refnames, unsigned int flags);
 558typedef int rename_ref_fn(struct ref_store *ref_store,
 559                          const char *oldref, const char *newref,
 560                          const char *logmsg);
 561
 562/*
 563 * Iterate over the references in `ref_store` whose names start with
 564 * `prefix`. `prefix` is matched as a literal string, without regard
 565 * for path separators. If prefix is NULL or the empty string, iterate
 566 * over all references in `ref_store`.
 567 */
 568typedef struct ref_iterator *ref_iterator_begin_fn(
 569                struct ref_store *ref_store,
 570                const char *prefix, unsigned int flags);
 571
 572/* reflog functions */
 573
 574/*
 575 * Iterate over the references in the specified ref_store that have a
 576 * reflog. The refs are iterated over in arbitrary order.
 577 */
 578typedef struct ref_iterator *reflog_iterator_begin_fn(
 579                struct ref_store *ref_store);
 580
 581typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 582                                   const char *refname,
 583                                   each_reflog_ent_fn fn,
 584                                   void *cb_data);
 585typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 586                                           const char *refname,
 587                                           each_reflog_ent_fn fn,
 588                                           void *cb_data);
 589typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 590typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 591                             int force_create, struct strbuf *err);
 592typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 593typedef int reflog_expire_fn(struct ref_store *ref_store,
 594                             const char *refname, const unsigned char *sha1,
 595                             unsigned int flags,
 596                             reflog_expiry_prepare_fn prepare_fn,
 597                             reflog_expiry_should_prune_fn should_prune_fn,
 598                             reflog_expiry_cleanup_fn cleanup_fn,
 599                             void *policy_cb_data);
 600
 601/*
 602 * Read a reference from the specified reference store, non-recursively.
 603 * Set type to describe the reference, and:
 604 *
 605 * - If refname is the name of a normal reference, fill in sha1
 606 *   (leaving referent unchanged).
 607 *
 608 * - If refname is the name of a symbolic reference, write the full
 609 *   name of the reference to which it refers (e.g.
 610 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 611 *   type (leaving sha1 unchanged). The caller is responsible for
 612 *   validating that referent is a valid reference name.
 613 *
 614 * WARNING: refname might be used as part of a filename, so it is
 615 * important from a security standpoint that it be safe in the sense
 616 * of refname_is_safe(). Moreover, for symrefs this function sets
 617 * referent to whatever the repository says, which might not be a
 618 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 619 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 620 *
 621 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 622 * and return -1. If the ref exists but is neither a symbolic ref nor
 623 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 624 * EINVAL, and return -1. If there is another error reading the ref,
 625 * set errno appropriately and return -1.
 626 *
 627 * Backend-specific flags might be set in type as well, regardless of
 628 * outcome.
 629 *
 630 * It is OK for refname to point into referent. If so:
 631 *
 632 * - if the function succeeds with REF_ISSYMREF, referent will be
 633 *   overwritten and the memory formerly pointed to by it might be
 634 *   changed or even freed.
 635 *
 636 * - in all other cases, referent will be untouched, and therefore
 637 *   refname will still be valid and unchanged.
 638 */
 639typedef int read_raw_ref_fn(struct ref_store *ref_store,
 640                            const char *refname, unsigned char *sha1,
 641                            struct strbuf *referent, unsigned int *type);
 642
 643struct ref_storage_be {
 644        struct ref_storage_be *next;
 645        const char *name;
 646        ref_store_init_fn *init;
 647        ref_init_db_fn *init_db;
 648
 649        ref_transaction_prepare_fn *transaction_prepare;
 650        ref_transaction_finish_fn *transaction_finish;
 651        ref_transaction_abort_fn *transaction_abort;
 652        ref_transaction_commit_fn *initial_transaction_commit;
 653
 654        pack_refs_fn *pack_refs;
 655        peel_ref_fn *peel_ref;
 656        create_symref_fn *create_symref;
 657        delete_refs_fn *delete_refs;
 658        rename_ref_fn *rename_ref;
 659
 660        ref_iterator_begin_fn *iterator_begin;
 661        read_raw_ref_fn *read_raw_ref;
 662
 663        reflog_iterator_begin_fn *reflog_iterator_begin;
 664        for_each_reflog_ent_fn *for_each_reflog_ent;
 665        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 666        reflog_exists_fn *reflog_exists;
 667        create_reflog_fn *create_reflog;
 668        delete_reflog_fn *delete_reflog;
 669        reflog_expire_fn *reflog_expire;
 670};
 671
 672extern struct ref_storage_be refs_be_files;
 673extern struct ref_storage_be refs_be_packed;
 674
 675/*
 676 * A representation of the reference store for the main repository or
 677 * a submodule. The ref_store instances for submodules are kept in a
 678 * linked list.
 679 */
 680struct ref_store {
 681        /* The backend describing this ref_store's storage scheme: */
 682        const struct ref_storage_be *be;
 683};
 684
 685/*
 686 * Fill in the generic part of refs and add it to our collection of
 687 * reference stores.
 688 */
 689void base_ref_store_init(struct ref_store *refs,
 690                         const struct ref_storage_be *be);
 691
 692#endif /* REFS_REFS_INTERNAL_H */