xdiff / xdiffi.con commit Merge branch 'lt/fix-sol-pack' into next (7941602)
   1/*
   2 *  LibXDiff by Davide Libenzi ( File Differential Library )
   3 *  Copyright (C) 2003  Davide Libenzi
   4 *
   5 *  This library is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU Lesser General Public
   7 *  License as published by the Free Software Foundation; either
   8 *  version 2.1 of the License, or (at your option) any later version.
   9 *
  10 *  This library is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 *  Lesser General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU Lesser General Public
  16 *  License along with this library; if not, write to the Free Software
  17 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18 *
  19 *  Davide Libenzi <davidel@xmailserver.org>
  20 *
  21 */
  22
  23#include "xinclude.h"
  24
  25
  26
  27#define XDL_MAX_COST_MIN 256
  28#define XDL_HEUR_MIN_COST 256
  29#define XDL_LINE_MAX (long)((1UL << (8 * sizeof(long) - 1)) - 1)
  30#define XDL_SNAKE_CNT 20
  31#define XDL_K_HEUR 4
  32
  33
  34
  35typedef struct s_xdpsplit {
  36        long i1, i2;
  37        int min_lo, min_hi;
  38} xdpsplit_t;
  39
  40
  41
  42
  43static long xdl_split(unsigned long const *ha1, long off1, long lim1,
  44                      unsigned long const *ha2, long off2, long lim2,
  45                      long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
  46                      xdalgoenv_t *xenv);
  47static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
  48
  49
  50
  51
  52/*
  53 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
  54 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
  55 * the forward diagonal starting from (off1, off2) and the backward diagonal
  56 * starting from (lim1, lim2). If the K values on the same diagonal crosses
  57 * returns the furthest point of reach. We might end up having to expensive
  58 * cases using this algorithm is full, so a little bit of heuristic is needed
  59 * to cut the search and to return a suboptimal point.
  60 */
  61static long xdl_split(unsigned long const *ha1, long off1, long lim1,
  62                      unsigned long const *ha2, long off2, long lim2,
  63                      long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
  64                      xdalgoenv_t *xenv) {
  65        long dmin = off1 - lim2, dmax = lim1 - off2;
  66        long fmid = off1 - off2, bmid = lim1 - lim2;
  67        long odd = (fmid - bmid) & 1;
  68        long fmin = fmid, fmax = fmid;
  69        long bmin = bmid, bmax = bmid;
  70        long ec, d, i1, i2, prev1, best, dd, v, k;
  71
  72        /*
  73         * Set initial diagonal values for both forward and backward path.
  74         */
  75        kvdf[fmid] = off1;
  76        kvdb[bmid] = lim1;
  77
  78        for (ec = 1;; ec++) {
  79                int got_snake = 0;
  80
  81                /*
  82                 * We need to extent the diagonal "domain" by one. If the next
  83                 * values exits the box boundaries we need to change it in the
  84                 * opposite direction because (max - min) must be a power of two.
  85                 * Also we initialize the extenal K value to -1 so that we can
  86                 * avoid extra conditions check inside the core loop.
  87                 */
  88                if (fmin > dmin)
  89                        kvdf[--fmin - 1] = -1;
  90                else
  91                        ++fmin;
  92                if (fmax < dmax)
  93                        kvdf[++fmax + 1] = -1;
  94                else
  95                        --fmax;
  96
  97                for (d = fmax; d >= fmin; d -= 2) {
  98                        if (kvdf[d - 1] >= kvdf[d + 1])
  99                                i1 = kvdf[d - 1] + 1;
 100                        else
 101                                i1 = kvdf[d + 1];
 102                        prev1 = i1;
 103                        i2 = i1 - d;
 104                        for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
 105                        if (i1 - prev1 > xenv->snake_cnt)
 106                                got_snake = 1;
 107                        kvdf[d] = i1;
 108                        if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
 109                                spl->i1 = i1;
 110                                spl->i2 = i2;
 111                                spl->min_lo = spl->min_hi = 1;
 112                                return ec;
 113                        }
 114                }
 115
 116                /*
 117                 * We need to extent the diagonal "domain" by one. If the next
 118                 * values exits the box boundaries we need to change it in the
 119                 * opposite direction because (max - min) must be a power of two.
 120                 * Also we initialize the extenal K value to -1 so that we can
 121                 * avoid extra conditions check inside the core loop.
 122                 */
 123                if (bmin > dmin)
 124                        kvdb[--bmin - 1] = XDL_LINE_MAX;
 125                else
 126                        ++bmin;
 127                if (bmax < dmax)
 128                        kvdb[++bmax + 1] = XDL_LINE_MAX;
 129                else
 130                        --bmax;
 131
 132                for (d = bmax; d >= bmin; d -= 2) {
 133                        if (kvdb[d - 1] < kvdb[d + 1])
 134                                i1 = kvdb[d - 1];
 135                        else
 136                                i1 = kvdb[d + 1] - 1;
 137                        prev1 = i1;
 138                        i2 = i1 - d;
 139                        for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
 140                        if (prev1 - i1 > xenv->snake_cnt)
 141                                got_snake = 1;
 142                        kvdb[d] = i1;
 143                        if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
 144                                spl->i1 = i1;
 145                                spl->i2 = i2;
 146                                spl->min_lo = spl->min_hi = 1;
 147                                return ec;
 148                        }
 149                }
 150
 151                if (need_min)
 152                        continue;
 153
 154                /*
 155                 * If the edit cost is above the heuristic trigger and if
 156                 * we got a good snake, we sample current diagonals to see
 157                 * if some of the, have reached an "interesting" path. Our
 158                 * measure is a function of the distance from the diagonal
 159                 * corner (i1 + i2) penalized with the distance from the
 160                 * mid diagonal itself. If this value is above the current
 161                 * edit cost times a magic factor (XDL_K_HEUR) we consider
 162                 * it interesting.
 163                 */
 164                if (got_snake && ec > xenv->heur_min) {
 165                        for (best = 0, d = fmax; d >= fmin; d -= 2) {
 166                                dd = d > fmid ? d - fmid: fmid - d;
 167                                i1 = kvdf[d];
 168                                i2 = i1 - d;
 169                                v = (i1 - off1) + (i2 - off2) - dd;
 170
 171                                if (v > XDL_K_HEUR * ec && v > best &&
 172                                    off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
 173                                    off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
 174                                        for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
 175                                                if (k == xenv->snake_cnt) {
 176                                                        best = v;
 177                                                        spl->i1 = i1;
 178                                                        spl->i2 = i2;
 179                                                        break;
 180                                                }
 181                                }
 182                        }
 183                        if (best > 0) {
 184                                spl->min_lo = 1;
 185                                spl->min_hi = 0;
 186                                return ec;
 187                        }
 188
 189                        for (best = 0, d = bmax; d >= bmin; d -= 2) {
 190                                dd = d > bmid ? d - bmid: bmid - d;
 191                                i1 = kvdb[d];
 192                                i2 = i1 - d;
 193                                v = (lim1 - i1) + (lim2 - i2) - dd;
 194
 195                                if (v > XDL_K_HEUR * ec && v > best &&
 196                                    off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
 197                                    off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
 198                                        for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
 199                                                if (k == xenv->snake_cnt - 1) {
 200                                                        best = v;
 201                                                        spl->i1 = i1;
 202                                                        spl->i2 = i2;
 203                                                        break;
 204                                                }
 205                                }
 206                        }
 207                        if (best > 0) {
 208                                spl->min_lo = 0;
 209                                spl->min_hi = 1;
 210                                return ec;
 211                        }
 212                }
 213
 214                /*
 215                 * Enough is enough. We spent too much time here and now we collect
 216                 * the furthest reaching path using the (i1 + i2) measure.
 217                 */
 218                if (ec >= xenv->mxcost) {
 219                        long fbest, fbest1, bbest, bbest1;
 220
 221                        fbest = -1;
 222                        for (d = fmax; d >= fmin; d -= 2) {
 223                                i1 = XDL_MIN(kvdf[d], lim1);
 224                                i2 = i1 - d;
 225                                if (lim2 < i2)
 226                                        i1 = lim2 + d, i2 = lim2;
 227                                if (fbest < i1 + i2) {
 228                                        fbest = i1 + i2;
 229                                        fbest1 = i1;
 230                                }
 231                        }
 232
 233                        bbest = XDL_LINE_MAX;
 234                        for (d = bmax; d >= bmin; d -= 2) {
 235                                i1 = XDL_MAX(off1, kvdb[d]);
 236                                i2 = i1 - d;
 237                                if (i2 < off2)
 238                                        i1 = off2 + d, i2 = off2;
 239                                if (i1 + i2 < bbest) {
 240                                        bbest = i1 + i2;
 241                                        bbest1 = i1;
 242                                }
 243                        }
 244
 245                        if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
 246                                spl->i1 = fbest1;
 247                                spl->i2 = fbest - fbest1;
 248                                spl->min_lo = 1;
 249                                spl->min_hi = 0;
 250                        } else {
 251                                spl->i1 = bbest1;
 252                                spl->i2 = bbest - bbest1;
 253                                spl->min_lo = 0;
 254                                spl->min_hi = 1;
 255                        }
 256                        return ec;
 257                }
 258        }
 259
 260        return -1;
 261}
 262
 263
 264/*
 265 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
 266 * the box splitting function. Note that the real job (marking changed lines)
 267 * is done in the two boundary reaching checks.
 268 */
 269int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
 270                 diffdata_t *dd2, long off2, long lim2,
 271                 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
 272        unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
 273
 274        /*
 275         * Shrink the box by walking through each diagonal snake (SW and NE).
 276         */
 277        for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
 278        for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
 279
 280        /*
 281         * If one dimension is empty, then all records on the other one must
 282         * be obviously changed.
 283         */
 284        if (off1 == lim1) {
 285                char *rchg2 = dd2->rchg;
 286                long *rindex2 = dd2->rindex;
 287
 288                for (; off2 < lim2; off2++)
 289                        rchg2[rindex2[off2]] = 1;
 290        } else if (off2 == lim2) {
 291                char *rchg1 = dd1->rchg;
 292                long *rindex1 = dd1->rindex;
 293
 294                for (; off1 < lim1; off1++)
 295                        rchg1[rindex1[off1]] = 1;
 296        } else {
 297                long ec;
 298                xdpsplit_t spl;
 299
 300                /*
 301                 * Divide ...
 302                 */
 303                if ((ec = xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
 304                                    need_min, &spl, xenv)) < 0) {
 305
 306                        return -1;
 307                }
 308
 309                /*
 310                 * ... et Impera.
 311                 */
 312                if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
 313                                 kvdf, kvdb, spl.min_lo, xenv) < 0 ||
 314                    xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
 315                                 kvdf, kvdb, spl.min_hi, xenv) < 0) {
 316
 317                        return -1;
 318                }
 319        }
 320
 321        return 0;
 322}
 323
 324
 325int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
 326                xdfenv_t *xe) {
 327        long ndiags;
 328        long *kvd, *kvdf, *kvdb;
 329        xdalgoenv_t xenv;
 330        diffdata_t dd1, dd2;
 331
 332        if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
 333
 334                return -1;
 335        }
 336
 337        /*
 338         * Allocate and setup K vectors to be used by the differential algorithm.
 339         * One is to store the forward path and one to store the backward path.
 340         */
 341        ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
 342        if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
 343
 344                xdl_free_env(xe);
 345                return -1;
 346        }
 347        kvdf = kvd;
 348        kvdb = kvdf + ndiags;
 349        kvdf += xe->xdf2.nreff + 1;
 350        kvdb += xe->xdf2.nreff + 1;
 351
 352        /*
 353         * Classical integer square root approximation using shifts.
 354         */
 355        xenv.mxcost = 1;
 356        for (; ndiags; ndiags >>= 2)
 357                xenv.mxcost <<= 1;
 358        if (xenv.mxcost < XDL_MAX_COST_MIN)
 359                xenv.mxcost = XDL_MAX_COST_MIN;
 360        xenv.snake_cnt = XDL_SNAKE_CNT;
 361        xenv.heur_min = XDL_HEUR_MIN_COST;
 362
 363        dd1.nrec = xe->xdf1.nreff;
 364        dd1.ha = xe->xdf1.ha;
 365        dd1.rchg = xe->xdf1.rchg;
 366        dd1.rindex = xe->xdf1.rindex;
 367        dd2.nrec = xe->xdf2.nreff;
 368        dd2.ha = xe->xdf2.ha;
 369        dd2.rchg = xe->xdf2.rchg;
 370        dd2.rindex = xe->xdf2.rindex;
 371
 372        if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
 373                         kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
 374
 375                xdl_free(kvd);
 376                xdl_free_env(xe);
 377                return -1;
 378        }
 379
 380        xdl_free(kvd);
 381
 382        return 0;
 383}
 384
 385
 386static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
 387        xdchange_t *xch;
 388
 389        if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
 390                return NULL;
 391
 392        xch->next = xscr;
 393        xch->i1 = i1;
 394        xch->i2 = i2;
 395        xch->chg1 = chg1;
 396        xch->chg2 = chg2;
 397
 398        return xch;
 399}
 400
 401
 402int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
 403        xdchange_t *cscr = NULL, *xch;
 404        char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
 405        long i1, i2, l1, l2;
 406
 407        /*
 408         * Trivial. Collects "groups" of changes and creates an edit script.
 409         */
 410        for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
 411                if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
 412                        for (l1 = i1; rchg1[i1 - 1]; i1--);
 413                        for (l2 = i2; rchg2[i2 - 1]; i2--);
 414
 415                        if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
 416                                xdl_free_script(cscr);
 417                                return -1;
 418                        }
 419                        cscr = xch;
 420                }
 421
 422        *xscr = cscr;
 423
 424        return 0;
 425}
 426
 427
 428void xdl_free_script(xdchange_t *xscr) {
 429        xdchange_t *xch;
 430
 431        while ((xch = xscr) != NULL) {
 432                xscr = xscr->next;
 433                xdl_free(xch);
 434        }
 435}
 436
 437
 438int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
 439             xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
 440        xdchange_t *xscr;
 441        xdfenv_t xe;
 442
 443        if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
 444
 445                return -1;
 446        }
 447
 448        if (xdl_build_script(&xe, &xscr) < 0) {
 449
 450                xdl_free_env(&xe);
 451                return -1;
 452        }
 453
 454        if (xscr) {
 455                if (xdl_emit_diff(&xe, xscr, ecb, xecfg) < 0) {
 456
 457                        xdl_free_script(xscr);
 458                        xdl_free_env(&xe);
 459                        return -1;
 460                }
 461
 462                xdl_free_script(xscr);
 463        }
 464
 465        xdl_free_env(&xe);
 466
 467        return 0;
 468}
 469