run-command.con commit check-docs: allow command-list.txt to contain excluded commands (7c3bd71)
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec-cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8#include "string-list.h"
   9#include "quote.h"
  10
  11void child_process_init(struct child_process *child)
  12{
  13        memset(child, 0, sizeof(*child));
  14        argv_array_init(&child->args);
  15        argv_array_init(&child->env_array);
  16}
  17
  18void child_process_clear(struct child_process *child)
  19{
  20        argv_array_clear(&child->args);
  21        argv_array_clear(&child->env_array);
  22}
  23
  24struct child_to_clean {
  25        pid_t pid;
  26        struct child_process *process;
  27        struct child_to_clean *next;
  28};
  29static struct child_to_clean *children_to_clean;
  30static int installed_child_cleanup_handler;
  31
  32static void cleanup_children(int sig, int in_signal)
  33{
  34        struct child_to_clean *children_to_wait_for = NULL;
  35
  36        while (children_to_clean) {
  37                struct child_to_clean *p = children_to_clean;
  38                children_to_clean = p->next;
  39
  40                if (p->process && !in_signal) {
  41                        struct child_process *process = p->process;
  42                        if (process->clean_on_exit_handler) {
  43                                trace_printf(
  44                                        "trace: run_command: running exit handler for pid %"
  45                                        PRIuMAX, (uintmax_t)p->pid
  46                                );
  47                                process->clean_on_exit_handler(process);
  48                        }
  49                }
  50
  51                kill(p->pid, sig);
  52
  53                if (p->process && p->process->wait_after_clean) {
  54                        p->next = children_to_wait_for;
  55                        children_to_wait_for = p;
  56                } else {
  57                        if (!in_signal)
  58                                free(p);
  59                }
  60        }
  61
  62        while (children_to_wait_for) {
  63                struct child_to_clean *p = children_to_wait_for;
  64                children_to_wait_for = p->next;
  65
  66                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  67                        ; /* spin waiting for process exit or error */
  68
  69                if (!in_signal)
  70                        free(p);
  71        }
  72}
  73
  74static void cleanup_children_on_signal(int sig)
  75{
  76        cleanup_children(sig, 1);
  77        sigchain_pop(sig);
  78        raise(sig);
  79}
  80
  81static void cleanup_children_on_exit(void)
  82{
  83        cleanup_children(SIGTERM, 0);
  84}
  85
  86static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  87{
  88        struct child_to_clean *p = xmalloc(sizeof(*p));
  89        p->pid = pid;
  90        p->process = process;
  91        p->next = children_to_clean;
  92        children_to_clean = p;
  93
  94        if (!installed_child_cleanup_handler) {
  95                atexit(cleanup_children_on_exit);
  96                sigchain_push_common(cleanup_children_on_signal);
  97                installed_child_cleanup_handler = 1;
  98        }
  99}
 100
 101static void clear_child_for_cleanup(pid_t pid)
 102{
 103        struct child_to_clean **pp;
 104
 105        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 106                struct child_to_clean *clean_me = *pp;
 107
 108                if (clean_me->pid == pid) {
 109                        *pp = clean_me->next;
 110                        free(clean_me);
 111                        return;
 112                }
 113        }
 114}
 115
 116static inline void close_pair(int fd[2])
 117{
 118        close(fd[0]);
 119        close(fd[1]);
 120}
 121
 122int is_executable(const char *name)
 123{
 124        struct stat st;
 125
 126        if (stat(name, &st) || /* stat, not lstat */
 127            !S_ISREG(st.st_mode))
 128                return 0;
 129
 130#if defined(GIT_WINDOWS_NATIVE)
 131        /*
 132         * On Windows there is no executable bit. The file extension
 133         * indicates whether it can be run as an executable, and Git
 134         * has special-handling to detect scripts and launch them
 135         * through the indicated script interpreter. We test for the
 136         * file extension first because virus scanners may make
 137         * it quite expensive to open many files.
 138         */
 139        if (ends_with(name, ".exe"))
 140                return S_IXUSR;
 141
 142{
 143        /*
 144         * Now that we know it does not have an executable extension,
 145         * peek into the file instead.
 146         */
 147        char buf[3] = { 0 };
 148        int n;
 149        int fd = open(name, O_RDONLY);
 150        st.st_mode &= ~S_IXUSR;
 151        if (fd >= 0) {
 152                n = read(fd, buf, 2);
 153                if (n == 2)
 154                        /* look for a she-bang */
 155                        if (!strcmp(buf, "#!"))
 156                                st.st_mode |= S_IXUSR;
 157                close(fd);
 158        }
 159}
 160#endif
 161        return st.st_mode & S_IXUSR;
 162}
 163
 164/*
 165 * Search $PATH for a command.  This emulates the path search that
 166 * execvp would perform, without actually executing the command so it
 167 * can be used before fork() to prepare to run a command using
 168 * execve() or after execvp() to diagnose why it failed.
 169 *
 170 * The caller should ensure that file contains no directory
 171 * separators.
 172 *
 173 * Returns the path to the command, as found in $PATH or NULL if the
 174 * command could not be found.  The caller inherits ownership of the memory
 175 * used to store the resultant path.
 176 *
 177 * This should not be used on Windows, where the $PATH search rules
 178 * are more complicated (e.g., a search for "foo" should find
 179 * "foo.exe").
 180 */
 181static char *locate_in_PATH(const char *file)
 182{
 183        const char *p = getenv("PATH");
 184        struct strbuf buf = STRBUF_INIT;
 185
 186        if (!p || !*p)
 187                return NULL;
 188
 189        while (1) {
 190                const char *end = strchrnul(p, ':');
 191
 192                strbuf_reset(&buf);
 193
 194                /* POSIX specifies an empty entry as the current directory. */
 195                if (end != p) {
 196                        strbuf_add(&buf, p, end - p);
 197                        strbuf_addch(&buf, '/');
 198                }
 199                strbuf_addstr(&buf, file);
 200
 201                if (is_executable(buf.buf))
 202                        return strbuf_detach(&buf, NULL);
 203
 204                if (!*end)
 205                        break;
 206                p = end + 1;
 207        }
 208
 209        strbuf_release(&buf);
 210        return NULL;
 211}
 212
 213static int exists_in_PATH(const char *file)
 214{
 215        char *r = locate_in_PATH(file);
 216        free(r);
 217        return r != NULL;
 218}
 219
 220int sane_execvp(const char *file, char * const argv[])
 221{
 222        if (!execvp(file, argv))
 223                return 0; /* cannot happen ;-) */
 224
 225        /*
 226         * When a command can't be found because one of the directories
 227         * listed in $PATH is unsearchable, execvp reports EACCES, but
 228         * careful usability testing (read: analysis of occasional bug
 229         * reports) reveals that "No such file or directory" is more
 230         * intuitive.
 231         *
 232         * We avoid commands with "/", because execvp will not do $PATH
 233         * lookups in that case.
 234         *
 235         * The reassignment of EACCES to errno looks like a no-op below,
 236         * but we need to protect against exists_in_PATH overwriting errno.
 237         */
 238        if (errno == EACCES && !strchr(file, '/'))
 239                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 240        else if (errno == ENOTDIR && !strchr(file, '/'))
 241                errno = ENOENT;
 242        return -1;
 243}
 244
 245static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 246{
 247        if (!argv[0])
 248                BUG("shell command is empty");
 249
 250        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 251#ifndef GIT_WINDOWS_NATIVE
 252                argv_array_push(out, SHELL_PATH);
 253#else
 254                argv_array_push(out, "sh");
 255#endif
 256                argv_array_push(out, "-c");
 257
 258                /*
 259                 * If we have no extra arguments, we do not even need to
 260                 * bother with the "$@" magic.
 261                 */
 262                if (!argv[1])
 263                        argv_array_push(out, argv[0]);
 264                else
 265                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 266        }
 267
 268        argv_array_pushv(out, argv);
 269        return out->argv;
 270}
 271
 272#ifndef GIT_WINDOWS_NATIVE
 273static int child_notifier = -1;
 274
 275enum child_errcode {
 276        CHILD_ERR_CHDIR,
 277        CHILD_ERR_DUP2,
 278        CHILD_ERR_CLOSE,
 279        CHILD_ERR_SIGPROCMASK,
 280        CHILD_ERR_ENOENT,
 281        CHILD_ERR_SILENT,
 282        CHILD_ERR_ERRNO
 283};
 284
 285struct child_err {
 286        enum child_errcode err;
 287        int syserr; /* errno */
 288};
 289
 290static void child_die(enum child_errcode err)
 291{
 292        struct child_err buf;
 293
 294        buf.err = err;
 295        buf.syserr = errno;
 296
 297        /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
 298        xwrite(child_notifier, &buf, sizeof(buf));
 299        _exit(1);
 300}
 301
 302static void child_dup2(int fd, int to)
 303{
 304        if (dup2(fd, to) < 0)
 305                child_die(CHILD_ERR_DUP2);
 306}
 307
 308static void child_close(int fd)
 309{
 310        if (close(fd))
 311                child_die(CHILD_ERR_CLOSE);
 312}
 313
 314static void child_close_pair(int fd[2])
 315{
 316        child_close(fd[0]);
 317        child_close(fd[1]);
 318}
 319
 320/*
 321 * parent will make it look like the child spewed a fatal error and died
 322 * this is needed to prevent changes to t0061.
 323 */
 324static void fake_fatal(const char *err, va_list params)
 325{
 326        vreportf("fatal: ", err, params);
 327}
 328
 329static void child_error_fn(const char *err, va_list params)
 330{
 331        const char msg[] = "error() should not be called in child\n";
 332        xwrite(2, msg, sizeof(msg) - 1);
 333}
 334
 335static void child_warn_fn(const char *err, va_list params)
 336{
 337        const char msg[] = "warn() should not be called in child\n";
 338        xwrite(2, msg, sizeof(msg) - 1);
 339}
 340
 341static void NORETURN child_die_fn(const char *err, va_list params)
 342{
 343        const char msg[] = "die() should not be called in child\n";
 344        xwrite(2, msg, sizeof(msg) - 1);
 345        _exit(2);
 346}
 347
 348/* this runs in the parent process */
 349static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
 350{
 351        static void (*old_errfn)(const char *err, va_list params);
 352
 353        old_errfn = get_error_routine();
 354        set_error_routine(fake_fatal);
 355        errno = cerr->syserr;
 356
 357        switch (cerr->err) {
 358        case CHILD_ERR_CHDIR:
 359                error_errno("exec '%s': cd to '%s' failed",
 360                            cmd->argv[0], cmd->dir);
 361                break;
 362        case CHILD_ERR_DUP2:
 363                error_errno("dup2() in child failed");
 364                break;
 365        case CHILD_ERR_CLOSE:
 366                error_errno("close() in child failed");
 367                break;
 368        case CHILD_ERR_SIGPROCMASK:
 369                error_errno("sigprocmask failed restoring signals");
 370                break;
 371        case CHILD_ERR_ENOENT:
 372                error_errno("cannot run %s", cmd->argv[0]);
 373                break;
 374        case CHILD_ERR_SILENT:
 375                break;
 376        case CHILD_ERR_ERRNO:
 377                error_errno("cannot exec '%s'", cmd->argv[0]);
 378                break;
 379        }
 380        set_error_routine(old_errfn);
 381}
 382
 383static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 384{
 385        if (!cmd->argv[0])
 386                BUG("command is empty");
 387
 388        /*
 389         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 390         * attempt to interpret the command with 'sh'.
 391         */
 392        argv_array_push(out, SHELL_PATH);
 393
 394        if (cmd->git_cmd) {
 395                argv_array_push(out, "git");
 396                argv_array_pushv(out, cmd->argv);
 397        } else if (cmd->use_shell) {
 398                prepare_shell_cmd(out, cmd->argv);
 399        } else {
 400                argv_array_pushv(out, cmd->argv);
 401        }
 402
 403        /*
 404         * If there are no '/' characters in the command then perform a path
 405         * lookup and use the resolved path as the command to exec.  If there
 406         * are '/' characters, we have exec attempt to invoke the command
 407         * directly.
 408         */
 409        if (!strchr(out->argv[1], '/')) {
 410                char *program = locate_in_PATH(out->argv[1]);
 411                if (program) {
 412                        free((char *)out->argv[1]);
 413                        out->argv[1] = program;
 414                } else {
 415                        argv_array_clear(out);
 416                        errno = ENOENT;
 417                        return -1;
 418                }
 419        }
 420
 421        return 0;
 422}
 423
 424static char **prep_childenv(const char *const *deltaenv)
 425{
 426        extern char **environ;
 427        char **childenv;
 428        struct string_list env = STRING_LIST_INIT_DUP;
 429        struct strbuf key = STRBUF_INIT;
 430        const char *const *p;
 431        int i;
 432
 433        /* Construct a sorted string list consisting of the current environ */
 434        for (p = (const char *const *) environ; p && *p; p++) {
 435                const char *equals = strchr(*p, '=');
 436
 437                if (equals) {
 438                        strbuf_reset(&key);
 439                        strbuf_add(&key, *p, equals - *p);
 440                        string_list_append(&env, key.buf)->util = (void *) *p;
 441                } else {
 442                        string_list_append(&env, *p)->util = (void *) *p;
 443                }
 444        }
 445        string_list_sort(&env);
 446
 447        /* Merge in 'deltaenv' with the current environ */
 448        for (p = deltaenv; p && *p; p++) {
 449                const char *equals = strchr(*p, '=');
 450
 451                if (equals) {
 452                        /* ('key=value'), insert or replace entry */
 453                        strbuf_reset(&key);
 454                        strbuf_add(&key, *p, equals - *p);
 455                        string_list_insert(&env, key.buf)->util = (void *) *p;
 456                } else {
 457                        /* otherwise ('key') remove existing entry */
 458                        string_list_remove(&env, *p, 0);
 459                }
 460        }
 461
 462        /* Create an array of 'char *' to be used as the childenv */
 463        ALLOC_ARRAY(childenv, env.nr + 1);
 464        for (i = 0; i < env.nr; i++)
 465                childenv[i] = env.items[i].util;
 466        childenv[env.nr] = NULL;
 467
 468        string_list_clear(&env, 0);
 469        strbuf_release(&key);
 470        return childenv;
 471}
 472
 473struct atfork_state {
 474#ifndef NO_PTHREADS
 475        int cs;
 476#endif
 477        sigset_t old;
 478};
 479
 480#define CHECK_BUG(err, msg) \
 481        do { \
 482                int e = (err); \
 483                if (e) \
 484                        BUG("%s: %s", msg, strerror(e)); \
 485        } while(0)
 486
 487static void atfork_prepare(struct atfork_state *as)
 488{
 489        sigset_t all;
 490
 491        if (sigfillset(&all))
 492                die_errno("sigfillset");
 493#ifdef NO_PTHREADS
 494        if (sigprocmask(SIG_SETMASK, &all, &as->old))
 495                die_errno("sigprocmask");
 496#else
 497        CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
 498                "blocking all signals");
 499        CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
 500                "disabling cancellation");
 501#endif
 502}
 503
 504static void atfork_parent(struct atfork_state *as)
 505{
 506#ifdef NO_PTHREADS
 507        if (sigprocmask(SIG_SETMASK, &as->old, NULL))
 508                die_errno("sigprocmask");
 509#else
 510        CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
 511                "re-enabling cancellation");
 512        CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
 513                "restoring signal mask");
 514#endif
 515}
 516#endif /* GIT_WINDOWS_NATIVE */
 517
 518static inline void set_cloexec(int fd)
 519{
 520        int flags = fcntl(fd, F_GETFD);
 521        if (flags >= 0)
 522                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 523}
 524
 525static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 526{
 527        int status, code = -1;
 528        pid_t waiting;
 529        int failed_errno = 0;
 530
 531        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 532                ;       /* nothing */
 533        if (in_signal)
 534                return 0;
 535
 536        if (waiting < 0) {
 537                failed_errno = errno;
 538                error_errno("waitpid for %s failed", argv0);
 539        } else if (waiting != pid) {
 540                error("waitpid is confused (%s)", argv0);
 541        } else if (WIFSIGNALED(status)) {
 542                code = WTERMSIG(status);
 543                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 544                        error("%s died of signal %d", argv0, code);
 545                /*
 546                 * This return value is chosen so that code & 0xff
 547                 * mimics the exit code that a POSIX shell would report for
 548                 * a program that died from this signal.
 549                 */
 550                code += 128;
 551        } else if (WIFEXITED(status)) {
 552                code = WEXITSTATUS(status);
 553        } else {
 554                error("waitpid is confused (%s)", argv0);
 555        }
 556
 557        clear_child_for_cleanup(pid);
 558
 559        errno = failed_errno;
 560        return code;
 561}
 562
 563static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
 564{
 565        struct string_list envs = STRING_LIST_INIT_DUP;
 566        const char *const *e;
 567        int i;
 568        int printed_unset = 0;
 569
 570        /* Last one wins, see run-command.c:prep_childenv() for context */
 571        for (e = deltaenv; e && *e; e++) {
 572                struct strbuf key = STRBUF_INIT;
 573                char *equals = strchr(*e, '=');
 574
 575                if (equals) {
 576                        strbuf_add(&key, *e, equals - *e);
 577                        string_list_insert(&envs, key.buf)->util = equals + 1;
 578                } else {
 579                        string_list_insert(&envs, *e)->util = NULL;
 580                }
 581                strbuf_release(&key);
 582        }
 583
 584        /* "unset X Y...;" */
 585        for (i = 0; i < envs.nr; i++) {
 586                const char *var = envs.items[i].string;
 587                const char *val = envs.items[i].util;
 588
 589                if (val || !getenv(var))
 590                        continue;
 591
 592                if (!printed_unset) {
 593                        strbuf_addstr(dst, " unset");
 594                        printed_unset = 1;
 595                }
 596                strbuf_addf(dst, " %s", var);
 597        }
 598        if (printed_unset)
 599                strbuf_addch(dst, ';');
 600
 601        /* ... followed by "A=B C=D ..." */
 602        for (i = 0; i < envs.nr; i++) {
 603                const char *var = envs.items[i].string;
 604                const char *val = envs.items[i].util;
 605                const char *oldval;
 606
 607                if (!val)
 608                        continue;
 609
 610                oldval = getenv(var);
 611                if (oldval && !strcmp(val, oldval))
 612                        continue;
 613
 614                strbuf_addf(dst, " %s=", var);
 615                sq_quote_buf_pretty(dst, val);
 616        }
 617        string_list_clear(&envs, 0);
 618}
 619
 620static void trace_run_command(const struct child_process *cp)
 621{
 622        struct strbuf buf = STRBUF_INIT;
 623
 624        if (!trace_want(&trace_default_key))
 625                return;
 626
 627        strbuf_addstr(&buf, "trace: run_command:");
 628        if (cp->dir) {
 629                strbuf_addstr(&buf, " cd ");
 630                sq_quote_buf_pretty(&buf, cp->dir);
 631                strbuf_addch(&buf, ';');
 632        }
 633        /*
 634         * The caller is responsible for initializing cp->env from
 635         * cp->env_array if needed. We only check one place.
 636         */
 637        if (cp->env)
 638                trace_add_env(&buf, cp->env);
 639        if (cp->git_cmd)
 640                strbuf_addstr(&buf, " git");
 641        sq_quote_argv_pretty(&buf, cp->argv);
 642
 643        trace_printf("%s", buf.buf);
 644        strbuf_release(&buf);
 645}
 646
 647int start_command(struct child_process *cmd)
 648{
 649        int need_in, need_out, need_err;
 650        int fdin[2], fdout[2], fderr[2];
 651        int failed_errno;
 652        char *str;
 653
 654        if (!cmd->argv)
 655                cmd->argv = cmd->args.argv;
 656        if (!cmd->env)
 657                cmd->env = cmd->env_array.argv;
 658
 659        /*
 660         * In case of errors we must keep the promise to close FDs
 661         * that have been passed in via ->in and ->out.
 662         */
 663
 664        need_in = !cmd->no_stdin && cmd->in < 0;
 665        if (need_in) {
 666                if (pipe(fdin) < 0) {
 667                        failed_errno = errno;
 668                        if (cmd->out > 0)
 669                                close(cmd->out);
 670                        str = "standard input";
 671                        goto fail_pipe;
 672                }
 673                cmd->in = fdin[1];
 674        }
 675
 676        need_out = !cmd->no_stdout
 677                && !cmd->stdout_to_stderr
 678                && cmd->out < 0;
 679        if (need_out) {
 680                if (pipe(fdout) < 0) {
 681                        failed_errno = errno;
 682                        if (need_in)
 683                                close_pair(fdin);
 684                        else if (cmd->in)
 685                                close(cmd->in);
 686                        str = "standard output";
 687                        goto fail_pipe;
 688                }
 689                cmd->out = fdout[0];
 690        }
 691
 692        need_err = !cmd->no_stderr && cmd->err < 0;
 693        if (need_err) {
 694                if (pipe(fderr) < 0) {
 695                        failed_errno = errno;
 696                        if (need_in)
 697                                close_pair(fdin);
 698                        else if (cmd->in)
 699                                close(cmd->in);
 700                        if (need_out)
 701                                close_pair(fdout);
 702                        else if (cmd->out)
 703                                close(cmd->out);
 704                        str = "standard error";
 705fail_pipe:
 706                        error("cannot create %s pipe for %s: %s",
 707                                str, cmd->argv[0], strerror(failed_errno));
 708                        child_process_clear(cmd);
 709                        errno = failed_errno;
 710                        return -1;
 711                }
 712                cmd->err = fderr[0];
 713        }
 714
 715        trace_run_command(cmd);
 716
 717        fflush(NULL);
 718
 719#ifndef GIT_WINDOWS_NATIVE
 720{
 721        int notify_pipe[2];
 722        int null_fd = -1;
 723        char **childenv;
 724        struct argv_array argv = ARGV_ARRAY_INIT;
 725        struct child_err cerr;
 726        struct atfork_state as;
 727
 728        if (prepare_cmd(&argv, cmd) < 0) {
 729                failed_errno = errno;
 730                cmd->pid = -1;
 731                if (!cmd->silent_exec_failure)
 732                        error_errno("cannot run %s", cmd->argv[0]);
 733                goto end_of_spawn;
 734        }
 735
 736        if (pipe(notify_pipe))
 737                notify_pipe[0] = notify_pipe[1] = -1;
 738
 739        if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
 740                null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
 741                if (null_fd < 0)
 742                        die_errno(_("open /dev/null failed"));
 743                set_cloexec(null_fd);
 744        }
 745
 746        childenv = prep_childenv(cmd->env);
 747        atfork_prepare(&as);
 748
 749        /*
 750         * NOTE: In order to prevent deadlocking when using threads special
 751         * care should be taken with the function calls made in between the
 752         * fork() and exec() calls.  No calls should be made to functions which
 753         * require acquiring a lock (e.g. malloc) as the lock could have been
 754         * held by another thread at the time of forking, causing the lock to
 755         * never be released in the child process.  This means only
 756         * Async-Signal-Safe functions are permitted in the child.
 757         */
 758        cmd->pid = fork();
 759        failed_errno = errno;
 760        if (!cmd->pid) {
 761                int sig;
 762                /*
 763                 * Ensure the default die/error/warn routines do not get
 764                 * called, they can take stdio locks and malloc.
 765                 */
 766                set_die_routine(child_die_fn);
 767                set_error_routine(child_error_fn);
 768                set_warn_routine(child_warn_fn);
 769
 770                close(notify_pipe[0]);
 771                set_cloexec(notify_pipe[1]);
 772                child_notifier = notify_pipe[1];
 773
 774                if (cmd->no_stdin)
 775                        child_dup2(null_fd, 0);
 776                else if (need_in) {
 777                        child_dup2(fdin[0], 0);
 778                        child_close_pair(fdin);
 779                } else if (cmd->in) {
 780                        child_dup2(cmd->in, 0);
 781                        child_close(cmd->in);
 782                }
 783
 784                if (cmd->no_stderr)
 785                        child_dup2(null_fd, 2);
 786                else if (need_err) {
 787                        child_dup2(fderr[1], 2);
 788                        child_close_pair(fderr);
 789                } else if (cmd->err > 1) {
 790                        child_dup2(cmd->err, 2);
 791                        child_close(cmd->err);
 792                }
 793
 794                if (cmd->no_stdout)
 795                        child_dup2(null_fd, 1);
 796                else if (cmd->stdout_to_stderr)
 797                        child_dup2(2, 1);
 798                else if (need_out) {
 799                        child_dup2(fdout[1], 1);
 800                        child_close_pair(fdout);
 801                } else if (cmd->out > 1) {
 802                        child_dup2(cmd->out, 1);
 803                        child_close(cmd->out);
 804                }
 805
 806                if (cmd->dir && chdir(cmd->dir))
 807                        child_die(CHILD_ERR_CHDIR);
 808
 809                /*
 810                 * restore default signal handlers here, in case
 811                 * we catch a signal right before execve below
 812                 */
 813                for (sig = 1; sig < NSIG; sig++) {
 814                        /* ignored signals get reset to SIG_DFL on execve */
 815                        if (signal(sig, SIG_DFL) == SIG_IGN)
 816                                signal(sig, SIG_IGN);
 817                }
 818
 819                if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
 820                        child_die(CHILD_ERR_SIGPROCMASK);
 821
 822                /*
 823                 * Attempt to exec using the command and arguments starting at
 824                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 825                 * be used in the event exec failed with ENOEXEC at which point
 826                 * we will try to interpret the command using 'sh'.
 827                 */
 828                execve(argv.argv[1], (char *const *) argv.argv + 1,
 829                       (char *const *) childenv);
 830                if (errno == ENOEXEC)
 831                        execve(argv.argv[0], (char *const *) argv.argv,
 832                               (char *const *) childenv);
 833
 834                if (errno == ENOENT) {
 835                        if (cmd->silent_exec_failure)
 836                                child_die(CHILD_ERR_SILENT);
 837                        child_die(CHILD_ERR_ENOENT);
 838                } else {
 839                        child_die(CHILD_ERR_ERRNO);
 840                }
 841        }
 842        atfork_parent(&as);
 843        if (cmd->pid < 0)
 844                error_errno("cannot fork() for %s", cmd->argv[0]);
 845        else if (cmd->clean_on_exit)
 846                mark_child_for_cleanup(cmd->pid, cmd);
 847
 848        /*
 849         * Wait for child's exec. If the exec succeeds (or if fork()
 850         * failed), EOF is seen immediately by the parent. Otherwise, the
 851         * child process sends a child_err struct.
 852         * Note that use of this infrastructure is completely advisory,
 853         * therefore, we keep error checks minimal.
 854         */
 855        close(notify_pipe[1]);
 856        if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
 857                /*
 858                 * At this point we know that fork() succeeded, but exec()
 859                 * failed. Errors have been reported to our stderr.
 860                 */
 861                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 862                child_err_spew(cmd, &cerr);
 863                failed_errno = errno;
 864                cmd->pid = -1;
 865        }
 866        close(notify_pipe[0]);
 867
 868        if (null_fd >= 0)
 869                close(null_fd);
 870        argv_array_clear(&argv);
 871        free(childenv);
 872}
 873end_of_spawn:
 874
 875#else
 876{
 877        int fhin = 0, fhout = 1, fherr = 2;
 878        const char **sargv = cmd->argv;
 879        struct argv_array nargv = ARGV_ARRAY_INIT;
 880
 881        if (cmd->no_stdin)
 882                fhin = open("/dev/null", O_RDWR);
 883        else if (need_in)
 884                fhin = dup(fdin[0]);
 885        else if (cmd->in)
 886                fhin = dup(cmd->in);
 887
 888        if (cmd->no_stderr)
 889                fherr = open("/dev/null", O_RDWR);
 890        else if (need_err)
 891                fherr = dup(fderr[1]);
 892        else if (cmd->err > 2)
 893                fherr = dup(cmd->err);
 894
 895        if (cmd->no_stdout)
 896                fhout = open("/dev/null", O_RDWR);
 897        else if (cmd->stdout_to_stderr)
 898                fhout = dup(fherr);
 899        else if (need_out)
 900                fhout = dup(fdout[1]);
 901        else if (cmd->out > 1)
 902                fhout = dup(cmd->out);
 903
 904        if (cmd->git_cmd)
 905                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 906        else if (cmd->use_shell)
 907                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 908
 909        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 910                        cmd->dir, fhin, fhout, fherr);
 911        failed_errno = errno;
 912        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 913                error_errno("cannot spawn %s", cmd->argv[0]);
 914        if (cmd->clean_on_exit && cmd->pid >= 0)
 915                mark_child_for_cleanup(cmd->pid, cmd);
 916
 917        argv_array_clear(&nargv);
 918        cmd->argv = sargv;
 919        if (fhin != 0)
 920                close(fhin);
 921        if (fhout != 1)
 922                close(fhout);
 923        if (fherr != 2)
 924                close(fherr);
 925}
 926#endif
 927
 928        if (cmd->pid < 0) {
 929                if (need_in)
 930                        close_pair(fdin);
 931                else if (cmd->in)
 932                        close(cmd->in);
 933                if (need_out)
 934                        close_pair(fdout);
 935                else if (cmd->out)
 936                        close(cmd->out);
 937                if (need_err)
 938                        close_pair(fderr);
 939                else if (cmd->err)
 940                        close(cmd->err);
 941                child_process_clear(cmd);
 942                errno = failed_errno;
 943                return -1;
 944        }
 945
 946        if (need_in)
 947                close(fdin[0]);
 948        else if (cmd->in)
 949                close(cmd->in);
 950
 951        if (need_out)
 952                close(fdout[1]);
 953        else if (cmd->out)
 954                close(cmd->out);
 955
 956        if (need_err)
 957                close(fderr[1]);
 958        else if (cmd->err)
 959                close(cmd->err);
 960
 961        return 0;
 962}
 963
 964int finish_command(struct child_process *cmd)
 965{
 966        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 967        child_process_clear(cmd);
 968        return ret;
 969}
 970
 971int finish_command_in_signal(struct child_process *cmd)
 972{
 973        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 974}
 975
 976
 977int run_command(struct child_process *cmd)
 978{
 979        int code;
 980
 981        if (cmd->out < 0 || cmd->err < 0)
 982                BUG("run_command with a pipe can cause deadlock");
 983
 984        code = start_command(cmd);
 985        if (code)
 986                return code;
 987        return finish_command(cmd);
 988}
 989
 990int run_command_v_opt(const char **argv, int opt)
 991{
 992        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 993}
 994
 995int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 996{
 997        struct child_process cmd = CHILD_PROCESS_INIT;
 998        cmd.argv = argv;
 999        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1000        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1001        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1002        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1003        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1004        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1005        cmd.dir = dir;
1006        cmd.env = env;
1007        return run_command(&cmd);
1008}
1009
1010#ifndef NO_PTHREADS
1011static pthread_t main_thread;
1012static int main_thread_set;
1013static pthread_key_t async_key;
1014static pthread_key_t async_die_counter;
1015
1016static void *run_thread(void *data)
1017{
1018        struct async *async = data;
1019        intptr_t ret;
1020
1021        if (async->isolate_sigpipe) {
1022                sigset_t mask;
1023                sigemptyset(&mask);
1024                sigaddset(&mask, SIGPIPE);
1025                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1026                        ret = error("unable to block SIGPIPE in async thread");
1027                        return (void *)ret;
1028                }
1029        }
1030
1031        pthread_setspecific(async_key, async);
1032        ret = async->proc(async->proc_in, async->proc_out, async->data);
1033        return (void *)ret;
1034}
1035
1036static NORETURN void die_async(const char *err, va_list params)
1037{
1038        vreportf("fatal: ", err, params);
1039
1040        if (in_async()) {
1041                struct async *async = pthread_getspecific(async_key);
1042                if (async->proc_in >= 0)
1043                        close(async->proc_in);
1044                if (async->proc_out >= 0)
1045                        close(async->proc_out);
1046                pthread_exit((void *)128);
1047        }
1048
1049        exit(128);
1050}
1051
1052static int async_die_is_recursing(void)
1053{
1054        void *ret = pthread_getspecific(async_die_counter);
1055        pthread_setspecific(async_die_counter, (void *)1);
1056        return ret != NULL;
1057}
1058
1059int in_async(void)
1060{
1061        if (!main_thread_set)
1062                return 0; /* no asyncs started yet */
1063        return !pthread_equal(main_thread, pthread_self());
1064}
1065
1066static void NORETURN async_exit(int code)
1067{
1068        pthread_exit((void *)(intptr_t)code);
1069}
1070
1071#else
1072
1073static struct {
1074        void (**handlers)(void);
1075        size_t nr;
1076        size_t alloc;
1077} git_atexit_hdlrs;
1078
1079static int git_atexit_installed;
1080
1081static void git_atexit_dispatch(void)
1082{
1083        size_t i;
1084
1085        for (i=git_atexit_hdlrs.nr ; i ; i--)
1086                git_atexit_hdlrs.handlers[i-1]();
1087}
1088
1089static void git_atexit_clear(void)
1090{
1091        free(git_atexit_hdlrs.handlers);
1092        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1093        git_atexit_installed = 0;
1094}
1095
1096#undef atexit
1097int git_atexit(void (*handler)(void))
1098{
1099        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1100        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1101        if (!git_atexit_installed) {
1102                if (atexit(&git_atexit_dispatch))
1103                        return -1;
1104                git_atexit_installed = 1;
1105        }
1106        return 0;
1107}
1108#define atexit git_atexit
1109
1110static int process_is_async;
1111int in_async(void)
1112{
1113        return process_is_async;
1114}
1115
1116static void NORETURN async_exit(int code)
1117{
1118        exit(code);
1119}
1120
1121#endif
1122
1123void check_pipe(int err)
1124{
1125        if (err == EPIPE) {
1126                if (in_async())
1127                        async_exit(141);
1128
1129                signal(SIGPIPE, SIG_DFL);
1130                raise(SIGPIPE);
1131                /* Should never happen, but just in case... */
1132                exit(141);
1133        }
1134}
1135
1136int start_async(struct async *async)
1137{
1138        int need_in, need_out;
1139        int fdin[2], fdout[2];
1140        int proc_in, proc_out;
1141
1142        need_in = async->in < 0;
1143        if (need_in) {
1144                if (pipe(fdin) < 0) {
1145                        if (async->out > 0)
1146                                close(async->out);
1147                        return error_errno("cannot create pipe");
1148                }
1149                async->in = fdin[1];
1150        }
1151
1152        need_out = async->out < 0;
1153        if (need_out) {
1154                if (pipe(fdout) < 0) {
1155                        if (need_in)
1156                                close_pair(fdin);
1157                        else if (async->in)
1158                                close(async->in);
1159                        return error_errno("cannot create pipe");
1160                }
1161                async->out = fdout[0];
1162        }
1163
1164        if (need_in)
1165                proc_in = fdin[0];
1166        else if (async->in)
1167                proc_in = async->in;
1168        else
1169                proc_in = -1;
1170
1171        if (need_out)
1172                proc_out = fdout[1];
1173        else if (async->out)
1174                proc_out = async->out;
1175        else
1176                proc_out = -1;
1177
1178#ifdef NO_PTHREADS
1179        /* Flush stdio before fork() to avoid cloning buffers */
1180        fflush(NULL);
1181
1182        async->pid = fork();
1183        if (async->pid < 0) {
1184                error_errno("fork (async) failed");
1185                goto error;
1186        }
1187        if (!async->pid) {
1188                if (need_in)
1189                        close(fdin[1]);
1190                if (need_out)
1191                        close(fdout[0]);
1192                git_atexit_clear();
1193                process_is_async = 1;
1194                exit(!!async->proc(proc_in, proc_out, async->data));
1195        }
1196
1197        mark_child_for_cleanup(async->pid, NULL);
1198
1199        if (need_in)
1200                close(fdin[0]);
1201        else if (async->in)
1202                close(async->in);
1203
1204        if (need_out)
1205                close(fdout[1]);
1206        else if (async->out)
1207                close(async->out);
1208#else
1209        if (!main_thread_set) {
1210                /*
1211                 * We assume that the first time that start_async is called
1212                 * it is from the main thread.
1213                 */
1214                main_thread_set = 1;
1215                main_thread = pthread_self();
1216                pthread_key_create(&async_key, NULL);
1217                pthread_key_create(&async_die_counter, NULL);
1218                set_die_routine(die_async);
1219                set_die_is_recursing_routine(async_die_is_recursing);
1220        }
1221
1222        if (proc_in >= 0)
1223                set_cloexec(proc_in);
1224        if (proc_out >= 0)
1225                set_cloexec(proc_out);
1226        async->proc_in = proc_in;
1227        async->proc_out = proc_out;
1228        {
1229                int err = pthread_create(&async->tid, NULL, run_thread, async);
1230                if (err) {
1231                        error(_("cannot create async thread: %s"), strerror(err));
1232                        goto error;
1233                }
1234        }
1235#endif
1236        return 0;
1237
1238error:
1239        if (need_in)
1240                close_pair(fdin);
1241        else if (async->in)
1242                close(async->in);
1243
1244        if (need_out)
1245                close_pair(fdout);
1246        else if (async->out)
1247                close(async->out);
1248        return -1;
1249}
1250
1251int finish_async(struct async *async)
1252{
1253#ifdef NO_PTHREADS
1254        return wait_or_whine(async->pid, "child process", 0);
1255#else
1256        void *ret = (void *)(intptr_t)(-1);
1257
1258        if (pthread_join(async->tid, &ret))
1259                error("pthread_join failed");
1260        return (int)(intptr_t)ret;
1261#endif
1262}
1263
1264int async_with_fork(void)
1265{
1266#ifdef NO_PTHREADS
1267        return 1;
1268#else
1269        return 0;
1270#endif
1271}
1272
1273const char *find_hook(const char *name)
1274{
1275        static struct strbuf path = STRBUF_INIT;
1276
1277        strbuf_reset(&path);
1278        strbuf_git_path(&path, "hooks/%s", name);
1279        if (access(path.buf, X_OK) < 0) {
1280                int err = errno;
1281
1282#ifdef STRIP_EXTENSION
1283                strbuf_addstr(&path, STRIP_EXTENSION);
1284                if (access(path.buf, X_OK) >= 0)
1285                        return path.buf;
1286                if (errno == EACCES)
1287                        err = errno;
1288#endif
1289
1290                if (err == EACCES && advice_ignored_hook) {
1291                        static struct string_list advise_given = STRING_LIST_INIT_DUP;
1292
1293                        if (!string_list_lookup(&advise_given, name)) {
1294                                string_list_insert(&advise_given, name);
1295                                advise(_("The '%s' hook was ignored because "
1296                                         "it's not set as executable.\n"
1297                                         "You can disable this warning with "
1298                                         "`git config advice.ignoredHook false`."),
1299                                       path.buf);
1300                        }
1301                }
1302                return NULL;
1303        }
1304        return path.buf;
1305}
1306
1307int run_hook_ve(const char *const *env, const char *name, va_list args)
1308{
1309        struct child_process hook = CHILD_PROCESS_INIT;
1310        const char *p;
1311
1312        p = find_hook(name);
1313        if (!p)
1314                return 0;
1315
1316        argv_array_push(&hook.args, p);
1317        while ((p = va_arg(args, const char *)))
1318                argv_array_push(&hook.args, p);
1319        hook.env = env;
1320        hook.no_stdin = 1;
1321        hook.stdout_to_stderr = 1;
1322
1323        return run_command(&hook);
1324}
1325
1326int run_hook_le(const char *const *env, const char *name, ...)
1327{
1328        va_list args;
1329        int ret;
1330
1331        va_start(args, name);
1332        ret = run_hook_ve(env, name, args);
1333        va_end(args);
1334
1335        return ret;
1336}
1337
1338struct io_pump {
1339        /* initialized by caller */
1340        int fd;
1341        int type; /* POLLOUT or POLLIN */
1342        union {
1343                struct {
1344                        const char *buf;
1345                        size_t len;
1346                } out;
1347                struct {
1348                        struct strbuf *buf;
1349                        size_t hint;
1350                } in;
1351        } u;
1352
1353        /* returned by pump_io */
1354        int error; /* 0 for success, otherwise errno */
1355
1356        /* internal use */
1357        struct pollfd *pfd;
1358};
1359
1360static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1361{
1362        int pollsize = 0;
1363        int i;
1364
1365        for (i = 0; i < nr; i++) {
1366                struct io_pump *io = &slots[i];
1367                if (io->fd < 0)
1368                        continue;
1369                pfd[pollsize].fd = io->fd;
1370                pfd[pollsize].events = io->type;
1371                io->pfd = &pfd[pollsize++];
1372        }
1373
1374        if (!pollsize)
1375                return 0;
1376
1377        if (poll(pfd, pollsize, -1) < 0) {
1378                if (errno == EINTR)
1379                        return 1;
1380                die_errno("poll failed");
1381        }
1382
1383        for (i = 0; i < nr; i++) {
1384                struct io_pump *io = &slots[i];
1385
1386                if (io->fd < 0)
1387                        continue;
1388
1389                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1390                        continue;
1391
1392                if (io->type == POLLOUT) {
1393                        ssize_t len = xwrite(io->fd,
1394                                             io->u.out.buf, io->u.out.len);
1395                        if (len < 0) {
1396                                io->error = errno;
1397                                close(io->fd);
1398                                io->fd = -1;
1399                        } else {
1400                                io->u.out.buf += len;
1401                                io->u.out.len -= len;
1402                                if (!io->u.out.len) {
1403                                        close(io->fd);
1404                                        io->fd = -1;
1405                                }
1406                        }
1407                }
1408
1409                if (io->type == POLLIN) {
1410                        ssize_t len = strbuf_read_once(io->u.in.buf,
1411                                                       io->fd, io->u.in.hint);
1412                        if (len < 0)
1413                                io->error = errno;
1414                        if (len <= 0) {
1415                                close(io->fd);
1416                                io->fd = -1;
1417                        }
1418                }
1419        }
1420
1421        return 1;
1422}
1423
1424static int pump_io(struct io_pump *slots, int nr)
1425{
1426        struct pollfd *pfd;
1427        int i;
1428
1429        for (i = 0; i < nr; i++)
1430                slots[i].error = 0;
1431
1432        ALLOC_ARRAY(pfd, nr);
1433        while (pump_io_round(slots, nr, pfd))
1434                ; /* nothing */
1435        free(pfd);
1436
1437        /* There may be multiple errno values, so just pick the first. */
1438        for (i = 0; i < nr; i++) {
1439                if (slots[i].error) {
1440                        errno = slots[i].error;
1441                        return -1;
1442                }
1443        }
1444        return 0;
1445}
1446
1447
1448int pipe_command(struct child_process *cmd,
1449                 const char *in, size_t in_len,
1450                 struct strbuf *out, size_t out_hint,
1451                 struct strbuf *err, size_t err_hint)
1452{
1453        struct io_pump io[3];
1454        int nr = 0;
1455
1456        if (in)
1457                cmd->in = -1;
1458        if (out)
1459                cmd->out = -1;
1460        if (err)
1461                cmd->err = -1;
1462
1463        if (start_command(cmd) < 0)
1464                return -1;
1465
1466        if (in) {
1467                io[nr].fd = cmd->in;
1468                io[nr].type = POLLOUT;
1469                io[nr].u.out.buf = in;
1470                io[nr].u.out.len = in_len;
1471                nr++;
1472        }
1473        if (out) {
1474                io[nr].fd = cmd->out;
1475                io[nr].type = POLLIN;
1476                io[nr].u.in.buf = out;
1477                io[nr].u.in.hint = out_hint;
1478                nr++;
1479        }
1480        if (err) {
1481                io[nr].fd = cmd->err;
1482                io[nr].type = POLLIN;
1483                io[nr].u.in.buf = err;
1484                io[nr].u.in.hint = err_hint;
1485                nr++;
1486        }
1487
1488        if (pump_io(io, nr) < 0) {
1489                finish_command(cmd); /* throw away exit code */
1490                return -1;
1491        }
1492
1493        return finish_command(cmd);
1494}
1495
1496enum child_state {
1497        GIT_CP_FREE,
1498        GIT_CP_WORKING,
1499        GIT_CP_WAIT_CLEANUP,
1500};
1501
1502struct parallel_processes {
1503        void *data;
1504
1505        int max_processes;
1506        int nr_processes;
1507
1508        get_next_task_fn get_next_task;
1509        start_failure_fn start_failure;
1510        task_finished_fn task_finished;
1511
1512        struct {
1513                enum child_state state;
1514                struct child_process process;
1515                struct strbuf err;
1516                void *data;
1517        } *children;
1518        /*
1519         * The struct pollfd is logically part of *children,
1520         * but the system call expects it as its own array.
1521         */
1522        struct pollfd *pfd;
1523
1524        unsigned shutdown : 1;
1525
1526        int output_owner;
1527        struct strbuf buffered_output; /* of finished children */
1528};
1529
1530static int default_start_failure(struct strbuf *out,
1531                                 void *pp_cb,
1532                                 void *pp_task_cb)
1533{
1534        return 0;
1535}
1536
1537static int default_task_finished(int result,
1538                                 struct strbuf *out,
1539                                 void *pp_cb,
1540                                 void *pp_task_cb)
1541{
1542        return 0;
1543}
1544
1545static void kill_children(struct parallel_processes *pp, int signo)
1546{
1547        int i, n = pp->max_processes;
1548
1549        for (i = 0; i < n; i++)
1550                if (pp->children[i].state == GIT_CP_WORKING)
1551                        kill(pp->children[i].process.pid, signo);
1552}
1553
1554static struct parallel_processes *pp_for_signal;
1555
1556static void handle_children_on_signal(int signo)
1557{
1558        kill_children(pp_for_signal, signo);
1559        sigchain_pop(signo);
1560        raise(signo);
1561}
1562
1563static void pp_init(struct parallel_processes *pp,
1564                    int n,
1565                    get_next_task_fn get_next_task,
1566                    start_failure_fn start_failure,
1567                    task_finished_fn task_finished,
1568                    void *data)
1569{
1570        int i;
1571
1572        if (n < 1)
1573                n = online_cpus();
1574
1575        pp->max_processes = n;
1576
1577        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1578
1579        pp->data = data;
1580        if (!get_next_task)
1581                BUG("you need to specify a get_next_task function");
1582        pp->get_next_task = get_next_task;
1583
1584        pp->start_failure = start_failure ? start_failure : default_start_failure;
1585        pp->task_finished = task_finished ? task_finished : default_task_finished;
1586
1587        pp->nr_processes = 0;
1588        pp->output_owner = 0;
1589        pp->shutdown = 0;
1590        pp->children = xcalloc(n, sizeof(*pp->children));
1591        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1592        strbuf_init(&pp->buffered_output, 0);
1593
1594        for (i = 0; i < n; i++) {
1595                strbuf_init(&pp->children[i].err, 0);
1596                child_process_init(&pp->children[i].process);
1597                pp->pfd[i].events = POLLIN | POLLHUP;
1598                pp->pfd[i].fd = -1;
1599        }
1600
1601        pp_for_signal = pp;
1602        sigchain_push_common(handle_children_on_signal);
1603}
1604
1605static void pp_cleanup(struct parallel_processes *pp)
1606{
1607        int i;
1608
1609        trace_printf("run_processes_parallel: done");
1610        for (i = 0; i < pp->max_processes; i++) {
1611                strbuf_release(&pp->children[i].err);
1612                child_process_clear(&pp->children[i].process);
1613        }
1614
1615        free(pp->children);
1616        free(pp->pfd);
1617
1618        /*
1619         * When get_next_task added messages to the buffer in its last
1620         * iteration, the buffered output is non empty.
1621         */
1622        strbuf_write(&pp->buffered_output, stderr);
1623        strbuf_release(&pp->buffered_output);
1624
1625        sigchain_pop_common();
1626}
1627
1628/* returns
1629 *  0 if a new task was started.
1630 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1631 *    problem with starting a new command)
1632 * <0 no new job was started, user wishes to shutdown early. Use negative code
1633 *    to signal the children.
1634 */
1635static int pp_start_one(struct parallel_processes *pp)
1636{
1637        int i, code;
1638
1639        for (i = 0; i < pp->max_processes; i++)
1640                if (pp->children[i].state == GIT_CP_FREE)
1641                        break;
1642        if (i == pp->max_processes)
1643                BUG("bookkeeping is hard");
1644
1645        code = pp->get_next_task(&pp->children[i].process,
1646                                 &pp->children[i].err,
1647                                 pp->data,
1648                                 &pp->children[i].data);
1649        if (!code) {
1650                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1651                strbuf_reset(&pp->children[i].err);
1652                return 1;
1653        }
1654        pp->children[i].process.err = -1;
1655        pp->children[i].process.stdout_to_stderr = 1;
1656        pp->children[i].process.no_stdin = 1;
1657
1658        if (start_command(&pp->children[i].process)) {
1659                code = pp->start_failure(&pp->children[i].err,
1660                                         pp->data,
1661                                         pp->children[i].data);
1662                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1663                strbuf_reset(&pp->children[i].err);
1664                if (code)
1665                        pp->shutdown = 1;
1666                return code;
1667        }
1668
1669        pp->nr_processes++;
1670        pp->children[i].state = GIT_CP_WORKING;
1671        pp->pfd[i].fd = pp->children[i].process.err;
1672        return 0;
1673}
1674
1675static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1676{
1677        int i;
1678
1679        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1680                if (errno == EINTR)
1681                        continue;
1682                pp_cleanup(pp);
1683                die_errno("poll");
1684        }
1685
1686        /* Buffer output from all pipes. */
1687        for (i = 0; i < pp->max_processes; i++) {
1688                if (pp->children[i].state == GIT_CP_WORKING &&
1689                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1690                        int n = strbuf_read_once(&pp->children[i].err,
1691                                                 pp->children[i].process.err, 0);
1692                        if (n == 0) {
1693                                close(pp->children[i].process.err);
1694                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1695                        } else if (n < 0)
1696                                if (errno != EAGAIN)
1697                                        die_errno("read");
1698                }
1699        }
1700}
1701
1702static void pp_output(struct parallel_processes *pp)
1703{
1704        int i = pp->output_owner;
1705        if (pp->children[i].state == GIT_CP_WORKING &&
1706            pp->children[i].err.len) {
1707                strbuf_write(&pp->children[i].err, stderr);
1708                strbuf_reset(&pp->children[i].err);
1709        }
1710}
1711
1712static int pp_collect_finished(struct parallel_processes *pp)
1713{
1714        int i, code;
1715        int n = pp->max_processes;
1716        int result = 0;
1717
1718        while (pp->nr_processes > 0) {
1719                for (i = 0; i < pp->max_processes; i++)
1720                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1721                                break;
1722                if (i == pp->max_processes)
1723                        break;
1724
1725                code = finish_command(&pp->children[i].process);
1726
1727                code = pp->task_finished(code,
1728                                         &pp->children[i].err, pp->data,
1729                                         pp->children[i].data);
1730
1731                if (code)
1732                        result = code;
1733                if (code < 0)
1734                        break;
1735
1736                pp->nr_processes--;
1737                pp->children[i].state = GIT_CP_FREE;
1738                pp->pfd[i].fd = -1;
1739                child_process_init(&pp->children[i].process);
1740
1741                if (i != pp->output_owner) {
1742                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1743                        strbuf_reset(&pp->children[i].err);
1744                } else {
1745                        strbuf_write(&pp->children[i].err, stderr);
1746                        strbuf_reset(&pp->children[i].err);
1747
1748                        /* Output all other finished child processes */
1749                        strbuf_write(&pp->buffered_output, stderr);
1750                        strbuf_reset(&pp->buffered_output);
1751
1752                        /*
1753                         * Pick next process to output live.
1754                         * NEEDSWORK:
1755                         * For now we pick it randomly by doing a round
1756                         * robin. Later we may want to pick the one with
1757                         * the most output or the longest or shortest
1758                         * running process time.
1759                         */
1760                        for (i = 0; i < n; i++)
1761                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1762                                        break;
1763                        pp->output_owner = (pp->output_owner + i) % n;
1764                }
1765        }
1766        return result;
1767}
1768
1769int run_processes_parallel(int n,
1770                           get_next_task_fn get_next_task,
1771                           start_failure_fn start_failure,
1772                           task_finished_fn task_finished,
1773                           void *pp_cb)
1774{
1775        int i, code;
1776        int output_timeout = 100;
1777        int spawn_cap = 4;
1778        struct parallel_processes pp;
1779
1780        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1781        while (1) {
1782                for (i = 0;
1783                    i < spawn_cap && !pp.shutdown &&
1784                    pp.nr_processes < pp.max_processes;
1785                    i++) {
1786                        code = pp_start_one(&pp);
1787                        if (!code)
1788                                continue;
1789                        if (code < 0) {
1790                                pp.shutdown = 1;
1791                                kill_children(&pp, -code);
1792                        }
1793                        break;
1794                }
1795                if (!pp.nr_processes)
1796                        break;
1797                pp_buffer_stderr(&pp, output_timeout);
1798                pp_output(&pp);
1799                code = pp_collect_finished(&pp);
1800                if (code) {
1801                        pp.shutdown = 1;
1802                        if (code < 0)
1803                                kill_children(&pp, -code);
1804                }
1805        }
1806
1807        pp_cleanup(&pp);
1808        return 0;
1809}