notes.con commit Notes API: for_each_note(): Traverse the entire notes tree with a callback (73f77b9)
   1#include "cache.h"
   2#include "notes.h"
   3#include "utf8.h"
   4#include "strbuf.h"
   5#include "tree-walk.h"
   6
   7/*
   8 * Use a non-balancing simple 16-tree structure with struct int_node as
   9 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  10 * 16-array of pointers to its children.
  11 * The bottom 2 bits of each pointer is used to identify the pointer type
  12 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  13 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  14 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  15 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  16 *
  17 * The root node is a statically allocated struct int_node.
  18 */
  19struct int_node {
  20        void *a[16];
  21};
  22
  23/*
  24 * Leaf nodes come in two variants, note entries and subtree entries,
  25 * distinguished by the LSb of the leaf node pointer (see above).
  26 * As a note entry, the key is the SHA1 of the referenced object, and the
  27 * value is the SHA1 of the note object.
  28 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  29 * referenced object, using the last byte of the key to store the length of
  30 * the prefix. The value is the SHA1 of the tree object containing the notes
  31 * subtree.
  32 */
  33struct leaf_node {
  34        unsigned char key_sha1[20];
  35        unsigned char val_sha1[20];
  36};
  37
  38#define PTR_TYPE_NULL     0
  39#define PTR_TYPE_INTERNAL 1
  40#define PTR_TYPE_NOTE     2
  41#define PTR_TYPE_SUBTREE  3
  42
  43#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  44#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  45#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  46
  47#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
  48
  49#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  50        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  51
  52static struct int_node root_node;
  53
  54static int initialized;
  55
  56static void load_subtree(struct leaf_node *subtree, struct int_node *node,
  57                unsigned int n);
  58
  59/*
  60 * Search the tree until the appropriate location for the given key is found:
  61 * 1. Start at the root node, with n = 0
  62 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  63 *    subtree entry and remove it; restart search at the current level.
  64 * 3. Use the nth nibble of the key as an index into a:
  65 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  66 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  67 *      restart search at the current level.
  68 *    - Otherwise, we have found one of the following:
  69 *      - a subtree entry which does not match the key
  70 *      - a note entry which may or may not match the key
  71 *      - an unused leaf node (NULL)
  72 *      In any case, set *tree and *n, and return pointer to the tree location.
  73 */
  74static void **note_tree_search(struct int_node **tree,
  75                unsigned char *n, const unsigned char *key_sha1)
  76{
  77        struct leaf_node *l;
  78        unsigned char i;
  79        void *p = (*tree)->a[0];
  80
  81        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
  82                l = (struct leaf_node *) CLR_PTR_TYPE(p);
  83                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
  84                        /* unpack tree and resume search */
  85                        (*tree)->a[0] = NULL;
  86                        load_subtree(l, *tree, *n);
  87                        free(l);
  88                        return note_tree_search(tree, n, key_sha1);
  89                }
  90        }
  91
  92        i = GET_NIBBLE(*n, key_sha1);
  93        p = (*tree)->a[i];
  94        switch (GET_PTR_TYPE(p)) {
  95        case PTR_TYPE_INTERNAL:
  96                *tree = CLR_PTR_TYPE(p);
  97                (*n)++;
  98                return note_tree_search(tree, n, key_sha1);
  99        case PTR_TYPE_SUBTREE:
 100                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 101                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 102                        /* unpack tree and resume search */
 103                        (*tree)->a[i] = NULL;
 104                        load_subtree(l, *tree, *n);
 105                        free(l);
 106                        return note_tree_search(tree, n, key_sha1);
 107                }
 108                /* fall through */
 109        default:
 110                return &((*tree)->a[i]);
 111        }
 112}
 113
 114/*
 115 * To find a leaf_node:
 116 * Search to the tree location appropriate for the given key:
 117 * If a note entry with matching key, return the note entry, else return NULL.
 118 */
 119static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
 120                const unsigned char *key_sha1)
 121{
 122        void **p = note_tree_search(&tree, &n, key_sha1);
 123        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 124                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 125                if (!hashcmp(key_sha1, l->key_sha1))
 126                        return l;
 127        }
 128        return NULL;
 129}
 130
 131/* Create a new blob object by concatenating the two given blob objects */
 132static int concatenate_notes(unsigned char *cur_sha1,
 133                const unsigned char *new_sha1)
 134{
 135        char *cur_msg, *new_msg, *buf;
 136        unsigned long cur_len, new_len, buf_len;
 137        enum object_type cur_type, new_type;
 138        int ret;
 139
 140        /* read in both note blob objects */
 141        new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 142        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 143                free(new_msg);
 144                return 0;
 145        }
 146        cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 147        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 148                free(cur_msg);
 149                free(new_msg);
 150                hashcpy(cur_sha1, new_sha1);
 151                return 0;
 152        }
 153
 154        /* we will separate the notes by a newline anyway */
 155        if (cur_msg[cur_len - 1] == '\n')
 156                cur_len--;
 157
 158        /* concatenate cur_msg and new_msg into buf */
 159        buf_len = cur_len + 1 + new_len;
 160        buf = (char *) xmalloc(buf_len);
 161        memcpy(buf, cur_msg, cur_len);
 162        buf[cur_len] = '\n';
 163        memcpy(buf + cur_len + 1, new_msg, new_len);
 164
 165        free(cur_msg);
 166        free(new_msg);
 167
 168        /* create a new blob object from buf */
 169        ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
 170        free(buf);
 171        return ret;
 172}
 173
 174/*
 175 * To insert a leaf_node:
 176 * Search to the tree location appropriate for the given leaf_node's key:
 177 * - If location is unused (NULL), store the tweaked pointer directly there
 178 * - If location holds a note entry that matches the note-to-be-inserted, then
 179 *   concatenate the two notes.
 180 * - If location holds a note entry that matches the subtree-to-be-inserted,
 181 *   then unpack the subtree-to-be-inserted into the location.
 182 * - If location holds a matching subtree entry, unpack the subtree at that
 183 *   location, and restart the insert operation from that level.
 184 * - Else, create a new int_node, holding both the node-at-location and the
 185 *   node-to-be-inserted, and store the new int_node into the location.
 186 */
 187static void note_tree_insert(struct int_node *tree, unsigned char n,
 188                struct leaf_node *entry, unsigned char type)
 189{
 190        struct int_node *new_node;
 191        struct leaf_node *l;
 192        void **p = note_tree_search(&tree, &n, entry->key_sha1);
 193
 194        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 195        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 196        switch (GET_PTR_TYPE(*p)) {
 197        case PTR_TYPE_NULL:
 198                assert(!*p);
 199                *p = SET_PTR_TYPE(entry, type);
 200                return;
 201        case PTR_TYPE_NOTE:
 202                switch (type) {
 203                case PTR_TYPE_NOTE:
 204                        if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 205                                /* skip concatenation if l == entry */
 206                                if (!hashcmp(l->val_sha1, entry->val_sha1))
 207                                        return;
 208
 209                                if (concatenate_notes(l->val_sha1,
 210                                                entry->val_sha1))
 211                                        die("failed to concatenate note %s "
 212                                            "into note %s for object %s",
 213                                            sha1_to_hex(entry->val_sha1),
 214                                            sha1_to_hex(l->val_sha1),
 215                                            sha1_to_hex(l->key_sha1));
 216                                free(entry);
 217                                return;
 218                        }
 219                        break;
 220                case PTR_TYPE_SUBTREE:
 221                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 222                                                    entry->key_sha1)) {
 223                                /* unpack 'entry' */
 224                                load_subtree(entry, tree, n);
 225                                free(entry);
 226                                return;
 227                        }
 228                        break;
 229                }
 230                break;
 231        case PTR_TYPE_SUBTREE:
 232                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 233                        /* unpack 'l' and restart insert */
 234                        *p = NULL;
 235                        load_subtree(l, tree, n);
 236                        free(l);
 237                        note_tree_insert(tree, n, entry, type);
 238                        return;
 239                }
 240                break;
 241        }
 242
 243        /* non-matching leaf_node */
 244        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 245               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 246        new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
 247        note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
 248        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 249        note_tree_insert(new_node, n + 1, entry, type);
 250}
 251
 252/*
 253 * How to consolidate an int_node:
 254 * If there are > 1 non-NULL entries, give up and return non-zero.
 255 * Otherwise replace the int_node at the given index in the given parent node
 256 * with the only entry (or a NULL entry if no entries) from the given tree,
 257 * and return 0.
 258 */
 259static int note_tree_consolidate(struct int_node *tree,
 260        struct int_node *parent, unsigned char index)
 261{
 262        unsigned int i;
 263        void *p = NULL;
 264
 265        assert(tree && parent);
 266        assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 267
 268        for (i = 0; i < 16; i++) {
 269                if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 270                        if (p) /* more than one entry */
 271                                return -2;
 272                        p = tree->a[i];
 273                }
 274        }
 275
 276        /* replace tree with p in parent[index] */
 277        parent->a[index] = p;
 278        free(tree);
 279        return 0;
 280}
 281
 282/*
 283 * To remove a leaf_node:
 284 * Search to the tree location appropriate for the given leaf_node's key:
 285 * - If location does not hold a matching entry, abort and do nothing.
 286 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 287 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 288 */
 289static void note_tree_remove(struct int_node *tree, unsigned char n,
 290                struct leaf_node *entry)
 291{
 292        struct leaf_node *l;
 293        struct int_node *parent_stack[20];
 294        unsigned char i, j;
 295        void **p = note_tree_search(&tree, &n, entry->key_sha1);
 296
 297        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 298        if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 299                return; /* type mismatch, nothing to remove */
 300        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 301        if (hashcmp(l->key_sha1, entry->key_sha1))
 302                return; /* key mismatch, nothing to remove */
 303
 304        /* we have found a matching entry */
 305        free(l);
 306        *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 307
 308        /* consolidate this tree level, and parent levels, if possible */
 309        if (!n)
 310                return; /* cannot consolidate top level */
 311        /* first, build stack of ancestors between root and current node */
 312        parent_stack[0] = &root_node;
 313        for (i = 0; i < n; i++) {
 314                j = GET_NIBBLE(i, entry->key_sha1);
 315                parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 316        }
 317        assert(i == n && parent_stack[i] == tree);
 318        /* next, unwind stack until note_tree_consolidate() is done */
 319        while (i > 0 &&
 320               !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 321                                      GET_NIBBLE(i - 1, entry->key_sha1)))
 322                i--;
 323}
 324
 325/* Free the entire notes data contained in the given tree */
 326static void note_tree_free(struct int_node *tree)
 327{
 328        unsigned int i;
 329        for (i = 0; i < 16; i++) {
 330                void *p = tree->a[i];
 331                switch (GET_PTR_TYPE(p)) {
 332                case PTR_TYPE_INTERNAL:
 333                        note_tree_free(CLR_PTR_TYPE(p));
 334                        /* fall through */
 335                case PTR_TYPE_NOTE:
 336                case PTR_TYPE_SUBTREE:
 337                        free(CLR_PTR_TYPE(p));
 338                }
 339        }
 340}
 341
 342/*
 343 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 344 * - hex      - Partial SHA1 segment in ASCII hex format
 345 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 346 * - sha1     - Partial SHA1 value is written here
 347 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 348 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 349 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 350 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 351 */
 352static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 353                unsigned char *sha1, unsigned int sha1_len)
 354{
 355        unsigned int i, len = hex_len >> 1;
 356        if (hex_len % 2 != 0 || len > sha1_len)
 357                return -1;
 358        for (i = 0; i < len; i++) {
 359                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 360                if (val & ~0xff)
 361                        return -1;
 362                *sha1++ = val;
 363                hex += 2;
 364        }
 365        for (; i < sha1_len; i++)
 366                *sha1++ = 0;
 367        return len;
 368}
 369
 370static void load_subtree(struct leaf_node *subtree, struct int_node *node,
 371                unsigned int n)
 372{
 373        unsigned char object_sha1[20];
 374        unsigned int prefix_len;
 375        void *buf;
 376        struct tree_desc desc;
 377        struct name_entry entry;
 378
 379        buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 380        if (!buf)
 381                die("Could not read %s for notes-index",
 382                     sha1_to_hex(subtree->val_sha1));
 383
 384        prefix_len = subtree->key_sha1[19];
 385        assert(prefix_len * 2 >= n);
 386        memcpy(object_sha1, subtree->key_sha1, prefix_len);
 387        while (tree_entry(&desc, &entry)) {
 388                int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
 389                                object_sha1 + prefix_len, 20 - prefix_len);
 390                if (len < 0)
 391                        continue; /* entry.path is not a SHA1 sum. Skip */
 392                len += prefix_len;
 393
 394                /*
 395                 * If object SHA1 is complete (len == 20), assume note object
 396                 * If object SHA1 is incomplete (len < 20), assume note subtree
 397                 */
 398                if (len <= 20) {
 399                        unsigned char type = PTR_TYPE_NOTE;
 400                        struct leaf_node *l = (struct leaf_node *)
 401                                xcalloc(sizeof(struct leaf_node), 1);
 402                        hashcpy(l->key_sha1, object_sha1);
 403                        hashcpy(l->val_sha1, entry.sha1);
 404                        if (len < 20) {
 405                                if (!S_ISDIR(entry.mode))
 406                                        continue; /* entry cannot be subtree */
 407                                l->key_sha1[19] = (unsigned char) len;
 408                                type = PTR_TYPE_SUBTREE;
 409                        }
 410                        note_tree_insert(node, n, l, type);
 411                }
 412        }
 413        free(buf);
 414}
 415
 416/*
 417 * Determine optimal on-disk fanout for this part of the notes tree
 418 *
 419 * Given a (sub)tree and the level in the internal tree structure, determine
 420 * whether or not the given existing fanout should be expanded for this
 421 * (sub)tree.
 422 *
 423 * Values of the 'fanout' variable:
 424 * - 0: No fanout (all notes are stored directly in the root notes tree)
 425 * - 1: 2/38 fanout
 426 * - 2: 2/2/36 fanout
 427 * - 3: 2/2/2/34 fanout
 428 * etc.
 429 */
 430static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 431                unsigned char fanout)
 432{
 433        /*
 434         * The following is a simple heuristic that works well in practice:
 435         * For each even-numbered 16-tree level (remember that each on-disk
 436         * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 437         * entries at that tree level. If all of them are either int_nodes or
 438         * subtree entries, then there are likely plenty of notes below this
 439         * level, so we return an incremented fanout.
 440         */
 441        unsigned int i;
 442        if ((n % 2) || (n > 2 * fanout))
 443                return fanout;
 444        for (i = 0; i < 16; i++) {
 445                switch (GET_PTR_TYPE(tree->a[i])) {
 446                case PTR_TYPE_SUBTREE:
 447                case PTR_TYPE_INTERNAL:
 448                        continue;
 449                default:
 450                        return fanout;
 451                }
 452        }
 453        return fanout + 1;
 454}
 455
 456static void construct_path_with_fanout(const unsigned char *sha1,
 457                unsigned char fanout, char *path)
 458{
 459        unsigned int i = 0, j = 0;
 460        const char *hex_sha1 = sha1_to_hex(sha1);
 461        assert(fanout < 20);
 462        while (fanout) {
 463                path[i++] = hex_sha1[j++];
 464                path[i++] = hex_sha1[j++];
 465                path[i++] = '/';
 466                fanout--;
 467        }
 468        strcpy(path + i, hex_sha1 + j);
 469}
 470
 471static int for_each_note_helper(struct int_node *tree, unsigned char n,
 472                unsigned char fanout, int flags, each_note_fn fn,
 473                void *cb_data)
 474{
 475        unsigned int i;
 476        void *p;
 477        int ret = 0;
 478        struct leaf_node *l;
 479        static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
 480
 481        fanout = determine_fanout(tree, n, fanout);
 482        for (i = 0; i < 16; i++) {
 483redo:
 484                p = tree->a[i];
 485                switch (GET_PTR_TYPE(p)) {
 486                case PTR_TYPE_INTERNAL:
 487                        /* recurse into int_node */
 488                        ret = for_each_note_helper(CLR_PTR_TYPE(p), n + 1,
 489                                fanout, flags, fn, cb_data);
 490                        break;
 491                case PTR_TYPE_SUBTREE:
 492                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 493                        /*
 494                         * Subtree entries in the note tree represent parts of
 495                         * the note tree that have not yet been explored. There
 496                         * is a direct relationship between subtree entries at
 497                         * level 'n' in the tree, and the 'fanout' variable:
 498                         * Subtree entries at level 'n <= 2 * fanout' should be
 499                         * preserved, since they correspond exactly to a fanout
 500                         * directory in the on-disk structure. However, subtree
 501                         * entries at level 'n > 2 * fanout' should NOT be
 502                         * preserved, but rather consolidated into the above
 503                         * notes tree level. We achieve this by unconditionally
 504                         * unpacking subtree entries that exist below the
 505                         * threshold level at 'n = 2 * fanout'.
 506                         */
 507                        if (n <= 2 * fanout &&
 508                            flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 509                                /* invoke callback with subtree */
 510                                unsigned int path_len =
 511                                        l->key_sha1[19] * 2 + fanout;
 512                                assert(path_len < 40 + 19);
 513                                construct_path_with_fanout(l->key_sha1, fanout,
 514                                                           path);
 515                                /* Create trailing slash, if needed */
 516                                if (path[path_len - 1] != '/')
 517                                        path[path_len++] = '/';
 518                                path[path_len] = '\0';
 519                                ret = fn(l->key_sha1, l->val_sha1, path,
 520                                         cb_data);
 521                        }
 522                        if (n > fanout * 2 ||
 523                            !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 524                                /* unpack subtree and resume traversal */
 525                                tree->a[i] = NULL;
 526                                load_subtree(l, tree, n);
 527                                free(l);
 528                                goto redo;
 529                        }
 530                        break;
 531                case PTR_TYPE_NOTE:
 532                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 533                        construct_path_with_fanout(l->key_sha1, fanout, path);
 534                        ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
 535                        break;
 536                }
 537                if (ret)
 538                        return ret;
 539        }
 540        return 0;
 541}
 542
 543void init_notes(const char *notes_ref, int flags)
 544{
 545        unsigned char sha1[20], object_sha1[20];
 546        unsigned mode;
 547        struct leaf_node root_tree;
 548
 549        assert(!initialized);
 550        initialized = 1;
 551
 552        if (!notes_ref)
 553                notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 554        if (!notes_ref)
 555                notes_ref = notes_ref_name; /* value of core.notesRef config */
 556        if (!notes_ref)
 557                notes_ref = GIT_NOTES_DEFAULT_REF;
 558
 559        if (flags & NOTES_INIT_EMPTY || !notes_ref ||
 560            read_ref(notes_ref, object_sha1))
 561                return;
 562        if (get_tree_entry(object_sha1, "", sha1, &mode))
 563                die("Failed to read notes tree referenced by %s (%s)",
 564                    notes_ref, object_sha1);
 565
 566        hashclr(root_tree.key_sha1);
 567        hashcpy(root_tree.val_sha1, sha1);
 568        load_subtree(&root_tree, &root_node, 0);
 569}
 570
 571void add_note(const unsigned char *object_sha1, const unsigned char *note_sha1)
 572{
 573        struct leaf_node *l;
 574
 575        assert(initialized);
 576        l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
 577        hashcpy(l->key_sha1, object_sha1);
 578        hashcpy(l->val_sha1, note_sha1);
 579        note_tree_insert(&root_node, 0, l, PTR_TYPE_NOTE);
 580}
 581
 582void remove_note(const unsigned char *object_sha1)
 583{
 584        struct leaf_node l;
 585
 586        assert(initialized);
 587        hashcpy(l.key_sha1, object_sha1);
 588        hashclr(l.val_sha1);
 589        return note_tree_remove(&root_node, 0, &l);
 590}
 591
 592const unsigned char *get_note(const unsigned char *object_sha1)
 593{
 594        struct leaf_node *found;
 595
 596        assert(initialized);
 597        found = note_tree_find(&root_node, 0, object_sha1);
 598        return found ? found->val_sha1 : NULL;
 599}
 600
 601int for_each_note(int flags, each_note_fn fn, void *cb_data)
 602{
 603        assert(initialized);
 604        return for_each_note_helper(&root_node, 0, 0, flags, fn, cb_data);
 605}
 606
 607void free_notes(void)
 608{
 609        note_tree_free(&root_node);
 610        memset(&root_node, 0, sizeof(struct int_node));
 611        initialized = 0;
 612}
 613
 614void format_note(const unsigned char *object_sha1, struct strbuf *sb,
 615                const char *output_encoding, int flags)
 616{
 617        static const char utf8[] = "utf-8";
 618        const unsigned char *sha1;
 619        char *msg, *msg_p;
 620        unsigned long linelen, msglen;
 621        enum object_type type;
 622
 623        if (!initialized)
 624                init_notes(NULL, 0);
 625
 626        sha1 = get_note(object_sha1);
 627        if (!sha1)
 628                return;
 629
 630        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
 631                        type != OBJ_BLOB) {
 632                free(msg);
 633                return;
 634        }
 635
 636        if (output_encoding && *output_encoding &&
 637                        strcmp(utf8, output_encoding)) {
 638                char *reencoded = reencode_string(msg, output_encoding, utf8);
 639                if (reencoded) {
 640                        free(msg);
 641                        msg = reencoded;
 642                        msglen = strlen(msg);
 643                }
 644        }
 645
 646        /* we will end the annotation by a newline anyway */
 647        if (msglen && msg[msglen - 1] == '\n')
 648                msglen--;
 649
 650        if (flags & NOTES_SHOW_HEADER)
 651                strbuf_addstr(sb, "\nNotes:\n");
 652
 653        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
 654                linelen = strchrnul(msg_p, '\n') - msg_p;
 655
 656                if (flags & NOTES_INDENT)
 657                        strbuf_addstr(sb, "    ");
 658                strbuf_add(sb, msg_p, linelen);
 659                strbuf_addch(sb, '\n');
 660        }
 661
 662        free(msg);
 663}