refs / refs-internal.hon commit sha1-array.h: align function arguments (7248672)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * The following flags can appear in `ref_update::flags`. Their
  12 * numerical values must not conflict with those of REF_NO_DEREF and
  13 * REF_FORCE_CREATE_REFLOG, which are also stored in
  14 * `ref_update::flags`.
  15 */
  16
  17/*
  18 * The reference should be updated to new_oid.
  19 */
  20#define REF_HAVE_NEW (1 << 2)
  21
  22/*
  23 * The current reference's value should be checked to make sure that
  24 * it agrees with old_oid.
  25 */
  26#define REF_HAVE_OLD (1 << 3)
  27
  28/*
  29 * Return the length of time to retry acquiring a loose reference lock
  30 * before giving up, in milliseconds:
  31 */
  32long get_files_ref_lock_timeout_ms(void);
  33
  34/*
  35 * Return true iff refname is minimally safe. "Safe" here means that
  36 * deleting a loose reference by this name will not do any damage, for
  37 * example by causing a file that is not a reference to be deleted.
  38 * This function does not check that the reference name is legal; for
  39 * that, use check_refname_format().
  40 *
  41 * A refname that starts with "refs/" is considered safe iff it
  42 * doesn't contain any "." or ".." components or consecutive '/'
  43 * characters, end with '/', or (on Windows) contain any '\'
  44 * characters. Names that do not start with "refs/" are considered
  45 * safe iff they consist entirely of upper case characters and '_'
  46 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  47 */
  48int refname_is_safe(const char *refname);
  49
  50/*
  51 * Helper function: return true if refname, which has the specified
  52 * oid and flags, can be resolved to an object in the database. If the
  53 * referred-to object does not exist, emit a warning and return false.
  54 */
  55int ref_resolves_to_object(const char *refname,
  56                           const struct object_id *oid,
  57                           unsigned int flags);
  58
  59enum peel_status {
  60        /* object was peeled successfully: */
  61        PEEL_PEELED = 0,
  62
  63        /*
  64         * object cannot be peeled because the named object (or an
  65         * object referred to by a tag in the peel chain), does not
  66         * exist.
  67         */
  68        PEEL_INVALID = -1,
  69
  70        /* object cannot be peeled because it is not a tag: */
  71        PEEL_NON_TAG = -2,
  72
  73        /* ref_entry contains no peeled value because it is a symref: */
  74        PEEL_IS_SYMREF = -3,
  75
  76        /*
  77         * ref_entry cannot be peeled because it is broken (i.e., the
  78         * symbolic reference cannot even be resolved to an object
  79         * name):
  80         */
  81        PEEL_BROKEN = -4
  82};
  83
  84/*
  85 * Peel the named object; i.e., if the object is a tag, resolve the
  86 * tag recursively until a non-tag is found.  If successful, store the
  87 * result to oid and return PEEL_PEELED.  If the object is not a tag
  88 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
  89 * and leave oid unchanged.
  90 */
  91enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
  92
  93/*
  94 * Copy the reflog message msg to buf, which has been allocated sufficiently
  95 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
  96 * because reflog file is one line per entry.
  97 */
  98int copy_reflog_msg(char *buf, const char *msg);
  99
 100/**
 101 * Information needed for a single ref update. Set new_oid to the new
 102 * value or to null_oid to delete the ref. To check the old value
 103 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
 104 * to the old value, or to null_oid to ensure the ref does not exist
 105 * before update.
 106 */
 107struct ref_update {
 108        /*
 109         * If (flags & REF_HAVE_NEW), set the reference to this value
 110         * (or delete it, if `new_oid` is `null_oid`).
 111         */
 112        struct object_id new_oid;
 113
 114        /*
 115         * If (flags & REF_HAVE_OLD), check that the reference
 116         * previously had this value (or didn't previously exist, if
 117         * `old_oid` is `null_oid`).
 118         */
 119        struct object_id old_oid;
 120
 121        /*
 122         * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
 123         * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
 124         */
 125        unsigned int flags;
 126
 127        void *backend_data;
 128        unsigned int type;
 129        char *msg;
 130
 131        /*
 132         * If this ref_update was split off of a symref update via
 133         * split_symref_update(), then this member points at that
 134         * update. This is used for two purposes:
 135         * 1. When reporting errors, we report the refname under which
 136         *    the update was originally requested.
 137         * 2. When we read the old value of this reference, we
 138         *    propagate it back to its parent update for recording in
 139         *    the latter's reflog.
 140         */
 141        struct ref_update *parent_update;
 142
 143        const char refname[FLEX_ARRAY];
 144};
 145
 146int refs_read_raw_ref(struct ref_store *ref_store,
 147                      const char *refname, struct object_id *oid,
 148                      struct strbuf *referent, unsigned int *type);
 149
 150/*
 151 * Write an error to `err` and return a nonzero value iff the same
 152 * refname appears multiple times in `refnames`. `refnames` must be
 153 * sorted on entry to this function.
 154 */
 155int ref_update_reject_duplicates(struct string_list *refnames,
 156                                 struct strbuf *err);
 157
 158/*
 159 * Add a ref_update with the specified properties to transaction, and
 160 * return a pointer to the new object. This function does not verify
 161 * that refname is well-formed. new_oid and old_oid are only
 162 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 163 * respectively, are set in flags.
 164 */
 165struct ref_update *ref_transaction_add_update(
 166                struct ref_transaction *transaction,
 167                const char *refname, unsigned int flags,
 168                const struct object_id *new_oid,
 169                const struct object_id *old_oid,
 170                const char *msg);
 171
 172/*
 173 * Transaction states.
 174 *
 175 * OPEN:   The transaction is initialized and new updates can still be
 176 *         added to it. An OPEN transaction can be prepared,
 177 *         committed, freed, or aborted (freeing and aborting an open
 178 *         transaction are equivalent).
 179 *
 180 * PREPARED: ref_transaction_prepare(), which locks all of the
 181 *         references involved in the update and checks that the
 182 *         update has no errors, has been called successfully for the
 183 *         transaction. A PREPARED transaction can be committed or
 184 *         aborted.
 185 *
 186 * CLOSED: The transaction is no longer active. A transaction becomes
 187 *         CLOSED if there is a failure while building the transaction
 188 *         or if a transaction is committed or aborted. A CLOSED
 189 *         transaction can only be freed.
 190 */
 191enum ref_transaction_state {
 192        REF_TRANSACTION_OPEN     = 0,
 193        REF_TRANSACTION_PREPARED = 1,
 194        REF_TRANSACTION_CLOSED   = 2
 195};
 196
 197/*
 198 * Data structure for holding a reference transaction, which can
 199 * consist of checks and updates to multiple references, carried out
 200 * as atomically as possible.  This structure is opaque to callers.
 201 */
 202struct ref_transaction {
 203        struct ref_store *ref_store;
 204        struct ref_update **updates;
 205        size_t alloc;
 206        size_t nr;
 207        enum ref_transaction_state state;
 208        void *backend_data;
 209};
 210
 211/*
 212 * Check for entries in extras that are within the specified
 213 * directory, where dirname is a reference directory name including
 214 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 215 * conflicting references that are found in skip. If there is a
 216 * conflicting reference, return its name.
 217 *
 218 * extras and skip must be sorted lists of reference names. Either one
 219 * can be NULL, signifying the empty list.
 220 */
 221const char *find_descendant_ref(const char *dirname,
 222                                const struct string_list *extras,
 223                                const struct string_list *skip);
 224
 225/*
 226 * Check whether an attempt to rename old_refname to new_refname would
 227 * cause a D/F conflict with any existing reference (other than
 228 * possibly old_refname). If there would be a conflict, emit an error
 229 * message and return false; otherwise, return true.
 230 *
 231 * Note that this function is not safe against all races with other
 232 * processes (though rename_ref() catches some races that might get by
 233 * this check).
 234 */
 235int refs_rename_ref_available(struct ref_store *refs,
 236                              const char *old_refname,
 237                              const char *new_refname);
 238
 239/* We allow "recursive" symbolic refs. Only within reason, though */
 240#define SYMREF_MAXDEPTH 5
 241
 242/* Include broken references in a do_for_each_ref*() iteration: */
 243#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 244
 245/*
 246 * Reference iterators
 247 *
 248 * A reference iterator encapsulates the state of an in-progress
 249 * iteration over references. Create an instance of `struct
 250 * ref_iterator` via one of the functions in this module.
 251 *
 252 * A freshly-created ref_iterator doesn't yet point at a reference. To
 253 * advance the iterator, call ref_iterator_advance(). If successful,
 254 * this sets the iterator's refname, oid, and flags fields to describe
 255 * the next reference and returns ITER_OK. The data pointed at by
 256 * refname and oid belong to the iterator; if you want to retain them
 257 * after calling ref_iterator_advance() again or calling
 258 * ref_iterator_abort(), you must make a copy. When the iteration has
 259 * been exhausted, ref_iterator_advance() releases any resources
 260 * assocated with the iteration, frees the ref_iterator object, and
 261 * returns ITER_DONE. If you want to abort the iteration early, call
 262 * ref_iterator_abort(), which also frees the ref_iterator object and
 263 * any associated resources. If there was an internal error advancing
 264 * to the next entry, ref_iterator_advance() aborts the iteration,
 265 * frees the ref_iterator, and returns ITER_ERROR.
 266 *
 267 * The reference currently being looked at can be peeled by calling
 268 * ref_iterator_peel(). This function is often faster than peel_ref(),
 269 * so it should be preferred when iterating over references.
 270 *
 271 * Putting it all together, a typical iteration looks like this:
 272 *
 273 *     int ok;
 274 *     struct ref_iterator *iter = ...;
 275 *
 276 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 277 *             if (want_to_stop_iteration()) {
 278 *                     ok = ref_iterator_abort(iter);
 279 *                     break;
 280 *             }
 281 *
 282 *             // Access information about the current reference:
 283 *             if (!(iter->flags & REF_ISSYMREF))
 284 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 285 *
 286 *             // If you need to peel the reference:
 287 *             ref_iterator_peel(iter, &oid);
 288 *     }
 289 *
 290 *     if (ok != ITER_DONE)
 291 *             handle_error();
 292 */
 293struct ref_iterator {
 294        struct ref_iterator_vtable *vtable;
 295
 296        /*
 297         * Does this `ref_iterator` iterate over references in order
 298         * by refname?
 299         */
 300        unsigned int ordered : 1;
 301
 302        const char *refname;
 303        const struct object_id *oid;
 304        unsigned int flags;
 305};
 306
 307/*
 308 * Advance the iterator to the first or next item and return ITER_OK.
 309 * If the iteration is exhausted, free the resources associated with
 310 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 311 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 312 * call this function again after it has returned ITER_DONE or
 313 * ITER_ERROR.
 314 */
 315int ref_iterator_advance(struct ref_iterator *ref_iterator);
 316
 317/*
 318 * If possible, peel the reference currently being viewed by the
 319 * iterator. Return 0 on success.
 320 */
 321int ref_iterator_peel(struct ref_iterator *ref_iterator,
 322                      struct object_id *peeled);
 323
 324/*
 325 * End the iteration before it has been exhausted, freeing the
 326 * reference iterator and any associated resources and returning
 327 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 328 */
 329int ref_iterator_abort(struct ref_iterator *ref_iterator);
 330
 331/*
 332 * An iterator over nothing (its first ref_iterator_advance() call
 333 * returns ITER_DONE).
 334 */
 335struct ref_iterator *empty_ref_iterator_begin(void);
 336
 337/*
 338 * Return true iff ref_iterator is an empty_ref_iterator.
 339 */
 340int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 341
 342/*
 343 * Return an iterator that goes over each reference in `refs` for
 344 * which the refname begins with prefix. If trim is non-zero, then
 345 * trim that many characters off the beginning of each refname. flags
 346 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 347 * the iteration. The output is ordered by refname.
 348 */
 349struct ref_iterator *refs_ref_iterator_begin(
 350                struct ref_store *refs,
 351                const char *prefix, int trim, int flags);
 352
 353/*
 354 * A callback function used to instruct merge_ref_iterator how to
 355 * interleave the entries from iter0 and iter1. The function should
 356 * return one of the constants defined in enum iterator_selection. It
 357 * must not advance either of the iterators itself.
 358 *
 359 * The function must be prepared to handle the case that iter0 and/or
 360 * iter1 is NULL, which indicates that the corresponding sub-iterator
 361 * has been exhausted. Its return value must be consistent with the
 362 * current states of the iterators; e.g., it must not return
 363 * ITER_SKIP_1 if iter1 has already been exhausted.
 364 */
 365typedef enum iterator_selection ref_iterator_select_fn(
 366                struct ref_iterator *iter0, struct ref_iterator *iter1,
 367                void *cb_data);
 368
 369/*
 370 * Iterate over the entries from iter0 and iter1, with the values
 371 * interleaved as directed by the select function. The iterator takes
 372 * ownership of iter0 and iter1 and frees them when the iteration is
 373 * over. A derived class should set `ordered` to 1 or 0 based on
 374 * whether it generates its output in order by reference name.
 375 */
 376struct ref_iterator *merge_ref_iterator_begin(
 377                int ordered,
 378                struct ref_iterator *iter0, struct ref_iterator *iter1,
 379                ref_iterator_select_fn *select, void *cb_data);
 380
 381/*
 382 * An iterator consisting of the union of the entries from front and
 383 * back. If there are entries common to the two sub-iterators, use the
 384 * one from front. Each iterator must iterate over its entries in
 385 * strcmp() order by refname for this to work.
 386 *
 387 * The new iterator takes ownership of its arguments and frees them
 388 * when the iteration is over. As a convenience to callers, if front
 389 * or back is an empty_ref_iterator, then abort that one immediately
 390 * and return the other iterator directly, without wrapping it.
 391 */
 392struct ref_iterator *overlay_ref_iterator_begin(
 393                struct ref_iterator *front, struct ref_iterator *back);
 394
 395/*
 396 * Wrap iter0, only letting through the references whose names start
 397 * with prefix. If trim is set, set iter->refname to the name of the
 398 * reference with that many characters trimmed off the front;
 399 * otherwise set it to the full refname. The new iterator takes over
 400 * ownership of iter0 and frees it when iteration is over. It makes
 401 * its own copy of prefix.
 402 *
 403 * As an convenience to callers, if prefix is the empty string and
 404 * trim is zero, this function returns iter0 directly, without
 405 * wrapping it.
 406 *
 407 * The resulting ref_iterator is ordered if iter0 is.
 408 */
 409struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 410                                               const char *prefix,
 411                                               int trim);
 412
 413/* Internal implementation of reference iteration: */
 414
 415/*
 416 * Base class constructor for ref_iterators. Initialize the
 417 * ref_iterator part of iter, setting its vtable pointer as specified.
 418 * `ordered` should be set to 1 if the iterator will iterate over
 419 * references in order by refname; otherwise it should be set to 0.
 420 * This is meant to be called only by the initializers of derived
 421 * classes.
 422 */
 423void base_ref_iterator_init(struct ref_iterator *iter,
 424                            struct ref_iterator_vtable *vtable,
 425                            int ordered);
 426
 427/*
 428 * Base class destructor for ref_iterators. Destroy the ref_iterator
 429 * part of iter and shallow-free the object. This is meant to be
 430 * called only by the destructors of derived classes.
 431 */
 432void base_ref_iterator_free(struct ref_iterator *iter);
 433
 434/* Virtual function declarations for ref_iterators: */
 435
 436typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 437
 438typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 439                                 struct object_id *peeled);
 440
 441/*
 442 * Implementations of this function should free any resources specific
 443 * to the derived class, then call base_ref_iterator_free() to clean
 444 * up and free the ref_iterator object.
 445 */
 446typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 447
 448struct ref_iterator_vtable {
 449        ref_iterator_advance_fn *advance;
 450        ref_iterator_peel_fn *peel;
 451        ref_iterator_abort_fn *abort;
 452};
 453
 454/*
 455 * current_ref_iter is a performance hack: when iterating over
 456 * references using the for_each_ref*() functions, current_ref_iter is
 457 * set to the reference iterator before calling the callback function.
 458 * If the callback function calls peel_ref(), then peel_ref() first
 459 * checks whether the reference to be peeled is the one referred to by
 460 * the iterator (it usually is) and if so, asks the iterator for the
 461 * peeled version of the reference if it is available. This avoids a
 462 * refname lookup in a common case. current_ref_iter is set to NULL
 463 * when the iteration is over.
 464 */
 465extern struct ref_iterator *current_ref_iter;
 466
 467/*
 468 * The common backend for the for_each_*ref* functions. Call fn for
 469 * each reference in iter. If the iterator itself ever returns
 470 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 471 * the iteration and return that value. Otherwise, return 0. In any
 472 * case, free the iterator when done. This function is basically an
 473 * adapter between the callback style of reference iteration and the
 474 * iterator style.
 475 */
 476int do_for_each_ref_iterator(struct ref_iterator *iter,
 477                             each_ref_fn fn, void *cb_data);
 478
 479/*
 480 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 481 * Normally this will be used with a files ref_store, since that's
 482 * where all reference backends will presumably store their
 483 * per-worktree refs.
 484 */
 485#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 486
 487struct ref_store;
 488
 489/* refs backends */
 490
 491/* ref_store_init flags */
 492#define REF_STORE_READ          (1 << 0)
 493#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 494#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 495#define REF_STORE_MAIN          (1 << 3)
 496#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 497                                 REF_STORE_WRITE | \
 498                                 REF_STORE_ODB | \
 499                                 REF_STORE_MAIN)
 500
 501/*
 502 * Initialize the ref_store for the specified gitdir. These functions
 503 * should call base_ref_store_init() to initialize the shared part of
 504 * the ref_store and to record the ref_store for later lookup.
 505 */
 506typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 507                                            unsigned int flags);
 508
 509typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 510
 511typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 512                                       struct ref_transaction *transaction,
 513                                       struct strbuf *err);
 514
 515typedef int ref_transaction_finish_fn(struct ref_store *refs,
 516                                      struct ref_transaction *transaction,
 517                                      struct strbuf *err);
 518
 519typedef int ref_transaction_abort_fn(struct ref_store *refs,
 520                                     struct ref_transaction *transaction,
 521                                     struct strbuf *err);
 522
 523typedef int ref_transaction_commit_fn(struct ref_store *refs,
 524                                      struct ref_transaction *transaction,
 525                                      struct strbuf *err);
 526
 527typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 528typedef int create_symref_fn(struct ref_store *ref_store,
 529                             const char *ref_target,
 530                             const char *refs_heads_master,
 531                             const char *logmsg);
 532typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 533                           struct string_list *refnames, unsigned int flags);
 534typedef int rename_ref_fn(struct ref_store *ref_store,
 535                          const char *oldref, const char *newref,
 536                          const char *logmsg);
 537typedef int copy_ref_fn(struct ref_store *ref_store,
 538                          const char *oldref, const char *newref,
 539                          const char *logmsg);
 540
 541/*
 542 * Iterate over the references in `ref_store` whose names start with
 543 * `prefix`. `prefix` is matched as a literal string, without regard
 544 * for path separators. If prefix is NULL or the empty string, iterate
 545 * over all references in `ref_store`. The output is ordered by
 546 * refname.
 547 */
 548typedef struct ref_iterator *ref_iterator_begin_fn(
 549                struct ref_store *ref_store,
 550                const char *prefix, unsigned int flags);
 551
 552/* reflog functions */
 553
 554/*
 555 * Iterate over the references in the specified ref_store that have a
 556 * reflog. The refs are iterated over in arbitrary order.
 557 */
 558typedef struct ref_iterator *reflog_iterator_begin_fn(
 559                struct ref_store *ref_store);
 560
 561typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 562                                   const char *refname,
 563                                   each_reflog_ent_fn fn,
 564                                   void *cb_data);
 565typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 566                                           const char *refname,
 567                                           each_reflog_ent_fn fn,
 568                                           void *cb_data);
 569typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 570typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 571                             int force_create, struct strbuf *err);
 572typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 573typedef int reflog_expire_fn(struct ref_store *ref_store,
 574                             const char *refname, const struct object_id *oid,
 575                             unsigned int flags,
 576                             reflog_expiry_prepare_fn prepare_fn,
 577                             reflog_expiry_should_prune_fn should_prune_fn,
 578                             reflog_expiry_cleanup_fn cleanup_fn,
 579                             void *policy_cb_data);
 580
 581/*
 582 * Read a reference from the specified reference store, non-recursively.
 583 * Set type to describe the reference, and:
 584 *
 585 * - If refname is the name of a normal reference, fill in oid
 586 *   (leaving referent unchanged).
 587 *
 588 * - If refname is the name of a symbolic reference, write the full
 589 *   name of the reference to which it refers (e.g.
 590 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 591 *   type (leaving oid unchanged). The caller is responsible for
 592 *   validating that referent is a valid reference name.
 593 *
 594 * WARNING: refname might be used as part of a filename, so it is
 595 * important from a security standpoint that it be safe in the sense
 596 * of refname_is_safe(). Moreover, for symrefs this function sets
 597 * referent to whatever the repository says, which might not be a
 598 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 599 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 600 *
 601 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 602 * and return -1. If the ref exists but is neither a symbolic ref nor
 603 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
 604 * EINVAL, and return -1. If there is another error reading the ref,
 605 * set errno appropriately and return -1.
 606 *
 607 * Backend-specific flags might be set in type as well, regardless of
 608 * outcome.
 609 *
 610 * It is OK for refname to point into referent. If so:
 611 *
 612 * - if the function succeeds with REF_ISSYMREF, referent will be
 613 *   overwritten and the memory formerly pointed to by it might be
 614 *   changed or even freed.
 615 *
 616 * - in all other cases, referent will be untouched, and therefore
 617 *   refname will still be valid and unchanged.
 618 */
 619typedef int read_raw_ref_fn(struct ref_store *ref_store,
 620                            const char *refname, struct object_id *oid,
 621                            struct strbuf *referent, unsigned int *type);
 622
 623struct ref_storage_be {
 624        struct ref_storage_be *next;
 625        const char *name;
 626        ref_store_init_fn *init;
 627        ref_init_db_fn *init_db;
 628
 629        ref_transaction_prepare_fn *transaction_prepare;
 630        ref_transaction_finish_fn *transaction_finish;
 631        ref_transaction_abort_fn *transaction_abort;
 632        ref_transaction_commit_fn *initial_transaction_commit;
 633
 634        pack_refs_fn *pack_refs;
 635        create_symref_fn *create_symref;
 636        delete_refs_fn *delete_refs;
 637        rename_ref_fn *rename_ref;
 638        copy_ref_fn *copy_ref;
 639
 640        ref_iterator_begin_fn *iterator_begin;
 641        read_raw_ref_fn *read_raw_ref;
 642
 643        reflog_iterator_begin_fn *reflog_iterator_begin;
 644        for_each_reflog_ent_fn *for_each_reflog_ent;
 645        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 646        reflog_exists_fn *reflog_exists;
 647        create_reflog_fn *create_reflog;
 648        delete_reflog_fn *delete_reflog;
 649        reflog_expire_fn *reflog_expire;
 650};
 651
 652extern struct ref_storage_be refs_be_files;
 653extern struct ref_storage_be refs_be_packed;
 654
 655/*
 656 * A representation of the reference store for the main repository or
 657 * a submodule. The ref_store instances for submodules are kept in a
 658 * linked list.
 659 */
 660struct ref_store {
 661        /* The backend describing this ref_store's storage scheme: */
 662        const struct ref_storage_be *be;
 663};
 664
 665/*
 666 * Fill in the generic part of refs and add it to our collection of
 667 * reference stores.
 668 */
 669void base_ref_store_init(struct ref_store *refs,
 670                         const struct ref_storage_be *be);
 671
 672#endif /* REFS_REFS_INTERNAL_H */