strbuf.hon commit wt-status: release strbuf after use in read_rebase_todolist() (6f49541)
   1#ifndef STRBUF_H
   2#define STRBUF_H
   3
   4/**
   5 * strbuf's are meant to be used with all the usual C string and memory
   6 * APIs. Given that the length of the buffer is known, it's often better to
   7 * use the mem* functions than a str* one (memchr vs. strchr e.g.).
   8 * Though, one has to be careful about the fact that str* functions often
   9 * stop on NULs and that strbufs may have embedded NULs.
  10 *
  11 * A strbuf is NUL terminated for convenience, but no function in the
  12 * strbuf API actually relies on the string being free of NULs.
  13 *
  14 * strbufs have some invariants that are very important to keep in mind:
  15 *
  16 *  - The `buf` member is never NULL, so it can be used in any usual C
  17 *    string operations safely. strbuf's _have_ to be initialized either by
  18 *    `strbuf_init()` or by `= STRBUF_INIT` before the invariants, though.
  19 *
  20 *    Do *not* assume anything on what `buf` really is (e.g. if it is
  21 *    allocated memory or not), use `strbuf_detach()` to unwrap a memory
  22 *    buffer from its strbuf shell in a safe way. That is the sole supported
  23 *    way. This will give you a malloced buffer that you can later `free()`.
  24 *
  25 *    However, it is totally safe to modify anything in the string pointed by
  26 *    the `buf` member, between the indices `0` and `len-1` (inclusive).
  27 *
  28 *  - The `buf` member is a byte array that has at least `len + 1` bytes
  29 *    allocated. The extra byte is used to store a `'\0'`, allowing the
  30 *    `buf` member to be a valid C-string. Every strbuf function ensure this
  31 *    invariant is preserved.
  32 *
  33 *    NOTE: It is OK to "play" with the buffer directly if you work it this
  34 *    way:
  35 *
  36 *        strbuf_grow(sb, SOME_SIZE); <1>
  37 *        strbuf_setlen(sb, sb->len + SOME_OTHER_SIZE);
  38 *
  39 *    <1> Here, the memory array starting at `sb->buf`, and of length
  40 *    `strbuf_avail(sb)` is all yours, and you can be sure that
  41 *    `strbuf_avail(sb)` is at least `SOME_SIZE`.
  42 *
  43 *    NOTE: `SOME_OTHER_SIZE` must be smaller or equal to `strbuf_avail(sb)`.
  44 *
  45 *    Doing so is safe, though if it has to be done in many places, adding the
  46 *    missing API to the strbuf module is the way to go.
  47 *
  48 *    WARNING: Do _not_ assume that the area that is yours is of size `alloc
  49 *    - 1` even if it's true in the current implementation. Alloc is somehow a
  50 *    "private" member that should not be messed with. Use `strbuf_avail()`
  51 *    instead.
  52*/
  53
  54/**
  55 * Data Structures
  56 * ---------------
  57 */
  58
  59/**
  60 * This is the string buffer structure. The `len` member can be used to
  61 * determine the current length of the string, and `buf` member provides
  62 * access to the string itself.
  63 */
  64struct strbuf {
  65        size_t alloc;
  66        size_t len;
  67        char *buf;
  68};
  69
  70extern char strbuf_slopbuf[];
  71#define STRBUF_INIT  { .alloc = 0, .len = 0, .buf = strbuf_slopbuf }
  72
  73/**
  74 * Life Cycle Functions
  75 * --------------------
  76 */
  77
  78/**
  79 * Initialize the structure. The second parameter can be zero or a bigger
  80 * number to allocate memory, in case you want to prevent further reallocs.
  81 */
  82extern void strbuf_init(struct strbuf *, size_t);
  83
  84/**
  85 * Release a string buffer and the memory it used. You should not use the
  86 * string buffer after using this function, unless you initialize it again.
  87 */
  88extern void strbuf_release(struct strbuf *);
  89
  90/**
  91 * Detach the string from the strbuf and returns it; you now own the
  92 * storage the string occupies and it is your responsibility from then on
  93 * to release it with `free(3)` when you are done with it.
  94 */
  95extern char *strbuf_detach(struct strbuf *, size_t *);
  96
  97/**
  98 * Attach a string to a buffer. You should specify the string to attach,
  99 * the current length of the string and the amount of allocated memory.
 100 * The amount must be larger than the string length, because the string you
 101 * pass is supposed to be a NUL-terminated string.  This string _must_ be
 102 * malloc()ed, and after attaching, the pointer cannot be relied upon
 103 * anymore, and neither be free()d directly.
 104 */
 105extern void strbuf_attach(struct strbuf *, void *, size_t, size_t);
 106
 107/**
 108 * Swap the contents of two string buffers.
 109 */
 110static inline void strbuf_swap(struct strbuf *a, struct strbuf *b)
 111{
 112        SWAP(*a, *b);
 113}
 114
 115
 116/**
 117 * Functions related to the size of the buffer
 118 * -------------------------------------------
 119 */
 120
 121/**
 122 * Determine the amount of allocated but unused memory.
 123 */
 124static inline size_t strbuf_avail(const struct strbuf *sb)
 125{
 126        return sb->alloc ? sb->alloc - sb->len - 1 : 0;
 127}
 128
 129/**
 130 * Ensure that at least this amount of unused memory is available after
 131 * `len`. This is used when you know a typical size for what you will add
 132 * and want to avoid repetitive automatic resizing of the underlying buffer.
 133 * This is never a needed operation, but can be critical for performance in
 134 * some cases.
 135 */
 136extern void strbuf_grow(struct strbuf *, size_t);
 137
 138/**
 139 * Set the length of the buffer to a given value. This function does *not*
 140 * allocate new memory, so you should not perform a `strbuf_setlen()` to a
 141 * length that is larger than `len + strbuf_avail()`. `strbuf_setlen()` is
 142 * just meant as a 'please fix invariants from this strbuf I just messed
 143 * with'.
 144 */
 145static inline void strbuf_setlen(struct strbuf *sb, size_t len)
 146{
 147        if (len > (sb->alloc ? sb->alloc - 1 : 0))
 148                die("BUG: strbuf_setlen() beyond buffer");
 149        sb->len = len;
 150        sb->buf[len] = '\0';
 151}
 152
 153/**
 154 * Empty the buffer by setting the size of it to zero.
 155 */
 156#define strbuf_reset(sb)  strbuf_setlen(sb, 0)
 157
 158
 159/**
 160 * Functions related to the contents of the buffer
 161 * -----------------------------------------------
 162 */
 163
 164/**
 165 * Strip whitespace from the beginning (`ltrim`), end (`rtrim`), or both side
 166 * (`trim`) of a string.
 167 */
 168extern void strbuf_trim(struct strbuf *);
 169extern void strbuf_rtrim(struct strbuf *);
 170extern void strbuf_ltrim(struct strbuf *);
 171
 172/**
 173 * Replace the contents of the strbuf with a reencoded form.  Returns -1
 174 * on error, 0 on success.
 175 */
 176extern int strbuf_reencode(struct strbuf *sb, const char *from, const char *to);
 177
 178/**
 179 * Lowercase each character in the buffer using `tolower`.
 180 */
 181extern void strbuf_tolower(struct strbuf *sb);
 182
 183/**
 184 * Compare two buffers. Returns an integer less than, equal to, or greater
 185 * than zero if the first buffer is found, respectively, to be less than,
 186 * to match, or be greater than the second buffer.
 187 */
 188extern int strbuf_cmp(const struct strbuf *, const struct strbuf *);
 189
 190
 191/**
 192 * Adding data to the buffer
 193 * -------------------------
 194 *
 195 * NOTE: All of the functions in this section will grow the buffer as
 196 * necessary.  If they fail for some reason other than memory shortage and the
 197 * buffer hadn't been allocated before (i.e. the `struct strbuf` was set to
 198 * `STRBUF_INIT`), then they will free() it.
 199 */
 200
 201/**
 202 * Add a single character to the buffer.
 203 */
 204static inline void strbuf_addch(struct strbuf *sb, int c)
 205{
 206        if (!strbuf_avail(sb))
 207                strbuf_grow(sb, 1);
 208        sb->buf[sb->len++] = c;
 209        sb->buf[sb->len] = '\0';
 210}
 211
 212/**
 213 * Add a character the specified number of times to the buffer.
 214 */
 215extern void strbuf_addchars(struct strbuf *sb, int c, size_t n);
 216
 217/**
 218 * Insert data to the given position of the buffer. The remaining contents
 219 * will be shifted, not overwritten.
 220 */
 221extern void strbuf_insert(struct strbuf *, size_t pos, const void *, size_t);
 222
 223/**
 224 * Remove given amount of data from a given position of the buffer.
 225 */
 226extern void strbuf_remove(struct strbuf *, size_t pos, size_t len);
 227
 228/**
 229 * Remove the bytes between `pos..pos+len` and replace it with the given
 230 * data.
 231 */
 232extern void strbuf_splice(struct strbuf *, size_t pos, size_t len,
 233                          const void *, size_t);
 234
 235/**
 236 * Add a NUL-terminated string to the buffer. Each line will be prepended
 237 * by a comment character and a blank.
 238 */
 239extern void strbuf_add_commented_lines(struct strbuf *out, const char *buf, size_t size);
 240
 241
 242/**
 243 * Add data of given length to the buffer.
 244 */
 245extern void strbuf_add(struct strbuf *, const void *, size_t);
 246
 247/**
 248 * Add a NUL-terminated string to the buffer.
 249 *
 250 * NOTE: This function will *always* be implemented as an inline or a macro
 251 * using strlen, meaning that this is efficient to write things like:
 252 *
 253 *     strbuf_addstr(sb, "immediate string");
 254 *
 255 */
 256static inline void strbuf_addstr(struct strbuf *sb, const char *s)
 257{
 258        strbuf_add(sb, s, strlen(s));
 259}
 260
 261/**
 262 * Copy the contents of another buffer at the end of the current one.
 263 */
 264extern void strbuf_addbuf(struct strbuf *sb, const struct strbuf *sb2);
 265
 266/**
 267 * This function can be used to expand a format string containing
 268 * placeholders. To that end, it parses the string and calls the specified
 269 * function for every percent sign found.
 270 *
 271 * The callback function is given a pointer to the character after the `%`
 272 * and a pointer to the struct strbuf.  It is expected to add the expanded
 273 * version of the placeholder to the strbuf, e.g. to add a newline
 274 * character if the letter `n` appears after a `%`.  The function returns
 275 * the length of the placeholder recognized and `strbuf_expand()` skips
 276 * over it.
 277 *
 278 * The format `%%` is automatically expanded to a single `%` as a quoting
 279 * mechanism; callers do not need to handle the `%` placeholder themselves,
 280 * and the callback function will not be invoked for this placeholder.
 281 *
 282 * All other characters (non-percent and not skipped ones) are copied
 283 * verbatim to the strbuf.  If the callback returned zero, meaning that the
 284 * placeholder is unknown, then the percent sign is copied, too.
 285 *
 286 * In order to facilitate caching and to make it possible to give
 287 * parameters to the callback, `strbuf_expand()` passes a context pointer,
 288 * which can be used by the programmer of the callback as she sees fit.
 289 */
 290typedef size_t (*expand_fn_t) (struct strbuf *sb, const char *placeholder, void *context);
 291extern void strbuf_expand(struct strbuf *sb, const char *format, expand_fn_t fn, void *context);
 292
 293/**
 294 * Used as callback for `strbuf_expand()`, expects an array of
 295 * struct strbuf_expand_dict_entry as context, i.e. pairs of
 296 * placeholder and replacement string.  The array needs to be
 297 * terminated by an entry with placeholder set to NULL.
 298 */
 299struct strbuf_expand_dict_entry {
 300        const char *placeholder;
 301        const char *value;
 302};
 303extern size_t strbuf_expand_dict_cb(struct strbuf *sb, const char *placeholder, void *context);
 304
 305/**
 306 * Append the contents of one strbuf to another, quoting any
 307 * percent signs ("%") into double-percents ("%%") in the
 308 * destination. This is useful for literal data to be fed to either
 309 * strbuf_expand or to the *printf family of functions.
 310 */
 311extern void strbuf_addbuf_percentquote(struct strbuf *dst, const struct strbuf *src);
 312
 313/**
 314 * Append the given byte size as a human-readable string (i.e. 12.23 KiB,
 315 * 3.50 MiB).
 316 */
 317extern void strbuf_humanise_bytes(struct strbuf *buf, off_t bytes);
 318
 319/**
 320 * Add a formatted string to the buffer.
 321 */
 322__attribute__((format (printf,2,3)))
 323extern void strbuf_addf(struct strbuf *sb, const char *fmt, ...);
 324
 325/**
 326 * Add a formatted string prepended by a comment character and a
 327 * blank to the buffer.
 328 */
 329__attribute__((format (printf, 2, 3)))
 330extern void strbuf_commented_addf(struct strbuf *sb, const char *fmt, ...);
 331
 332__attribute__((format (printf,2,0)))
 333extern void strbuf_vaddf(struct strbuf *sb, const char *fmt, va_list ap);
 334
 335/**
 336 * Add the time specified by `tm`, as formatted by `strftime`.
 337 * `tz_offset` is in decimal hhmm format, e.g. -600 means six hours west
 338 * of Greenwich, and it's used to expand %z internally.  However, tokens
 339 * with modifiers (e.g. %Ez) are passed to `strftime`.
 340 * `suppress_tz_name`, when set, expands %Z internally to the empty
 341 * string rather than passing it to `strftime`.
 342 */
 343extern void strbuf_addftime(struct strbuf *sb, const char *fmt,
 344                            const struct tm *tm, int tz_offset,
 345                            int suppress_tz_name);
 346
 347/**
 348 * Read a given size of data from a FILE* pointer to the buffer.
 349 *
 350 * NOTE: The buffer is rewound if the read fails. If -1 is returned,
 351 * `errno` must be consulted, like you would do for `read(3)`.
 352 * `strbuf_read()`, `strbuf_read_file()` and `strbuf_getline_*()`
 353 * family of functions have the same behaviour as well.
 354 */
 355extern size_t strbuf_fread(struct strbuf *, size_t, FILE *);
 356
 357/**
 358 * Read the contents of a given file descriptor. The third argument can be
 359 * used to give a hint about the file size, to avoid reallocs.  If read fails,
 360 * any partial read is undone.
 361 */
 362extern ssize_t strbuf_read(struct strbuf *, int fd, size_t hint);
 363
 364/**
 365 * Read the contents of a given file descriptor partially by using only one
 366 * attempt of xread. The third argument can be used to give a hint about the
 367 * file size, to avoid reallocs. Returns the number of new bytes appended to
 368 * the sb.
 369 */
 370extern ssize_t strbuf_read_once(struct strbuf *, int fd, size_t hint);
 371
 372/**
 373 * Read the contents of a file, specified by its path. The third argument
 374 * can be used to give a hint about the file size, to avoid reallocs.
 375 * Return the number of bytes read or a negative value if some error
 376 * occurred while opening or reading the file.
 377 */
 378extern ssize_t strbuf_read_file(struct strbuf *sb, const char *path, size_t hint);
 379
 380/**
 381 * Read the target of a symbolic link, specified by its path.  The third
 382 * argument can be used to give a hint about the size, to avoid reallocs.
 383 */
 384extern int strbuf_readlink(struct strbuf *sb, const char *path, size_t hint);
 385
 386/**
 387 * Write the whole content of the strbuf to the stream not stopping at
 388 * NUL bytes.
 389 */
 390extern ssize_t strbuf_write(struct strbuf *sb, FILE *stream);
 391
 392/**
 393 * Read a line from a FILE *, overwriting the existing contents of
 394 * the strbuf.  The strbuf_getline*() family of functions share
 395 * this signature, but have different line termination conventions.
 396 *
 397 * Reading stops after the terminator or at EOF.  The terminator
 398 * is removed from the buffer before returning.  Returns 0 unless
 399 * there was nothing left before EOF, in which case it returns `EOF`.
 400 */
 401typedef int (*strbuf_getline_fn)(struct strbuf *, FILE *);
 402
 403/* Uses LF as the line terminator */
 404extern int strbuf_getline_lf(struct strbuf *sb, FILE *fp);
 405
 406/* Uses NUL as the line terminator */
 407extern int strbuf_getline_nul(struct strbuf *sb, FILE *fp);
 408
 409/*
 410 * Similar to strbuf_getline_lf(), but additionally treats a CR that
 411 * comes immediately before the LF as part of the terminator.
 412 * This is the most friendly version to be used to read "text" files
 413 * that can come from platforms whose native text format is CRLF
 414 * terminated.
 415 */
 416extern int strbuf_getline(struct strbuf *, FILE *);
 417
 418
 419/**
 420 * Like `strbuf_getline`, but keeps the trailing terminator (if
 421 * any) in the buffer.
 422 */
 423extern int strbuf_getwholeline(struct strbuf *, FILE *, int);
 424
 425/**
 426 * Like `strbuf_getwholeline`, but operates on a file descriptor.
 427 * It reads one character at a time, so it is very slow.  Do not
 428 * use it unless you need the correct position in the file
 429 * descriptor.
 430 */
 431extern int strbuf_getwholeline_fd(struct strbuf *, int, int);
 432
 433/**
 434 * Set the buffer to the path of the current working directory.
 435 */
 436extern int strbuf_getcwd(struct strbuf *sb);
 437
 438/**
 439 * Add a path to a buffer, converting a relative path to an
 440 * absolute one in the process.  Symbolic links are not
 441 * resolved.
 442 */
 443extern void strbuf_add_absolute_path(struct strbuf *sb, const char *path);
 444
 445/**
 446 * Canonize `path` (make it absolute, resolve symlinks, remove extra
 447 * slashes) and append it to `sb`.  Die with an informative error
 448 * message if there is a problem.
 449 *
 450 * The directory part of `path` (i.e., everything up to the last
 451 * dir_sep) must denote a valid, existing directory, but the last
 452 * component need not exist.
 453 *
 454 * Callers that don't mind links should use the more lightweight
 455 * strbuf_add_absolute_path() instead.
 456 */
 457extern void strbuf_add_real_path(struct strbuf *sb, const char *path);
 458
 459
 460/**
 461 * Normalize in-place the path contained in the strbuf. See
 462 * normalize_path_copy() for details. If an error occurs, the contents of "sb"
 463 * are left untouched, and -1 is returned.
 464 */
 465extern int strbuf_normalize_path(struct strbuf *sb);
 466
 467/**
 468 * Strip whitespace from a buffer. The second parameter controls if
 469 * comments are considered contents to be removed or not.
 470 */
 471extern void strbuf_stripspace(struct strbuf *buf, int skip_comments);
 472
 473/**
 474 * Temporary alias until all topic branches have switched to use
 475 * strbuf_stripspace directly.
 476 */
 477static inline void stripspace(struct strbuf *buf, int skip_comments)
 478{
 479        strbuf_stripspace(buf, skip_comments);
 480}
 481
 482static inline int strbuf_strip_suffix(struct strbuf *sb, const char *suffix)
 483{
 484        if (strip_suffix_mem(sb->buf, &sb->len, suffix)) {
 485                strbuf_setlen(sb, sb->len);
 486                return 1;
 487        } else
 488                return 0;
 489}
 490
 491/**
 492 * Split str (of length slen) at the specified terminator character.
 493 * Return a null-terminated array of pointers to strbuf objects
 494 * holding the substrings.  The substrings include the terminator,
 495 * except for the last substring, which might be unterminated if the
 496 * original string did not end with a terminator.  If max is positive,
 497 * then split the string into at most max substrings (with the last
 498 * substring containing everything following the (max-1)th terminator
 499 * character).
 500 *
 501 * The most generic form is `strbuf_split_buf`, which takes an arbitrary
 502 * pointer/len buffer. The `_str` variant takes a NUL-terminated string,
 503 * the `_max` variant takes a strbuf, and just `strbuf_split` is a convenience
 504 * wrapper to drop the `max` parameter.
 505 *
 506 * For lighter-weight alternatives, see string_list_split() and
 507 * string_list_split_in_place().
 508 */
 509extern struct strbuf **strbuf_split_buf(const char *, size_t,
 510                                        int terminator, int max);
 511
 512static inline struct strbuf **strbuf_split_str(const char *str,
 513                                               int terminator, int max)
 514{
 515        return strbuf_split_buf(str, strlen(str), terminator, max);
 516}
 517
 518static inline struct strbuf **strbuf_split_max(const struct strbuf *sb,
 519                                                int terminator, int max)
 520{
 521        return strbuf_split_buf(sb->buf, sb->len, terminator, max);
 522}
 523
 524static inline struct strbuf **strbuf_split(const struct strbuf *sb,
 525                                           int terminator)
 526{
 527        return strbuf_split_max(sb, terminator, 0);
 528}
 529
 530/**
 531 * Free a NULL-terminated list of strbufs (for example, the return
 532 * values of the strbuf_split*() functions).
 533 */
 534extern void strbuf_list_free(struct strbuf **);
 535
 536/**
 537 * Add the abbreviation, as generated by find_unique_abbrev, of `sha1` to
 538 * the strbuf `sb`.
 539 */
 540extern void strbuf_add_unique_abbrev(struct strbuf *sb,
 541                                     const unsigned char *sha1,
 542                                     int abbrev_len);
 543
 544/**
 545 * Launch the user preferred editor to edit a file and fill the buffer
 546 * with the file's contents upon the user completing their editing. The
 547 * third argument can be used to set the environment which the editor is
 548 * run in. If the buffer is NULL the editor is launched as usual but the
 549 * file's contents are not read into the buffer upon completion.
 550 */
 551extern int launch_editor(const char *path, struct strbuf *buffer, const char *const *env);
 552
 553extern void strbuf_add_lines(struct strbuf *sb, const char *prefix, const char *buf, size_t size);
 554
 555/**
 556 * Append s to sb, with the characters '<', '>', '&' and '"' converted
 557 * into XML entities.
 558 */
 559extern void strbuf_addstr_xml_quoted(struct strbuf *sb, const char *s);
 560
 561/**
 562 * "Complete" the contents of `sb` by ensuring that either it ends with the
 563 * character `term`, or it is empty.  This can be used, for example,
 564 * to ensure that text ends with a newline, but without creating an empty
 565 * blank line if there is no content in the first place.
 566 */
 567static inline void strbuf_complete(struct strbuf *sb, char term)
 568{
 569        if (sb->len && sb->buf[sb->len - 1] != term)
 570                strbuf_addch(sb, term);
 571}
 572
 573static inline void strbuf_complete_line(struct strbuf *sb)
 574{
 575        strbuf_complete(sb, '\n');
 576}
 577
 578/*
 579 * Copy "name" to "sb", expanding any special @-marks as handled by
 580 * interpret_branch_name(). The result is a non-qualified branch name
 581 * (so "foo" or "origin/master" instead of "refs/heads/foo" or
 582 * "refs/remotes/origin/master").
 583 *
 584 * Note that the resulting name may not be a syntactically valid refname.
 585 *
 586 * If "allowed" is non-zero, restrict the set of allowed expansions. See
 587 * interpret_branch_name() for details.
 588 */
 589extern void strbuf_branchname(struct strbuf *sb, const char *name,
 590                              unsigned allowed);
 591
 592/*
 593 * Like strbuf_branchname() above, but confirm that the result is
 594 * syntactically valid to be used as a local branch name in refs/heads/.
 595 *
 596 * The return value is "0" if the result is valid, and "-1" otherwise.
 597 */
 598extern int strbuf_check_branch_ref(struct strbuf *sb, const char *name);
 599
 600extern void strbuf_addstr_urlencode(struct strbuf *, const char *,
 601                                    int reserved);
 602
 603__attribute__((format (printf,1,2)))
 604extern int printf_ln(const char *fmt, ...);
 605__attribute__((format (printf,2,3)))
 606extern int fprintf_ln(FILE *fp, const char *fmt, ...);
 607
 608char *xstrdup_tolower(const char *);
 609
 610/**
 611 * Create a newly allocated string using printf format. You can do this easily
 612 * with a strbuf, but this provides a shortcut to save a few lines.
 613 */
 614__attribute__((format (printf, 1, 0)))
 615char *xstrvfmt(const char *fmt, va_list ap);
 616__attribute__((format (printf, 1, 2)))
 617char *xstrfmt(const char *fmt, ...);
 618
 619#endif /* STRBUF_H */