1#include "cache.h" 2#include "pack-revindex.h" 3 4/* 5 * Pack index for existing packs give us easy access to the offsets into 6 * corresponding pack file where each object's data starts, but the entries 7 * do not store the size of the compressed representation (uncompressed 8 * size is easily available by examining the pack entry header). It is 9 * also rather expensive to find the sha1 for an object given its offset. 10 * 11 * The pack index file is sorted by object name mapping to offset; 12 * this revindex array is a list of offset/index_nr pairs 13 * ordered by offset, so if you know the offset of an object, next offset 14 * is where its packed representation ends and the index_nr can be used to 15 * get the object sha1 from the main index. 16 */ 17 18/* 19 * This is a least-significant-digit radix sort. 20 * 21 * It sorts each of the "n" items in "entries" by its offset field. The "max" 22 * parameter must be at least as large as the largest offset in the array, 23 * and lets us quit the sort early. 24 */ 25static void sort_revindex(struct revindex_entry *entries, unsigned n, off_t max) 26{ 27 /* 28 * We use a "digit" size of 16 bits. That keeps our memory 29 * usage reasonable, and we can generally (for a 4G or smaller 30 * packfile) quit after two rounds of radix-sorting. 31 */ 32#define DIGIT_SIZE (16) 33#define BUCKETS (1 << DIGIT_SIZE) 34 /* 35 * We want to know the bucket that a[i] will go into when we are using 36 * the digit that is N bits from the (least significant) end. 37 */ 38#define BUCKET_FOR(a, i, bits) (((a)[(i)].offset >> (bits)) & (BUCKETS-1)) 39 40 /* 41 * We need O(n) temporary storage. Rather than do an extra copy of the 42 * partial results into "entries", we sort back and forth between the 43 * real array and temporary storage. In each iteration of the loop, we 44 * keep track of them with alias pointers, always sorting from "from" 45 * to "to". 46 */ 47 struct revindex_entry *tmp, *from, *to; 48 int bits; 49 unsigned *pos; 50 51 ALLOC_ARRAY(pos, BUCKETS); 52 ALLOC_ARRAY(tmp, n); 53 from = entries; 54 to = tmp; 55 56 /* 57 * If (max >> bits) is zero, then we know that the radix digit we are 58 * on (and any higher) will be zero for all entries, and our loop will 59 * be a no-op, as everybody lands in the same zero-th bucket. 60 */ 61 for (bits = 0; max >> bits; bits += DIGIT_SIZE) { 62 struct revindex_entry *swap; 63 unsigned i; 64 65 memset(pos, 0, BUCKETS * sizeof(*pos)); 66 67 /* 68 * We want pos[i] to store the index of the last element that 69 * will go in bucket "i" (actually one past the last element). 70 * To do this, we first count the items that will go in each 71 * bucket, which gives us a relative offset from the last 72 * bucket. We can then cumulatively add the index from the 73 * previous bucket to get the true index. 74 */ 75 for (i = 0; i < n; i++) 76 pos[BUCKET_FOR(from, i, bits)]++; 77 for (i = 1; i < BUCKETS; i++) 78 pos[i] += pos[i-1]; 79 80 /* 81 * Now we can drop the elements into their correct buckets (in 82 * our temporary array). We iterate the pos counter backwards 83 * to avoid using an extra index to count up. And since we are 84 * going backwards there, we must also go backwards through the 85 * array itself, to keep the sort stable. 86 * 87 * Note that we use an unsigned iterator to make sure we can 88 * handle 2^32-1 objects, even on a 32-bit system. But this 89 * means we cannot use the more obvious "i >= 0" loop condition 90 * for counting backwards, and must instead check for 91 * wrap-around with UINT_MAX. 92 */ 93 for (i = n - 1; i != UINT_MAX; i--) 94 to[--pos[BUCKET_FOR(from, i, bits)]] = from[i]; 95 96 /* 97 * Now "to" contains the most sorted list, so we swap "from" and 98 * "to" for the next iteration. 99 */ 100 swap = from; 101 from = to; 102 to = swap; 103 } 104 105 /* 106 * If we ended with our data in the original array, great. If not, 107 * we have to move it back from the temporary storage. 108 */ 109 if (from != entries) 110 COPY_ARRAY(entries, tmp, n); 111 free(tmp); 112 free(pos); 113 114#undef BUCKET_FOR 115#undef BUCKETS 116#undef DIGIT_SIZE 117} 118 119/* 120 * Ordered list of offsets of objects in the pack. 121 */ 122static void create_pack_revindex(struct packed_git *p) 123{ 124 unsigned num_ent = p->num_objects; 125 unsigned i; 126 const char *index = p->index_data; 127 128 ALLOC_ARRAY(p->revindex, num_ent + 1); 129 index += 4 * 256; 130 131 if (p->index_version > 1) { 132 const uint32_t *off_32 = 133 (uint32_t *)(index + 8 + p->num_objects * (20 + 4)); 134 const uint32_t *off_64 = off_32 + p->num_objects; 135 for (i = 0; i < num_ent; i++) { 136 uint32_t off = ntohl(*off_32++); 137 if (!(off & 0x80000000)) { 138 p->revindex[i].offset = off; 139 } else { 140 p->revindex[i].offset = 141 ((uint64_t)ntohl(*off_64++)) << 32; 142 p->revindex[i].offset |= 143 ntohl(*off_64++); 144 } 145 p->revindex[i].nr = i; 146 } 147 } else { 148 for (i = 0; i < num_ent; i++) { 149 uint32_t hl = *((uint32_t *)(index + 24 * i)); 150 p->revindex[i].offset = ntohl(hl); 151 p->revindex[i].nr = i; 152 } 153 } 154 155 /* This knows the pack format -- the 20-byte trailer 156 * follows immediately after the last object data. 157 */ 158 p->revindex[num_ent].offset = p->pack_size - 20; 159 p->revindex[num_ent].nr = -1; 160 sort_revindex(p->revindex, num_ent, p->pack_size); 161} 162 163void load_pack_revindex(struct packed_git *p) 164{ 165 if (!p->revindex) 166 create_pack_revindex(p); 167} 168 169int find_revindex_position(struct packed_git *p, off_t ofs) 170{ 171 int lo = 0; 172 int hi = p->num_objects + 1; 173 struct revindex_entry *revindex = p->revindex; 174 175 do { 176 unsigned mi = lo + (hi - lo) / 2; 177 if (revindex[mi].offset == ofs) { 178 return mi; 179 } else if (ofs < revindex[mi].offset) 180 hi = mi; 181 else 182 lo = mi + 1; 183 } while (lo < hi); 184 185 error("bad offset for revindex"); 186 return -1; 187} 188 189struct revindex_entry *find_pack_revindex(struct packed_git *p, off_t ofs) 190{ 191 int pos; 192 193 load_pack_revindex(p); 194 pos = find_revindex_position(p, ofs); 195 196 if (pos < 0) 197 return NULL; 198 199 return p->revindex + pos; 200}