1/* 2 * Based on the Mozilla SHA1 (see mozilla-sha1/sha1.c), 3 * optimized to do word accesses rather than byte accesses, 4 * and to avoid unnecessary copies into the context array. 5 */ 6 7#include <string.h> 8#include <arpa/inet.h> 9 10#include"sha1.h" 11 12#if defined(__i386__) || defined(__x86_64__) 13 14/* 15 * Force usage of rol or ror by selecting the one with the smaller constant. 16 * It _can_ generate slightly smaller code (a constant of 1 is special), but 17 * perhaps more importantly it's possibly faster on any uarch that does a 18 * rotate with a loop. 19 */ 20 21#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op"%1,%0":"=r" (__res):"i" (n),"0" (x)); __res; }) 22#define SHA_ROL(x,n) SHA_ASM("rol", x, n) 23#define SHA_ROR(x,n) SHA_ASM("ror", x, n) 24 25#else 26 27#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r))) 28#define SHA_ROL(X,n) SHA_ROT(X,n,32-(n)) 29#define SHA_ROR(X,n) SHA_ROT(X,32-(n),n) 30 31#endif 32 33/* 34 * If you have 32 registers or more, the compiler can (and should) 35 * try to change the array[] accesses into registers. However, on 36 * machines with less than ~25 registers, that won't really work, 37 * and at least gcc will make an unholy mess of it. 38 * 39 * So to avoid that mess which just slows things down, we force 40 * the stores to memory to actually happen (we might be better off 41 * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as 42 * suggested by Artur Skawina - that will also make gcc unable to 43 * try to do the silly "optimize away loads" part because it won't 44 * see what the value will be). 45 * 46 * Ben Herrenschmidt reports that on PPC, the C version comes close 47 * to the optimized asm with this (ie on PPC you don't want that 48 * 'volatile', since there are lots of registers). 49 * 50 * On ARM we get the best code generation by forcing a full memory barrier 51 * between each SHA_ROUND, otherwise gcc happily get wild with spilling and 52 * the stack frame size simply explode and performance goes down the drain. 53 */ 54 55#if defined(__i386__) || defined(__x86_64__) 56#define setW(x, val) (*(volatile unsigned int *)&W(x) = (val)) 57#elif defined(__arm__) 58#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) 59#else 60#define setW(x, val) (W(x) = (val)) 61#endif 62 63/* 64 * Performance might be improved if the CPU architecture is OK with 65 * unaligned 32-bit loads and a fast ntohl() is available. 66 * Otherwise fall back to byte loads and shifts which is portable, 67 * and is faster on architectures with memory alignment issues. 68 */ 69 70#if defined(__i386__) || defined(__x86_64__) 71 72#define get_be32(p) ntohl(*(unsigned int *)(p)) 73#define put_be32(p, v) do { *(unsigned int *)(p) = htonl(v); } while (0) 74 75#else 76 77#define get_be32(p) ( \ 78 (*((unsigned char *)(p) + 0) << 24) | \ 79 (*((unsigned char *)(p) + 1) << 16) | \ 80 (*((unsigned char *)(p) + 2) << 8) | \ 81 (*((unsigned char *)(p) + 3) << 0) ) 82#define put_be32(p, v) do { \ 83 unsigned int __v = (v); \ 84 *((unsigned char *)(p) + 0) = __v >> 24; \ 85 *((unsigned char *)(p) + 1) = __v >> 16; \ 86 *((unsigned char *)(p) + 2) = __v >> 8; \ 87 *((unsigned char *)(p) + 3) = __v >> 0; } while (0) 88 89#endif 90 91/* This "rolls" over the 512-bit array */ 92#define W(x) (array[(x)&15]) 93 94/* 95 * Where do we get the source from? The first 16 iterations get it from 96 * the input data, the next mix it from the 512-bit array. 97 */ 98#define SHA_SRC(t) get_be32(data + t) 99#define SHA_MIX(t) SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) 100 101#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ 102 unsigned int TEMP = input(t); setW(t, TEMP); \ 103 E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \ 104 B = SHA_ROR(B, 2); } while (0) 105 106#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) 107#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) 108#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) 109#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) 110#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) 111 112static voidblk_SHA1_Block(blk_SHA_CTX *ctx,const unsigned int*data) 113{ 114unsigned int A,B,C,D,E; 115unsigned int array[16]; 116 117 A = ctx->H[0]; 118 B = ctx->H[1]; 119 C = ctx->H[2]; 120 D = ctx->H[3]; 121 E = ctx->H[4]; 122 123/* Round 1 - iterations 0-16 take their input from 'data' */ 124T_0_15(0, A, B, C, D, E); 125T_0_15(1, E, A, B, C, D); 126T_0_15(2, D, E, A, B, C); 127T_0_15(3, C, D, E, A, B); 128T_0_15(4, B, C, D, E, A); 129T_0_15(5, A, B, C, D, E); 130T_0_15(6, E, A, B, C, D); 131T_0_15(7, D, E, A, B, C); 132T_0_15(8, C, D, E, A, B); 133T_0_15(9, B, C, D, E, A); 134T_0_15(10, A, B, C, D, E); 135T_0_15(11, E, A, B, C, D); 136T_0_15(12, D, E, A, B, C); 137T_0_15(13, C, D, E, A, B); 138T_0_15(14, B, C, D, E, A); 139T_0_15(15, A, B, C, D, E); 140 141/* Round 1 - tail. Input from 512-bit mixing array */ 142T_16_19(16, E, A, B, C, D); 143T_16_19(17, D, E, A, B, C); 144T_16_19(18, C, D, E, A, B); 145T_16_19(19, B, C, D, E, A); 146 147/* Round 2 */ 148T_20_39(20, A, B, C, D, E); 149T_20_39(21, E, A, B, C, D); 150T_20_39(22, D, E, A, B, C); 151T_20_39(23, C, D, E, A, B); 152T_20_39(24, B, C, D, E, A); 153T_20_39(25, A, B, C, D, E); 154T_20_39(26, E, A, B, C, D); 155T_20_39(27, D, E, A, B, C); 156T_20_39(28, C, D, E, A, B); 157T_20_39(29, B, C, D, E, A); 158T_20_39(30, A, B, C, D, E); 159T_20_39(31, E, A, B, C, D); 160T_20_39(32, D, E, A, B, C); 161T_20_39(33, C, D, E, A, B); 162T_20_39(34, B, C, D, E, A); 163T_20_39(35, A, B, C, D, E); 164T_20_39(36, E, A, B, C, D); 165T_20_39(37, D, E, A, B, C); 166T_20_39(38, C, D, E, A, B); 167T_20_39(39, B, C, D, E, A); 168 169/* Round 3 */ 170T_40_59(40, A, B, C, D, E); 171T_40_59(41, E, A, B, C, D); 172T_40_59(42, D, E, A, B, C); 173T_40_59(43, C, D, E, A, B); 174T_40_59(44, B, C, D, E, A); 175T_40_59(45, A, B, C, D, E); 176T_40_59(46, E, A, B, C, D); 177T_40_59(47, D, E, A, B, C); 178T_40_59(48, C, D, E, A, B); 179T_40_59(49, B, C, D, E, A); 180T_40_59(50, A, B, C, D, E); 181T_40_59(51, E, A, B, C, D); 182T_40_59(52, D, E, A, B, C); 183T_40_59(53, C, D, E, A, B); 184T_40_59(54, B, C, D, E, A); 185T_40_59(55, A, B, C, D, E); 186T_40_59(56, E, A, B, C, D); 187T_40_59(57, D, E, A, B, C); 188T_40_59(58, C, D, E, A, B); 189T_40_59(59, B, C, D, E, A); 190 191/* Round 4 */ 192T_60_79(60, A, B, C, D, E); 193T_60_79(61, E, A, B, C, D); 194T_60_79(62, D, E, A, B, C); 195T_60_79(63, C, D, E, A, B); 196T_60_79(64, B, C, D, E, A); 197T_60_79(65, A, B, C, D, E); 198T_60_79(66, E, A, B, C, D); 199T_60_79(67, D, E, A, B, C); 200T_60_79(68, C, D, E, A, B); 201T_60_79(69, B, C, D, E, A); 202T_60_79(70, A, B, C, D, E); 203T_60_79(71, E, A, B, C, D); 204T_60_79(72, D, E, A, B, C); 205T_60_79(73, C, D, E, A, B); 206T_60_79(74, B, C, D, E, A); 207T_60_79(75, A, B, C, D, E); 208T_60_79(76, E, A, B, C, D); 209T_60_79(77, D, E, A, B, C); 210T_60_79(78, C, D, E, A, B); 211T_60_79(79, B, C, D, E, A); 212 213 ctx->H[0] += A; 214 ctx->H[1] += B; 215 ctx->H[2] += C; 216 ctx->H[3] += D; 217 ctx->H[4] += E; 218} 219 220voidblk_SHA1_Init(blk_SHA_CTX *ctx) 221{ 222 ctx->size =0; 223 224/* Initialize H with the magic constants (see FIPS180 for constants) */ 225 ctx->H[0] =0x67452301; 226 ctx->H[1] =0xefcdab89; 227 ctx->H[2] =0x98badcfe; 228 ctx->H[3] =0x10325476; 229 ctx->H[4] =0xc3d2e1f0; 230} 231 232voidblk_SHA1_Update(blk_SHA_CTX *ctx,const void*data,unsigned long len) 233{ 234int lenW = ctx->size &63; 235 236 ctx->size += len; 237 238/* Read the data into W and process blocks as they get full */ 239if(lenW) { 240int left =64- lenW; 241if(len < left) 242 left = len; 243memcpy(lenW + (char*)ctx->W, data, left); 244 lenW = (lenW + left) &63; 245 len -= left; 246 data += left; 247if(lenW) 248return; 249blk_SHA1_Block(ctx, ctx->W); 250} 251while(len >=64) { 252blk_SHA1_Block(ctx, data); 253 data +=64; 254 len -=64; 255} 256if(len) 257memcpy(ctx->W, data, len); 258} 259 260voidblk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx) 261{ 262static const unsigned char pad[64] = {0x80}; 263unsigned int padlen[2]; 264int i; 265 266/* Pad with a binary 1 (ie 0x80), then zeroes, then length */ 267 padlen[0] =htonl(ctx->size >>29); 268 padlen[1] =htonl(ctx->size <<3); 269 270 i = ctx->size &63; 271blk_SHA1_Update(ctx, pad,1+ (63& (55- i))); 272blk_SHA1_Update(ctx, padlen,8); 273 274/* Output hash */ 275for(i =0; i <5; i++) 276put_be32(hashout + i*4, ctx->H[i]); 277}