615b6e9c9c77f069254314b93583f56df1a1c0b7
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec_cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8
   9void child_process_init(struct child_process *child)
  10{
  11        memset(child, 0, sizeof(*child));
  12        argv_array_init(&child->args);
  13        argv_array_init(&child->env_array);
  14}
  15
  16void child_process_clear(struct child_process *child)
  17{
  18        argv_array_clear(&child->args);
  19        argv_array_clear(&child->env_array);
  20}
  21
  22struct child_to_clean {
  23        pid_t pid;
  24        struct child_process *process;
  25        struct child_to_clean *next;
  26};
  27static struct child_to_clean *children_to_clean;
  28static int installed_child_cleanup_handler;
  29
  30static void cleanup_children(int sig, int in_signal)
  31{
  32        struct child_to_clean *children_to_wait_for = NULL;
  33
  34        while (children_to_clean) {
  35                struct child_to_clean *p = children_to_clean;
  36                children_to_clean = p->next;
  37
  38                if (p->process && !in_signal) {
  39                        struct child_process *process = p->process;
  40                        if (process->clean_on_exit_handler) {
  41                                trace_printf(
  42                                        "trace: run_command: running exit handler for pid %"
  43                                        PRIuMAX, (uintmax_t)p->pid
  44                                );
  45                                process->clean_on_exit_handler(process);
  46                        }
  47                }
  48
  49                kill(p->pid, sig);
  50
  51                if (p->process && p->process->wait_after_clean) {
  52                        p->next = children_to_wait_for;
  53                        children_to_wait_for = p;
  54                } else {
  55                        if (!in_signal)
  56                                free(p);
  57                }
  58        }
  59
  60        while (children_to_wait_for) {
  61                struct child_to_clean *p = children_to_wait_for;
  62                children_to_wait_for = p->next;
  63
  64                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  65                        ; /* spin waiting for process exit or error */
  66
  67                if (!in_signal)
  68                        free(p);
  69        }
  70}
  71
  72static void cleanup_children_on_signal(int sig)
  73{
  74        cleanup_children(sig, 1);
  75        sigchain_pop(sig);
  76        raise(sig);
  77}
  78
  79static void cleanup_children_on_exit(void)
  80{
  81        cleanup_children(SIGTERM, 0);
  82}
  83
  84static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  85{
  86        struct child_to_clean *p = xmalloc(sizeof(*p));
  87        p->pid = pid;
  88        p->process = process;
  89        p->next = children_to_clean;
  90        children_to_clean = p;
  91
  92        if (!installed_child_cleanup_handler) {
  93                atexit(cleanup_children_on_exit);
  94                sigchain_push_common(cleanup_children_on_signal);
  95                installed_child_cleanup_handler = 1;
  96        }
  97}
  98
  99static void clear_child_for_cleanup(pid_t pid)
 100{
 101        struct child_to_clean **pp;
 102
 103        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 104                struct child_to_clean *clean_me = *pp;
 105
 106                if (clean_me->pid == pid) {
 107                        *pp = clean_me->next;
 108                        free(clean_me);
 109                        return;
 110                }
 111        }
 112}
 113
 114static inline void close_pair(int fd[2])
 115{
 116        close(fd[0]);
 117        close(fd[1]);
 118}
 119
 120static char *locate_in_PATH(const char *file)
 121{
 122        const char *p = getenv("PATH");
 123        struct strbuf buf = STRBUF_INIT;
 124
 125        if (!p || !*p)
 126                return NULL;
 127
 128        while (1) {
 129                const char *end = strchrnul(p, ':');
 130
 131                strbuf_reset(&buf);
 132
 133                /* POSIX specifies an empty entry as the current directory. */
 134                if (end != p) {
 135                        strbuf_add(&buf, p, end - p);
 136                        strbuf_addch(&buf, '/');
 137                }
 138                strbuf_addstr(&buf, file);
 139
 140                if (!access(buf.buf, F_OK))
 141                        return strbuf_detach(&buf, NULL);
 142
 143                if (!*end)
 144                        break;
 145                p = end + 1;
 146        }
 147
 148        strbuf_release(&buf);
 149        return NULL;
 150}
 151
 152static int exists_in_PATH(const char *file)
 153{
 154        char *r = locate_in_PATH(file);
 155        free(r);
 156        return r != NULL;
 157}
 158
 159int sane_execvp(const char *file, char * const argv[])
 160{
 161        if (!execvp(file, argv))
 162                return 0; /* cannot happen ;-) */
 163
 164        /*
 165         * When a command can't be found because one of the directories
 166         * listed in $PATH is unsearchable, execvp reports EACCES, but
 167         * careful usability testing (read: analysis of occasional bug
 168         * reports) reveals that "No such file or directory" is more
 169         * intuitive.
 170         *
 171         * We avoid commands with "/", because execvp will not do $PATH
 172         * lookups in that case.
 173         *
 174         * The reassignment of EACCES to errno looks like a no-op below,
 175         * but we need to protect against exists_in_PATH overwriting errno.
 176         */
 177        if (errno == EACCES && !strchr(file, '/'))
 178                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 179        else if (errno == ENOTDIR && !strchr(file, '/'))
 180                errno = ENOENT;
 181        return -1;
 182}
 183
 184static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 185{
 186        if (!argv[0])
 187                die("BUG: shell command is empty");
 188
 189        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 190#ifndef GIT_WINDOWS_NATIVE
 191                argv_array_push(out, SHELL_PATH);
 192#else
 193                argv_array_push(out, "sh");
 194#endif
 195                argv_array_push(out, "-c");
 196
 197                /*
 198                 * If we have no extra arguments, we do not even need to
 199                 * bother with the "$@" magic.
 200                 */
 201                if (!argv[1])
 202                        argv_array_push(out, argv[0]);
 203                else
 204                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 205        }
 206
 207        argv_array_pushv(out, argv);
 208        return out->argv;
 209}
 210
 211#ifndef GIT_WINDOWS_NATIVE
 212static int child_notifier = -1;
 213
 214enum child_errcode {
 215        CHILD_ERR_CHDIR,
 216        CHILD_ERR_DUP2,
 217        CHILD_ERR_CLOSE,
 218        CHILD_ERR_ENOENT,
 219        CHILD_ERR_SILENT,
 220        CHILD_ERR_ERRNO
 221};
 222
 223struct child_err {
 224        enum child_errcode err;
 225        int syserr; /* errno */
 226};
 227
 228static void child_die(enum child_errcode err)
 229{
 230        struct child_err buf;
 231
 232        buf.err = err;
 233        buf.syserr = errno;
 234
 235        /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
 236        xwrite(child_notifier, &buf, sizeof(buf));
 237        _exit(1);
 238}
 239
 240static void child_dup2(int fd, int to)
 241{
 242        if (dup2(fd, to) < 0)
 243                child_die(CHILD_ERR_DUP2);
 244}
 245
 246static void child_close(int fd)
 247{
 248        if (close(fd))
 249                child_die(CHILD_ERR_CLOSE);
 250}
 251
 252static void child_close_pair(int fd[2])
 253{
 254        child_close(fd[0]);
 255        child_close(fd[1]);
 256}
 257
 258/*
 259 * parent will make it look like the child spewed a fatal error and died
 260 * this is needed to prevent changes to t0061.
 261 */
 262static void fake_fatal(const char *err, va_list params)
 263{
 264        vreportf("fatal: ", err, params);
 265}
 266
 267static void child_error_fn(const char *err, va_list params)
 268{
 269        const char msg[] = "error() should not be called in child\n";
 270        xwrite(2, msg, sizeof(msg) - 1);
 271}
 272
 273static void child_warn_fn(const char *err, va_list params)
 274{
 275        const char msg[] = "warn() should not be called in child\n";
 276        xwrite(2, msg, sizeof(msg) - 1);
 277}
 278
 279static void NORETURN child_die_fn(const char *err, va_list params)
 280{
 281        const char msg[] = "die() should not be called in child\n";
 282        xwrite(2, msg, sizeof(msg) - 1);
 283        _exit(2);
 284}
 285
 286/* this runs in the parent process */
 287static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
 288{
 289        static void (*old_errfn)(const char *err, va_list params);
 290
 291        old_errfn = get_error_routine();
 292        set_error_routine(fake_fatal);
 293        errno = cerr->syserr;
 294
 295        switch (cerr->err) {
 296        case CHILD_ERR_CHDIR:
 297                error_errno("exec '%s': cd to '%s' failed",
 298                            cmd->argv[0], cmd->dir);
 299                break;
 300        case CHILD_ERR_DUP2:
 301                error_errno("dup2() in child failed");
 302                break;
 303        case CHILD_ERR_CLOSE:
 304                error_errno("close() in child failed");
 305                break;
 306        case CHILD_ERR_ENOENT:
 307                error_errno("cannot run %s", cmd->argv[0]);
 308                break;
 309        case CHILD_ERR_SILENT:
 310                break;
 311        case CHILD_ERR_ERRNO:
 312                error_errno("cannot exec '%s'", cmd->argv[0]);
 313                break;
 314        }
 315        set_error_routine(old_errfn);
 316}
 317
 318static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 319{
 320        if (!cmd->argv[0])
 321                die("BUG: command is empty");
 322
 323        /*
 324         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 325         * attempt to interpret the command with 'sh'.
 326         */
 327        argv_array_push(out, SHELL_PATH);
 328
 329        if (cmd->git_cmd) {
 330                argv_array_push(out, "git");
 331                argv_array_pushv(out, cmd->argv);
 332        } else if (cmd->use_shell) {
 333                prepare_shell_cmd(out, cmd->argv);
 334        } else {
 335                argv_array_pushv(out, cmd->argv);
 336        }
 337
 338        /*
 339         * If there are no '/' characters in the command then perform a path
 340         * lookup and use the resolved path as the command to exec.  If there
 341         * are no '/' characters or if the command wasn't found in the path,
 342         * have exec attempt to invoke the command directly.
 343         */
 344        if (!strchr(out->argv[1], '/')) {
 345                char *program = locate_in_PATH(out->argv[1]);
 346                if (program) {
 347                        free((char *)out->argv[1]);
 348                        out->argv[1] = program;
 349                }
 350        }
 351}
 352
 353static char **prep_childenv(const char *const *deltaenv)
 354{
 355        extern char **environ;
 356        char **childenv;
 357        struct string_list env = STRING_LIST_INIT_DUP;
 358        struct strbuf key = STRBUF_INIT;
 359        const char *const *p;
 360        int i;
 361
 362        /* Construct a sorted string list consisting of the current environ */
 363        for (p = (const char *const *) environ; p && *p; p++) {
 364                const char *equals = strchr(*p, '=');
 365
 366                if (equals) {
 367                        strbuf_reset(&key);
 368                        strbuf_add(&key, *p, equals - *p);
 369                        string_list_append(&env, key.buf)->util = (void *) *p;
 370                } else {
 371                        string_list_append(&env, *p)->util = (void *) *p;
 372                }
 373        }
 374        string_list_sort(&env);
 375
 376        /* Merge in 'deltaenv' with the current environ */
 377        for (p = deltaenv; p && *p; p++) {
 378                const char *equals = strchr(*p, '=');
 379
 380                if (equals) {
 381                        /* ('key=value'), insert or replace entry */
 382                        strbuf_reset(&key);
 383                        strbuf_add(&key, *p, equals - *p);
 384                        string_list_insert(&env, key.buf)->util = (void *) *p;
 385                } else {
 386                        /* otherwise ('key') remove existing entry */
 387                        string_list_remove(&env, *p, 0);
 388                }
 389        }
 390
 391        /* Create an array of 'char *' to be used as the childenv */
 392        childenv = xmalloc((env.nr + 1) * sizeof(char *));
 393        for (i = 0; i < env.nr; i++)
 394                childenv[i] = env.items[i].util;
 395        childenv[env.nr] = NULL;
 396
 397        string_list_clear(&env, 0);
 398        strbuf_release(&key);
 399        return childenv;
 400}
 401#endif
 402
 403static inline void set_cloexec(int fd)
 404{
 405        int flags = fcntl(fd, F_GETFD);
 406        if (flags >= 0)
 407                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 408}
 409
 410static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 411{
 412        int status, code = -1;
 413        pid_t waiting;
 414        int failed_errno = 0;
 415
 416        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 417                ;       /* nothing */
 418        if (in_signal)
 419                return 0;
 420
 421        if (waiting < 0) {
 422                failed_errno = errno;
 423                error_errno("waitpid for %s failed", argv0);
 424        } else if (waiting != pid) {
 425                error("waitpid is confused (%s)", argv0);
 426        } else if (WIFSIGNALED(status)) {
 427                code = WTERMSIG(status);
 428                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 429                        error("%s died of signal %d", argv0, code);
 430                /*
 431                 * This return value is chosen so that code & 0xff
 432                 * mimics the exit code that a POSIX shell would report for
 433                 * a program that died from this signal.
 434                 */
 435                code += 128;
 436        } else if (WIFEXITED(status)) {
 437                code = WEXITSTATUS(status);
 438        } else {
 439                error("waitpid is confused (%s)", argv0);
 440        }
 441
 442        clear_child_for_cleanup(pid);
 443
 444        errno = failed_errno;
 445        return code;
 446}
 447
 448int start_command(struct child_process *cmd)
 449{
 450        int need_in, need_out, need_err;
 451        int fdin[2], fdout[2], fderr[2];
 452        int failed_errno;
 453        char *str;
 454
 455        if (!cmd->argv)
 456                cmd->argv = cmd->args.argv;
 457        if (!cmd->env)
 458                cmd->env = cmd->env_array.argv;
 459
 460        /*
 461         * In case of errors we must keep the promise to close FDs
 462         * that have been passed in via ->in and ->out.
 463         */
 464
 465        need_in = !cmd->no_stdin && cmd->in < 0;
 466        if (need_in) {
 467                if (pipe(fdin) < 0) {
 468                        failed_errno = errno;
 469                        if (cmd->out > 0)
 470                                close(cmd->out);
 471                        str = "standard input";
 472                        goto fail_pipe;
 473                }
 474                cmd->in = fdin[1];
 475        }
 476
 477        need_out = !cmd->no_stdout
 478                && !cmd->stdout_to_stderr
 479                && cmd->out < 0;
 480        if (need_out) {
 481                if (pipe(fdout) < 0) {
 482                        failed_errno = errno;
 483                        if (need_in)
 484                                close_pair(fdin);
 485                        else if (cmd->in)
 486                                close(cmd->in);
 487                        str = "standard output";
 488                        goto fail_pipe;
 489                }
 490                cmd->out = fdout[0];
 491        }
 492
 493        need_err = !cmd->no_stderr && cmd->err < 0;
 494        if (need_err) {
 495                if (pipe(fderr) < 0) {
 496                        failed_errno = errno;
 497                        if (need_in)
 498                                close_pair(fdin);
 499                        else if (cmd->in)
 500                                close(cmd->in);
 501                        if (need_out)
 502                                close_pair(fdout);
 503                        else if (cmd->out)
 504                                close(cmd->out);
 505                        str = "standard error";
 506fail_pipe:
 507                        error("cannot create %s pipe for %s: %s",
 508                                str, cmd->argv[0], strerror(failed_errno));
 509                        child_process_clear(cmd);
 510                        errno = failed_errno;
 511                        return -1;
 512                }
 513                cmd->err = fderr[0];
 514        }
 515
 516        trace_argv_printf(cmd->argv, "trace: run_command:");
 517        fflush(NULL);
 518
 519#ifndef GIT_WINDOWS_NATIVE
 520{
 521        int notify_pipe[2];
 522        int null_fd = -1;
 523        char **childenv;
 524        struct argv_array argv = ARGV_ARRAY_INIT;
 525        struct child_err cerr;
 526
 527        if (pipe(notify_pipe))
 528                notify_pipe[0] = notify_pipe[1] = -1;
 529
 530        if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
 531                null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
 532                if (null_fd < 0)
 533                        die_errno(_("open /dev/null failed"));
 534                set_cloexec(null_fd);
 535        }
 536
 537        prepare_cmd(&argv, cmd);
 538        childenv = prep_childenv(cmd->env);
 539
 540        cmd->pid = fork();
 541        failed_errno = errno;
 542        if (!cmd->pid) {
 543                /*
 544                 * Ensure the default die/error/warn routines do not get
 545                 * called, they can take stdio locks and malloc.
 546                 */
 547                set_die_routine(child_die_fn);
 548                set_error_routine(child_error_fn);
 549                set_warn_routine(child_warn_fn);
 550
 551                close(notify_pipe[0]);
 552                set_cloexec(notify_pipe[1]);
 553                child_notifier = notify_pipe[1];
 554
 555                if (cmd->no_stdin)
 556                        child_dup2(null_fd, 0);
 557                else if (need_in) {
 558                        child_dup2(fdin[0], 0);
 559                        child_close_pair(fdin);
 560                } else if (cmd->in) {
 561                        child_dup2(cmd->in, 0);
 562                        child_close(cmd->in);
 563                }
 564
 565                if (cmd->no_stderr)
 566                        child_dup2(null_fd, 2);
 567                else if (need_err) {
 568                        child_dup2(fderr[1], 2);
 569                        child_close_pair(fderr);
 570                } else if (cmd->err > 1) {
 571                        child_dup2(cmd->err, 2);
 572                        child_close(cmd->err);
 573                }
 574
 575                if (cmd->no_stdout)
 576                        child_dup2(null_fd, 1);
 577                else if (cmd->stdout_to_stderr)
 578                        child_dup2(2, 1);
 579                else if (need_out) {
 580                        child_dup2(fdout[1], 1);
 581                        child_close_pair(fdout);
 582                } else if (cmd->out > 1) {
 583                        child_dup2(cmd->out, 1);
 584                        child_close(cmd->out);
 585                }
 586
 587                if (cmd->dir && chdir(cmd->dir))
 588                        child_die(CHILD_ERR_CHDIR);
 589
 590                /*
 591                 * Attempt to exec using the command and arguments starting at
 592                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 593                 * be used in the event exec failed with ENOEXEC at which point
 594                 * we will try to interpret the command using 'sh'.
 595                 */
 596                execve(argv.argv[1], (char *const *) argv.argv + 1,
 597                       (char *const *) childenv);
 598                if (errno == ENOEXEC)
 599                        execve(argv.argv[0], (char *const *) argv.argv,
 600                               (char *const *) childenv);
 601
 602                if (errno == ENOENT) {
 603                        if (cmd->silent_exec_failure)
 604                                child_die(CHILD_ERR_SILENT);
 605                        child_die(CHILD_ERR_ENOENT);
 606                } else {
 607                        child_die(CHILD_ERR_ERRNO);
 608                }
 609        }
 610        if (cmd->pid < 0)
 611                error_errno("cannot fork() for %s", cmd->argv[0]);
 612        else if (cmd->clean_on_exit)
 613                mark_child_for_cleanup(cmd->pid, cmd);
 614
 615        /*
 616         * Wait for child's exec. If the exec succeeds (or if fork()
 617         * failed), EOF is seen immediately by the parent. Otherwise, the
 618         * child process sends a child_err struct.
 619         * Note that use of this infrastructure is completely advisory,
 620         * therefore, we keep error checks minimal.
 621         */
 622        close(notify_pipe[1]);
 623        if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
 624                /*
 625                 * At this point we know that fork() succeeded, but exec()
 626                 * failed. Errors have been reported to our stderr.
 627                 */
 628                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 629                child_err_spew(cmd, &cerr);
 630                failed_errno = errno;
 631                cmd->pid = -1;
 632        }
 633        close(notify_pipe[0]);
 634
 635        if (null_fd >= 0)
 636                close(null_fd);
 637        argv_array_clear(&argv);
 638        free(childenv);
 639}
 640#else
 641{
 642        int fhin = 0, fhout = 1, fherr = 2;
 643        const char **sargv = cmd->argv;
 644        struct argv_array nargv = ARGV_ARRAY_INIT;
 645
 646        if (cmd->no_stdin)
 647                fhin = open("/dev/null", O_RDWR);
 648        else if (need_in)
 649                fhin = dup(fdin[0]);
 650        else if (cmd->in)
 651                fhin = dup(cmd->in);
 652
 653        if (cmd->no_stderr)
 654                fherr = open("/dev/null", O_RDWR);
 655        else if (need_err)
 656                fherr = dup(fderr[1]);
 657        else if (cmd->err > 2)
 658                fherr = dup(cmd->err);
 659
 660        if (cmd->no_stdout)
 661                fhout = open("/dev/null", O_RDWR);
 662        else if (cmd->stdout_to_stderr)
 663                fhout = dup(fherr);
 664        else if (need_out)
 665                fhout = dup(fdout[1]);
 666        else if (cmd->out > 1)
 667                fhout = dup(cmd->out);
 668
 669        if (cmd->git_cmd)
 670                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 671        else if (cmd->use_shell)
 672                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 673
 674        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 675                        cmd->dir, fhin, fhout, fherr);
 676        failed_errno = errno;
 677        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 678                error_errno("cannot spawn %s", cmd->argv[0]);
 679        if (cmd->clean_on_exit && cmd->pid >= 0)
 680                mark_child_for_cleanup(cmd->pid, cmd);
 681
 682        argv_array_clear(&nargv);
 683        cmd->argv = sargv;
 684        if (fhin != 0)
 685                close(fhin);
 686        if (fhout != 1)
 687                close(fhout);
 688        if (fherr != 2)
 689                close(fherr);
 690}
 691#endif
 692
 693        if (cmd->pid < 0) {
 694                if (need_in)
 695                        close_pair(fdin);
 696                else if (cmd->in)
 697                        close(cmd->in);
 698                if (need_out)
 699                        close_pair(fdout);
 700                else if (cmd->out)
 701                        close(cmd->out);
 702                if (need_err)
 703                        close_pair(fderr);
 704                else if (cmd->err)
 705                        close(cmd->err);
 706                child_process_clear(cmd);
 707                errno = failed_errno;
 708                return -1;
 709        }
 710
 711        if (need_in)
 712                close(fdin[0]);
 713        else if (cmd->in)
 714                close(cmd->in);
 715
 716        if (need_out)
 717                close(fdout[1]);
 718        else if (cmd->out)
 719                close(cmd->out);
 720
 721        if (need_err)
 722                close(fderr[1]);
 723        else if (cmd->err)
 724                close(cmd->err);
 725
 726        return 0;
 727}
 728
 729int finish_command(struct child_process *cmd)
 730{
 731        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 732        child_process_clear(cmd);
 733        return ret;
 734}
 735
 736int finish_command_in_signal(struct child_process *cmd)
 737{
 738        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 739}
 740
 741
 742int run_command(struct child_process *cmd)
 743{
 744        int code;
 745
 746        if (cmd->out < 0 || cmd->err < 0)
 747                die("BUG: run_command with a pipe can cause deadlock");
 748
 749        code = start_command(cmd);
 750        if (code)
 751                return code;
 752        return finish_command(cmd);
 753}
 754
 755int run_command_v_opt(const char **argv, int opt)
 756{
 757        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 758}
 759
 760int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 761{
 762        struct child_process cmd = CHILD_PROCESS_INIT;
 763        cmd.argv = argv;
 764        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
 765        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
 766        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
 767        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
 768        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
 769        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
 770        cmd.dir = dir;
 771        cmd.env = env;
 772        return run_command(&cmd);
 773}
 774
 775#ifndef NO_PTHREADS
 776static pthread_t main_thread;
 777static int main_thread_set;
 778static pthread_key_t async_key;
 779static pthread_key_t async_die_counter;
 780
 781static void *run_thread(void *data)
 782{
 783        struct async *async = data;
 784        intptr_t ret;
 785
 786        if (async->isolate_sigpipe) {
 787                sigset_t mask;
 788                sigemptyset(&mask);
 789                sigaddset(&mask, SIGPIPE);
 790                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
 791                        ret = error("unable to block SIGPIPE in async thread");
 792                        return (void *)ret;
 793                }
 794        }
 795
 796        pthread_setspecific(async_key, async);
 797        ret = async->proc(async->proc_in, async->proc_out, async->data);
 798        return (void *)ret;
 799}
 800
 801static NORETURN void die_async(const char *err, va_list params)
 802{
 803        vreportf("fatal: ", err, params);
 804
 805        if (in_async()) {
 806                struct async *async = pthread_getspecific(async_key);
 807                if (async->proc_in >= 0)
 808                        close(async->proc_in);
 809                if (async->proc_out >= 0)
 810                        close(async->proc_out);
 811                pthread_exit((void *)128);
 812        }
 813
 814        exit(128);
 815}
 816
 817static int async_die_is_recursing(void)
 818{
 819        void *ret = pthread_getspecific(async_die_counter);
 820        pthread_setspecific(async_die_counter, (void *)1);
 821        return ret != NULL;
 822}
 823
 824int in_async(void)
 825{
 826        if (!main_thread_set)
 827                return 0; /* no asyncs started yet */
 828        return !pthread_equal(main_thread, pthread_self());
 829}
 830
 831static void NORETURN async_exit(int code)
 832{
 833        pthread_exit((void *)(intptr_t)code);
 834}
 835
 836#else
 837
 838static struct {
 839        void (**handlers)(void);
 840        size_t nr;
 841        size_t alloc;
 842} git_atexit_hdlrs;
 843
 844static int git_atexit_installed;
 845
 846static void git_atexit_dispatch(void)
 847{
 848        size_t i;
 849
 850        for (i=git_atexit_hdlrs.nr ; i ; i--)
 851                git_atexit_hdlrs.handlers[i-1]();
 852}
 853
 854static void git_atexit_clear(void)
 855{
 856        free(git_atexit_hdlrs.handlers);
 857        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
 858        git_atexit_installed = 0;
 859}
 860
 861#undef atexit
 862int git_atexit(void (*handler)(void))
 863{
 864        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
 865        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
 866        if (!git_atexit_installed) {
 867                if (atexit(&git_atexit_dispatch))
 868                        return -1;
 869                git_atexit_installed = 1;
 870        }
 871        return 0;
 872}
 873#define atexit git_atexit
 874
 875static int process_is_async;
 876int in_async(void)
 877{
 878        return process_is_async;
 879}
 880
 881static void NORETURN async_exit(int code)
 882{
 883        exit(code);
 884}
 885
 886#endif
 887
 888void check_pipe(int err)
 889{
 890        if (err == EPIPE) {
 891                if (in_async())
 892                        async_exit(141);
 893
 894                signal(SIGPIPE, SIG_DFL);
 895                raise(SIGPIPE);
 896                /* Should never happen, but just in case... */
 897                exit(141);
 898        }
 899}
 900
 901int start_async(struct async *async)
 902{
 903        int need_in, need_out;
 904        int fdin[2], fdout[2];
 905        int proc_in, proc_out;
 906
 907        need_in = async->in < 0;
 908        if (need_in) {
 909                if (pipe(fdin) < 0) {
 910                        if (async->out > 0)
 911                                close(async->out);
 912                        return error_errno("cannot create pipe");
 913                }
 914                async->in = fdin[1];
 915        }
 916
 917        need_out = async->out < 0;
 918        if (need_out) {
 919                if (pipe(fdout) < 0) {
 920                        if (need_in)
 921                                close_pair(fdin);
 922                        else if (async->in)
 923                                close(async->in);
 924                        return error_errno("cannot create pipe");
 925                }
 926                async->out = fdout[0];
 927        }
 928
 929        if (need_in)
 930                proc_in = fdin[0];
 931        else if (async->in)
 932                proc_in = async->in;
 933        else
 934                proc_in = -1;
 935
 936        if (need_out)
 937                proc_out = fdout[1];
 938        else if (async->out)
 939                proc_out = async->out;
 940        else
 941                proc_out = -1;
 942
 943#ifdef NO_PTHREADS
 944        /* Flush stdio before fork() to avoid cloning buffers */
 945        fflush(NULL);
 946
 947        async->pid = fork();
 948        if (async->pid < 0) {
 949                error_errno("fork (async) failed");
 950                goto error;
 951        }
 952        if (!async->pid) {
 953                if (need_in)
 954                        close(fdin[1]);
 955                if (need_out)
 956                        close(fdout[0]);
 957                git_atexit_clear();
 958                process_is_async = 1;
 959                exit(!!async->proc(proc_in, proc_out, async->data));
 960        }
 961
 962        mark_child_for_cleanup(async->pid, NULL);
 963
 964        if (need_in)
 965                close(fdin[0]);
 966        else if (async->in)
 967                close(async->in);
 968
 969        if (need_out)
 970                close(fdout[1]);
 971        else if (async->out)
 972                close(async->out);
 973#else
 974        if (!main_thread_set) {
 975                /*
 976                 * We assume that the first time that start_async is called
 977                 * it is from the main thread.
 978                 */
 979                main_thread_set = 1;
 980                main_thread = pthread_self();
 981                pthread_key_create(&async_key, NULL);
 982                pthread_key_create(&async_die_counter, NULL);
 983                set_die_routine(die_async);
 984                set_die_is_recursing_routine(async_die_is_recursing);
 985        }
 986
 987        if (proc_in >= 0)
 988                set_cloexec(proc_in);
 989        if (proc_out >= 0)
 990                set_cloexec(proc_out);
 991        async->proc_in = proc_in;
 992        async->proc_out = proc_out;
 993        {
 994                int err = pthread_create(&async->tid, NULL, run_thread, async);
 995                if (err) {
 996                        error_errno("cannot create thread");
 997                        goto error;
 998                }
 999        }
1000#endif
1001        return 0;
1002
1003error:
1004        if (need_in)
1005                close_pair(fdin);
1006        else if (async->in)
1007                close(async->in);
1008
1009        if (need_out)
1010                close_pair(fdout);
1011        else if (async->out)
1012                close(async->out);
1013        return -1;
1014}
1015
1016int finish_async(struct async *async)
1017{
1018#ifdef NO_PTHREADS
1019        return wait_or_whine(async->pid, "child process", 0);
1020#else
1021        void *ret = (void *)(intptr_t)(-1);
1022
1023        if (pthread_join(async->tid, &ret))
1024                error("pthread_join failed");
1025        return (int)(intptr_t)ret;
1026#endif
1027}
1028
1029const char *find_hook(const char *name)
1030{
1031        static struct strbuf path = STRBUF_INIT;
1032
1033        strbuf_reset(&path);
1034        strbuf_git_path(&path, "hooks/%s", name);
1035        if (access(path.buf, X_OK) < 0) {
1036#ifdef STRIP_EXTENSION
1037                strbuf_addstr(&path, STRIP_EXTENSION);
1038                if (access(path.buf, X_OK) >= 0)
1039                        return path.buf;
1040#endif
1041                return NULL;
1042        }
1043        return path.buf;
1044}
1045
1046int run_hook_ve(const char *const *env, const char *name, va_list args)
1047{
1048        struct child_process hook = CHILD_PROCESS_INIT;
1049        const char *p;
1050
1051        p = find_hook(name);
1052        if (!p)
1053                return 0;
1054
1055        argv_array_push(&hook.args, p);
1056        while ((p = va_arg(args, const char *)))
1057                argv_array_push(&hook.args, p);
1058        hook.env = env;
1059        hook.no_stdin = 1;
1060        hook.stdout_to_stderr = 1;
1061
1062        return run_command(&hook);
1063}
1064
1065int run_hook_le(const char *const *env, const char *name, ...)
1066{
1067        va_list args;
1068        int ret;
1069
1070        va_start(args, name);
1071        ret = run_hook_ve(env, name, args);
1072        va_end(args);
1073
1074        return ret;
1075}
1076
1077struct io_pump {
1078        /* initialized by caller */
1079        int fd;
1080        int type; /* POLLOUT or POLLIN */
1081        union {
1082                struct {
1083                        const char *buf;
1084                        size_t len;
1085                } out;
1086                struct {
1087                        struct strbuf *buf;
1088                        size_t hint;
1089                } in;
1090        } u;
1091
1092        /* returned by pump_io */
1093        int error; /* 0 for success, otherwise errno */
1094
1095        /* internal use */
1096        struct pollfd *pfd;
1097};
1098
1099static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1100{
1101        int pollsize = 0;
1102        int i;
1103
1104        for (i = 0; i < nr; i++) {
1105                struct io_pump *io = &slots[i];
1106                if (io->fd < 0)
1107                        continue;
1108                pfd[pollsize].fd = io->fd;
1109                pfd[pollsize].events = io->type;
1110                io->pfd = &pfd[pollsize++];
1111        }
1112
1113        if (!pollsize)
1114                return 0;
1115
1116        if (poll(pfd, pollsize, -1) < 0) {
1117                if (errno == EINTR)
1118                        return 1;
1119                die_errno("poll failed");
1120        }
1121
1122        for (i = 0; i < nr; i++) {
1123                struct io_pump *io = &slots[i];
1124
1125                if (io->fd < 0)
1126                        continue;
1127
1128                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1129                        continue;
1130
1131                if (io->type == POLLOUT) {
1132                        ssize_t len = xwrite(io->fd,
1133                                             io->u.out.buf, io->u.out.len);
1134                        if (len < 0) {
1135                                io->error = errno;
1136                                close(io->fd);
1137                                io->fd = -1;
1138                        } else {
1139                                io->u.out.buf += len;
1140                                io->u.out.len -= len;
1141                                if (!io->u.out.len) {
1142                                        close(io->fd);
1143                                        io->fd = -1;
1144                                }
1145                        }
1146                }
1147
1148                if (io->type == POLLIN) {
1149                        ssize_t len = strbuf_read_once(io->u.in.buf,
1150                                                       io->fd, io->u.in.hint);
1151                        if (len < 0)
1152                                io->error = errno;
1153                        if (len <= 0) {
1154                                close(io->fd);
1155                                io->fd = -1;
1156                        }
1157                }
1158        }
1159
1160        return 1;
1161}
1162
1163static int pump_io(struct io_pump *slots, int nr)
1164{
1165        struct pollfd *pfd;
1166        int i;
1167
1168        for (i = 0; i < nr; i++)
1169                slots[i].error = 0;
1170
1171        ALLOC_ARRAY(pfd, nr);
1172        while (pump_io_round(slots, nr, pfd))
1173                ; /* nothing */
1174        free(pfd);
1175
1176        /* There may be multiple errno values, so just pick the first. */
1177        for (i = 0; i < nr; i++) {
1178                if (slots[i].error) {
1179                        errno = slots[i].error;
1180                        return -1;
1181                }
1182        }
1183        return 0;
1184}
1185
1186
1187int pipe_command(struct child_process *cmd,
1188                 const char *in, size_t in_len,
1189                 struct strbuf *out, size_t out_hint,
1190                 struct strbuf *err, size_t err_hint)
1191{
1192        struct io_pump io[3];
1193        int nr = 0;
1194
1195        if (in)
1196                cmd->in = -1;
1197        if (out)
1198                cmd->out = -1;
1199        if (err)
1200                cmd->err = -1;
1201
1202        if (start_command(cmd) < 0)
1203                return -1;
1204
1205        if (in) {
1206                io[nr].fd = cmd->in;
1207                io[nr].type = POLLOUT;
1208                io[nr].u.out.buf = in;
1209                io[nr].u.out.len = in_len;
1210                nr++;
1211        }
1212        if (out) {
1213                io[nr].fd = cmd->out;
1214                io[nr].type = POLLIN;
1215                io[nr].u.in.buf = out;
1216                io[nr].u.in.hint = out_hint;
1217                nr++;
1218        }
1219        if (err) {
1220                io[nr].fd = cmd->err;
1221                io[nr].type = POLLIN;
1222                io[nr].u.in.buf = err;
1223                io[nr].u.in.hint = err_hint;
1224                nr++;
1225        }
1226
1227        if (pump_io(io, nr) < 0) {
1228                finish_command(cmd); /* throw away exit code */
1229                return -1;
1230        }
1231
1232        return finish_command(cmd);
1233}
1234
1235enum child_state {
1236        GIT_CP_FREE,
1237        GIT_CP_WORKING,
1238        GIT_CP_WAIT_CLEANUP,
1239};
1240
1241struct parallel_processes {
1242        void *data;
1243
1244        int max_processes;
1245        int nr_processes;
1246
1247        get_next_task_fn get_next_task;
1248        start_failure_fn start_failure;
1249        task_finished_fn task_finished;
1250
1251        struct {
1252                enum child_state state;
1253                struct child_process process;
1254                struct strbuf err;
1255                void *data;
1256        } *children;
1257        /*
1258         * The struct pollfd is logically part of *children,
1259         * but the system call expects it as its own array.
1260         */
1261        struct pollfd *pfd;
1262
1263        unsigned shutdown : 1;
1264
1265        int output_owner;
1266        struct strbuf buffered_output; /* of finished children */
1267};
1268
1269static int default_start_failure(struct strbuf *out,
1270                                 void *pp_cb,
1271                                 void *pp_task_cb)
1272{
1273        return 0;
1274}
1275
1276static int default_task_finished(int result,
1277                                 struct strbuf *out,
1278                                 void *pp_cb,
1279                                 void *pp_task_cb)
1280{
1281        return 0;
1282}
1283
1284static void kill_children(struct parallel_processes *pp, int signo)
1285{
1286        int i, n = pp->max_processes;
1287
1288        for (i = 0; i < n; i++)
1289                if (pp->children[i].state == GIT_CP_WORKING)
1290                        kill(pp->children[i].process.pid, signo);
1291}
1292
1293static struct parallel_processes *pp_for_signal;
1294
1295static void handle_children_on_signal(int signo)
1296{
1297        kill_children(pp_for_signal, signo);
1298        sigchain_pop(signo);
1299        raise(signo);
1300}
1301
1302static void pp_init(struct parallel_processes *pp,
1303                    int n,
1304                    get_next_task_fn get_next_task,
1305                    start_failure_fn start_failure,
1306                    task_finished_fn task_finished,
1307                    void *data)
1308{
1309        int i;
1310
1311        if (n < 1)
1312                n = online_cpus();
1313
1314        pp->max_processes = n;
1315
1316        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1317
1318        pp->data = data;
1319        if (!get_next_task)
1320                die("BUG: you need to specify a get_next_task function");
1321        pp->get_next_task = get_next_task;
1322
1323        pp->start_failure = start_failure ? start_failure : default_start_failure;
1324        pp->task_finished = task_finished ? task_finished : default_task_finished;
1325
1326        pp->nr_processes = 0;
1327        pp->output_owner = 0;
1328        pp->shutdown = 0;
1329        pp->children = xcalloc(n, sizeof(*pp->children));
1330        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1331        strbuf_init(&pp->buffered_output, 0);
1332
1333        for (i = 0; i < n; i++) {
1334                strbuf_init(&pp->children[i].err, 0);
1335                child_process_init(&pp->children[i].process);
1336                pp->pfd[i].events = POLLIN | POLLHUP;
1337                pp->pfd[i].fd = -1;
1338        }
1339
1340        pp_for_signal = pp;
1341        sigchain_push_common(handle_children_on_signal);
1342}
1343
1344static void pp_cleanup(struct parallel_processes *pp)
1345{
1346        int i;
1347
1348        trace_printf("run_processes_parallel: done");
1349        for (i = 0; i < pp->max_processes; i++) {
1350                strbuf_release(&pp->children[i].err);
1351                child_process_clear(&pp->children[i].process);
1352        }
1353
1354        free(pp->children);
1355        free(pp->pfd);
1356
1357        /*
1358         * When get_next_task added messages to the buffer in its last
1359         * iteration, the buffered output is non empty.
1360         */
1361        strbuf_write(&pp->buffered_output, stderr);
1362        strbuf_release(&pp->buffered_output);
1363
1364        sigchain_pop_common();
1365}
1366
1367/* returns
1368 *  0 if a new task was started.
1369 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1370 *    problem with starting a new command)
1371 * <0 no new job was started, user wishes to shutdown early. Use negative code
1372 *    to signal the children.
1373 */
1374static int pp_start_one(struct parallel_processes *pp)
1375{
1376        int i, code;
1377
1378        for (i = 0; i < pp->max_processes; i++)
1379                if (pp->children[i].state == GIT_CP_FREE)
1380                        break;
1381        if (i == pp->max_processes)
1382                die("BUG: bookkeeping is hard");
1383
1384        code = pp->get_next_task(&pp->children[i].process,
1385                                 &pp->children[i].err,
1386                                 pp->data,
1387                                 &pp->children[i].data);
1388        if (!code) {
1389                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1390                strbuf_reset(&pp->children[i].err);
1391                return 1;
1392        }
1393        pp->children[i].process.err = -1;
1394        pp->children[i].process.stdout_to_stderr = 1;
1395        pp->children[i].process.no_stdin = 1;
1396
1397        if (start_command(&pp->children[i].process)) {
1398                code = pp->start_failure(&pp->children[i].err,
1399                                         pp->data,
1400                                         &pp->children[i].data);
1401                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1402                strbuf_reset(&pp->children[i].err);
1403                if (code)
1404                        pp->shutdown = 1;
1405                return code;
1406        }
1407
1408        pp->nr_processes++;
1409        pp->children[i].state = GIT_CP_WORKING;
1410        pp->pfd[i].fd = pp->children[i].process.err;
1411        return 0;
1412}
1413
1414static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1415{
1416        int i;
1417
1418        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1419                if (errno == EINTR)
1420                        continue;
1421                pp_cleanup(pp);
1422                die_errno("poll");
1423        }
1424
1425        /* Buffer output from all pipes. */
1426        for (i = 0; i < pp->max_processes; i++) {
1427                if (pp->children[i].state == GIT_CP_WORKING &&
1428                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1429                        int n = strbuf_read_once(&pp->children[i].err,
1430                                                 pp->children[i].process.err, 0);
1431                        if (n == 0) {
1432                                close(pp->children[i].process.err);
1433                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1434                        } else if (n < 0)
1435                                if (errno != EAGAIN)
1436                                        die_errno("read");
1437                }
1438        }
1439}
1440
1441static void pp_output(struct parallel_processes *pp)
1442{
1443        int i = pp->output_owner;
1444        if (pp->children[i].state == GIT_CP_WORKING &&
1445            pp->children[i].err.len) {
1446                strbuf_write(&pp->children[i].err, stderr);
1447                strbuf_reset(&pp->children[i].err);
1448        }
1449}
1450
1451static int pp_collect_finished(struct parallel_processes *pp)
1452{
1453        int i, code;
1454        int n = pp->max_processes;
1455        int result = 0;
1456
1457        while (pp->nr_processes > 0) {
1458                for (i = 0; i < pp->max_processes; i++)
1459                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1460                                break;
1461                if (i == pp->max_processes)
1462                        break;
1463
1464                code = finish_command(&pp->children[i].process);
1465
1466                code = pp->task_finished(code,
1467                                         &pp->children[i].err, pp->data,
1468                                         &pp->children[i].data);
1469
1470                if (code)
1471                        result = code;
1472                if (code < 0)
1473                        break;
1474
1475                pp->nr_processes--;
1476                pp->children[i].state = GIT_CP_FREE;
1477                pp->pfd[i].fd = -1;
1478                child_process_init(&pp->children[i].process);
1479
1480                if (i != pp->output_owner) {
1481                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1482                        strbuf_reset(&pp->children[i].err);
1483                } else {
1484                        strbuf_write(&pp->children[i].err, stderr);
1485                        strbuf_reset(&pp->children[i].err);
1486
1487                        /* Output all other finished child processes */
1488                        strbuf_write(&pp->buffered_output, stderr);
1489                        strbuf_reset(&pp->buffered_output);
1490
1491                        /*
1492                         * Pick next process to output live.
1493                         * NEEDSWORK:
1494                         * For now we pick it randomly by doing a round
1495                         * robin. Later we may want to pick the one with
1496                         * the most output or the longest or shortest
1497                         * running process time.
1498                         */
1499                        for (i = 0; i < n; i++)
1500                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1501                                        break;
1502                        pp->output_owner = (pp->output_owner + i) % n;
1503                }
1504        }
1505        return result;
1506}
1507
1508int run_processes_parallel(int n,
1509                           get_next_task_fn get_next_task,
1510                           start_failure_fn start_failure,
1511                           task_finished_fn task_finished,
1512                           void *pp_cb)
1513{
1514        int i, code;
1515        int output_timeout = 100;
1516        int spawn_cap = 4;
1517        struct parallel_processes pp;
1518
1519        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1520        while (1) {
1521                for (i = 0;
1522                    i < spawn_cap && !pp.shutdown &&
1523                    pp.nr_processes < pp.max_processes;
1524                    i++) {
1525                        code = pp_start_one(&pp);
1526                        if (!code)
1527                                continue;
1528                        if (code < 0) {
1529                                pp.shutdown = 1;
1530                                kill_children(&pp, -code);
1531                        }
1532                        break;
1533                }
1534                if (!pp.nr_processes)
1535                        break;
1536                pp_buffer_stderr(&pp, output_timeout);
1537                pp_output(&pp);
1538                code = pp_collect_finished(&pp);
1539                if (code) {
1540                        pp.shutdown = 1;
1541                        if (code < 0)
1542                                kill_children(&pp, -code);
1543                }
1544        }
1545
1546        pp_cleanup(&pp);
1547        return 0;
1548}