8bca18edbb3bce9ae06fdea5129b7358b380c10b
1#include "cache.h"
2#include "config.h"
3#include "notes.h"
4#include "blob.h"
5#include "tree.h"
6#include "utf8.h"
7#include "strbuf.h"
8#include "tree-walk.h"
9#include "string-list.h"
10#include "refs.h"
11
12/*
13 * Use a non-balancing simple 16-tree structure with struct int_node as
14 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
15 * 16-array of pointers to its children.
16 * The bottom 2 bits of each pointer is used to identify the pointer type
17 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
18 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
19 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
20 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
21 *
22 * The root node is a statically allocated struct int_node.
23 */
24struct int_node {
25 void *a[16];
26};
27
28/*
29 * Leaf nodes come in two variants, note entries and subtree entries,
30 * distinguished by the LSb of the leaf node pointer (see above).
31 * As a note entry, the key is the SHA1 of the referenced object, and the
32 * value is the SHA1 of the note object.
33 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
34 * referenced object, using the last byte of the key to store the length of
35 * the prefix. The value is the SHA1 of the tree object containing the notes
36 * subtree.
37 */
38struct leaf_node {
39 struct object_id key_oid;
40 struct object_id val_oid;
41};
42
43/*
44 * A notes tree may contain entries that are not notes, and that do not follow
45 * the naming conventions of notes. There are typically none/few of these, but
46 * we still need to keep track of them. Keep a simple linked list sorted alpha-
47 * betically on the non-note path. The list is populated when parsing tree
48 * objects in load_subtree(), and the non-notes are correctly written back into
49 * the tree objects produced by write_notes_tree().
50 */
51struct non_note {
52 struct non_note *next; /* grounded (last->next == NULL) */
53 char *path;
54 unsigned int mode;
55 struct object_id oid;
56};
57
58#define PTR_TYPE_NULL 0
59#define PTR_TYPE_INTERNAL 1
60#define PTR_TYPE_NOTE 2
61#define PTR_TYPE_SUBTREE 3
62
63#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
64#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
65#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
66
67#define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
68
69#define KEY_INDEX (GIT_SHA1_RAWSZ - 1)
70#define FANOUT_PATH_SEPARATORS ((GIT_SHA1_HEXSZ / 2) - 1)
71#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
72 (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
73
74struct notes_tree default_notes_tree;
75
76static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
77static struct notes_tree **display_notes_trees;
78
79static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
80 struct int_node *node, unsigned int n);
81
82/*
83 * Search the tree until the appropriate location for the given key is found:
84 * 1. Start at the root node, with n = 0
85 * 2. If a[0] at the current level is a matching subtree entry, unpack that
86 * subtree entry and remove it; restart search at the current level.
87 * 3. Use the nth nibble of the key as an index into a:
88 * - If a[n] is an int_node, recurse from #2 into that node and increment n
89 * - If a matching subtree entry, unpack that subtree entry (and remove it);
90 * restart search at the current level.
91 * - Otherwise, we have found one of the following:
92 * - a subtree entry which does not match the key
93 * - a note entry which may or may not match the key
94 * - an unused leaf node (NULL)
95 * In any case, set *tree and *n, and return pointer to the tree location.
96 */
97static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
98 unsigned char *n, const unsigned char *key_sha1)
99{
100 struct leaf_node *l;
101 unsigned char i;
102 void *p = (*tree)->a[0];
103
104 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
105 l = (struct leaf_node *) CLR_PTR_TYPE(p);
106 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
107 /* unpack tree and resume search */
108 (*tree)->a[0] = NULL;
109 load_subtree(t, l, *tree, *n);
110 free(l);
111 return note_tree_search(t, tree, n, key_sha1);
112 }
113 }
114
115 i = GET_NIBBLE(*n, key_sha1);
116 p = (*tree)->a[i];
117 switch (GET_PTR_TYPE(p)) {
118 case PTR_TYPE_INTERNAL:
119 *tree = CLR_PTR_TYPE(p);
120 (*n)++;
121 return note_tree_search(t, tree, n, key_sha1);
122 case PTR_TYPE_SUBTREE:
123 l = (struct leaf_node *) CLR_PTR_TYPE(p);
124 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
125 /* unpack tree and resume search */
126 (*tree)->a[i] = NULL;
127 load_subtree(t, l, *tree, *n);
128 free(l);
129 return note_tree_search(t, tree, n, key_sha1);
130 }
131 /* fall through */
132 default:
133 return &((*tree)->a[i]);
134 }
135}
136
137/*
138 * To find a leaf_node:
139 * Search to the tree location appropriate for the given key:
140 * If a note entry with matching key, return the note entry, else return NULL.
141 */
142static struct leaf_node *note_tree_find(struct notes_tree *t,
143 struct int_node *tree, unsigned char n,
144 const unsigned char *key_sha1)
145{
146 void **p = note_tree_search(t, &tree, &n, key_sha1);
147 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
148 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
149 if (!hashcmp(key_sha1, l->key_oid.hash))
150 return l;
151 }
152 return NULL;
153}
154
155/*
156 * How to consolidate an int_node:
157 * If there are > 1 non-NULL entries, give up and return non-zero.
158 * Otherwise replace the int_node at the given index in the given parent node
159 * with the only NOTE entry (or a NULL entry if no entries) from the given
160 * tree, and return 0.
161 */
162static int note_tree_consolidate(struct int_node *tree,
163 struct int_node *parent, unsigned char index)
164{
165 unsigned int i;
166 void *p = NULL;
167
168 assert(tree && parent);
169 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
170
171 for (i = 0; i < 16; i++) {
172 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
173 if (p) /* more than one entry */
174 return -2;
175 p = tree->a[i];
176 }
177 }
178
179 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
180 return -2;
181 /* replace tree with p in parent[index] */
182 parent->a[index] = p;
183 free(tree);
184 return 0;
185}
186
187/*
188 * To remove a leaf_node:
189 * Search to the tree location appropriate for the given leaf_node's key:
190 * - If location does not hold a matching entry, abort and do nothing.
191 * - Copy the matching entry's value into the given entry.
192 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
193 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
194 */
195static void note_tree_remove(struct notes_tree *t,
196 struct int_node *tree, unsigned char n,
197 struct leaf_node *entry)
198{
199 struct leaf_node *l;
200 struct int_node *parent_stack[GIT_SHA1_RAWSZ];
201 unsigned char i, j;
202 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
203
204 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
205 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
206 return; /* type mismatch, nothing to remove */
207 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
208 if (oidcmp(&l->key_oid, &entry->key_oid))
209 return; /* key mismatch, nothing to remove */
210
211 /* we have found a matching entry */
212 oidcpy(&entry->val_oid, &l->val_oid);
213 free(l);
214 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
215
216 /* consolidate this tree level, and parent levels, if possible */
217 if (!n)
218 return; /* cannot consolidate top level */
219 /* first, build stack of ancestors between root and current node */
220 parent_stack[0] = t->root;
221 for (i = 0; i < n; i++) {
222 j = GET_NIBBLE(i, entry->key_oid.hash);
223 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
224 }
225 assert(i == n && parent_stack[i] == tree);
226 /* next, unwind stack until note_tree_consolidate() is done */
227 while (i > 0 &&
228 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
229 GET_NIBBLE(i - 1, entry->key_oid.hash)))
230 i--;
231}
232
233/*
234 * To insert a leaf_node:
235 * Search to the tree location appropriate for the given leaf_node's key:
236 * - If location is unused (NULL), store the tweaked pointer directly there
237 * - If location holds a note entry that matches the note-to-be-inserted, then
238 * combine the two notes (by calling the given combine_notes function).
239 * - If location holds a note entry that matches the subtree-to-be-inserted,
240 * then unpack the subtree-to-be-inserted into the location.
241 * - If location holds a matching subtree entry, unpack the subtree at that
242 * location, and restart the insert operation from that level.
243 * - Else, create a new int_node, holding both the node-at-location and the
244 * node-to-be-inserted, and store the new int_node into the location.
245 */
246static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
247 unsigned char n, struct leaf_node *entry, unsigned char type,
248 combine_notes_fn combine_notes)
249{
250 struct int_node *new_node;
251 struct leaf_node *l;
252 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
253 int ret = 0;
254
255 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
256 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
257 switch (GET_PTR_TYPE(*p)) {
258 case PTR_TYPE_NULL:
259 assert(!*p);
260 if (is_null_oid(&entry->val_oid))
261 free(entry);
262 else
263 *p = SET_PTR_TYPE(entry, type);
264 return 0;
265 case PTR_TYPE_NOTE:
266 switch (type) {
267 case PTR_TYPE_NOTE:
268 if (!oidcmp(&l->key_oid, &entry->key_oid)) {
269 /* skip concatenation if l == entry */
270 if (!oidcmp(&l->val_oid, &entry->val_oid))
271 return 0;
272
273 ret = combine_notes(l->val_oid.hash,
274 entry->val_oid.hash);
275 if (!ret && is_null_oid(&l->val_oid))
276 note_tree_remove(t, tree, n, entry);
277 free(entry);
278 return ret;
279 }
280 break;
281 case PTR_TYPE_SUBTREE:
282 if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
283 entry->key_oid.hash)) {
284 /* unpack 'entry' */
285 load_subtree(t, entry, tree, n);
286 free(entry);
287 return 0;
288 }
289 break;
290 }
291 break;
292 case PTR_TYPE_SUBTREE:
293 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
294 /* unpack 'l' and restart insert */
295 *p = NULL;
296 load_subtree(t, l, tree, n);
297 free(l);
298 return note_tree_insert(t, tree, n, entry, type,
299 combine_notes);
300 }
301 break;
302 }
303
304 /* non-matching leaf_node */
305 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
306 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
307 if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
308 free(entry);
309 return 0;
310 }
311 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
312 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
313 combine_notes);
314 if (ret)
315 return ret;
316 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
317 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
318}
319
320/* Free the entire notes data contained in the given tree */
321static void note_tree_free(struct int_node *tree)
322{
323 unsigned int i;
324 for (i = 0; i < 16; i++) {
325 void *p = tree->a[i];
326 switch (GET_PTR_TYPE(p)) {
327 case PTR_TYPE_INTERNAL:
328 note_tree_free(CLR_PTR_TYPE(p));
329 /* fall through */
330 case PTR_TYPE_NOTE:
331 case PTR_TYPE_SUBTREE:
332 free(CLR_PTR_TYPE(p));
333 }
334 }
335}
336
337/*
338 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
339 * - hex - Partial SHA1 segment in ASCII hex format
340 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
341 * - sha1 - Partial SHA1 value is written here
342 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
343 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
344 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
345 * Pads sha1 with NULs up to sha1_len (not included in returned length).
346 */
347static int get_oid_hex_segment(const char *hex, unsigned int hex_len,
348 unsigned char *oid, unsigned int oid_len)
349{
350 unsigned int i, len = hex_len >> 1;
351 if (hex_len % 2 != 0 || len > oid_len)
352 return -1;
353 for (i = 0; i < len; i++) {
354 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
355 if (val & ~0xff)
356 return -1;
357 *oid++ = val;
358 hex += 2;
359 }
360 for (; i < oid_len; i++)
361 *oid++ = 0;
362 return len;
363}
364
365static int non_note_cmp(const struct non_note *a, const struct non_note *b)
366{
367 return strcmp(a->path, b->path);
368}
369
370/* note: takes ownership of path string */
371static void add_non_note(struct notes_tree *t, char *path,
372 unsigned int mode, const unsigned char *sha1)
373{
374 struct non_note *p = t->prev_non_note, *n;
375 n = (struct non_note *) xmalloc(sizeof(struct non_note));
376 n->next = NULL;
377 n->path = path;
378 n->mode = mode;
379 hashcpy(n->oid.hash, sha1);
380 t->prev_non_note = n;
381
382 if (!t->first_non_note) {
383 t->first_non_note = n;
384 return;
385 }
386
387 if (non_note_cmp(p, n) < 0)
388 ; /* do nothing */
389 else if (non_note_cmp(t->first_non_note, n) <= 0)
390 p = t->first_non_note;
391 else {
392 /* n sorts before t->first_non_note */
393 n->next = t->first_non_note;
394 t->first_non_note = n;
395 return;
396 }
397
398 /* n sorts equal or after p */
399 while (p->next && non_note_cmp(p->next, n) <= 0)
400 p = p->next;
401
402 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
403 assert(strcmp(p->path, n->path) == 0);
404 p->mode = n->mode;
405 oidcpy(&p->oid, &n->oid);
406 free(n);
407 t->prev_non_note = p;
408 return;
409 }
410
411 /* n sorts between p and p->next */
412 n->next = p->next;
413 p->next = n;
414}
415
416static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
417 struct int_node *node, unsigned int n)
418{
419 struct object_id object_oid;
420 unsigned int prefix_len;
421 void *buf;
422 struct tree_desc desc;
423 struct name_entry entry;
424
425 buf = fill_tree_descriptor(&desc, subtree->val_oid.hash);
426 if (!buf)
427 die("Could not read %s for notes-index",
428 oid_to_hex(&subtree->val_oid));
429
430 prefix_len = subtree->key_oid.hash[KEY_INDEX];
431 assert(prefix_len * 2 >= n);
432 memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
433 while (tree_entry(&desc, &entry)) {
434 unsigned char type;
435 struct leaf_node *l;
436 int path_len = strlen(entry.path);
437
438 if (path_len == 2 * (GIT_SHA1_RAWSZ - prefix_len)) {
439 /* This is potentially the remainder of the SHA-1 */
440
441 if (!S_ISREG(entry.mode))
442 /* notes must be blobs */
443 goto handle_non_note;
444
445 if (get_oid_hex_segment(entry.path, path_len,
446 object_oid.hash + prefix_len,
447 GIT_SHA1_RAWSZ - prefix_len) < 0)
448 goto handle_non_note; /* entry.path is not a SHA1 */
449
450 type = PTR_TYPE_NOTE;
451 l = (struct leaf_node *)
452 xcalloc(1, sizeof(struct leaf_node));
453 oidcpy(&l->key_oid, &object_oid);
454 oidcpy(&l->val_oid, entry.oid);
455 } else if (path_len == 2) {
456 /* This is potentially an internal node */
457
458 if (!S_ISDIR(entry.mode))
459 /* internal nodes must be trees */
460 goto handle_non_note;
461
462 if (get_oid_hex_segment(entry.path, 2,
463 object_oid.hash + prefix_len,
464 GIT_SHA1_RAWSZ - prefix_len) < 0)
465 goto handle_non_note; /* entry.path is not a SHA1 */
466
467 type = PTR_TYPE_SUBTREE;
468 l = (struct leaf_node *)
469 xcalloc(1, sizeof(struct leaf_node));
470 oidcpy(&l->key_oid, &object_oid);
471 oidcpy(&l->val_oid, entry.oid);
472 l->key_oid.hash[KEY_INDEX] = (unsigned char) (prefix_len + 1);
473 } else {
474 /* This can't be part of a note */
475 goto handle_non_note;
476 }
477
478 if (note_tree_insert(t, node, n, l, type,
479 combine_notes_concatenate))
480 die("Failed to load %s %s into notes tree "
481 "from %s",
482 type == PTR_TYPE_NOTE ? "note" : "subtree",
483 oid_to_hex(&l->key_oid), t->ref);
484
485 continue;
486
487handle_non_note:
488 /*
489 * Determine full path for this non-note entry. The
490 * filename is already found in entry.path, but the
491 * directory part of the path must be deduced from the
492 * subtree containing this entry based on our
493 * knowledge that the overall notes tree follows a
494 * strict byte-based progressive fanout structure
495 * (i.e. using 2/38, 2/2/36, etc. fanouts).
496 */
497 {
498 struct strbuf non_note_path = STRBUF_INIT;
499 const char *q = oid_to_hex(&subtree->key_oid);
500 int i;
501 for (i = 0; i < prefix_len; i++) {
502 strbuf_addch(&non_note_path, *q++);
503 strbuf_addch(&non_note_path, *q++);
504 strbuf_addch(&non_note_path, '/');
505 }
506 strbuf_addstr(&non_note_path, entry.path);
507 add_non_note(t, strbuf_detach(&non_note_path, NULL),
508 entry.mode, entry.oid->hash);
509 }
510 }
511 free(buf);
512}
513
514/*
515 * Determine optimal on-disk fanout for this part of the notes tree
516 *
517 * Given a (sub)tree and the level in the internal tree structure, determine
518 * whether or not the given existing fanout should be expanded for this
519 * (sub)tree.
520 *
521 * Values of the 'fanout' variable:
522 * - 0: No fanout (all notes are stored directly in the root notes tree)
523 * - 1: 2/38 fanout
524 * - 2: 2/2/36 fanout
525 * - 3: 2/2/2/34 fanout
526 * etc.
527 */
528static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
529 unsigned char fanout)
530{
531 /*
532 * The following is a simple heuristic that works well in practice:
533 * For each even-numbered 16-tree level (remember that each on-disk
534 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
535 * entries at that tree level. If all of them are either int_nodes or
536 * subtree entries, then there are likely plenty of notes below this
537 * level, so we return an incremented fanout.
538 */
539 unsigned int i;
540 if ((n % 2) || (n > 2 * fanout))
541 return fanout;
542 for (i = 0; i < 16; i++) {
543 switch (GET_PTR_TYPE(tree->a[i])) {
544 case PTR_TYPE_SUBTREE:
545 case PTR_TYPE_INTERNAL:
546 continue;
547 default:
548 return fanout;
549 }
550 }
551 return fanout + 1;
552}
553
554/* hex SHA1 + 19 * '/' + NUL */
555#define FANOUT_PATH_MAX GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS + 1
556
557static void construct_path_with_fanout(const unsigned char *sha1,
558 unsigned char fanout, char *path)
559{
560 unsigned int i = 0, j = 0;
561 const char *hex_sha1 = sha1_to_hex(sha1);
562 assert(fanout < GIT_SHA1_RAWSZ);
563 while (fanout) {
564 path[i++] = hex_sha1[j++];
565 path[i++] = hex_sha1[j++];
566 path[i++] = '/';
567 fanout--;
568 }
569 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
570}
571
572static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
573 unsigned char n, unsigned char fanout, int flags,
574 each_note_fn fn, void *cb_data)
575{
576 unsigned int i;
577 void *p;
578 int ret = 0;
579 struct leaf_node *l;
580 static char path[FANOUT_PATH_MAX];
581
582 fanout = determine_fanout(tree, n, fanout);
583 for (i = 0; i < 16; i++) {
584redo:
585 p = tree->a[i];
586 switch (GET_PTR_TYPE(p)) {
587 case PTR_TYPE_INTERNAL:
588 /* recurse into int_node */
589 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
590 fanout, flags, fn, cb_data);
591 break;
592 case PTR_TYPE_SUBTREE:
593 l = (struct leaf_node *) CLR_PTR_TYPE(p);
594 /*
595 * Subtree entries in the note tree represent parts of
596 * the note tree that have not yet been explored. There
597 * is a direct relationship between subtree entries at
598 * level 'n' in the tree, and the 'fanout' variable:
599 * Subtree entries at level 'n <= 2 * fanout' should be
600 * preserved, since they correspond exactly to a fanout
601 * directory in the on-disk structure. However, subtree
602 * entries at level 'n > 2 * fanout' should NOT be
603 * preserved, but rather consolidated into the above
604 * notes tree level. We achieve this by unconditionally
605 * unpacking subtree entries that exist below the
606 * threshold level at 'n = 2 * fanout'.
607 */
608 if (n <= 2 * fanout &&
609 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
610 /* invoke callback with subtree */
611 unsigned int path_len =
612 l->key_oid.hash[KEY_INDEX] * 2 + fanout;
613 assert(path_len < FANOUT_PATH_MAX - 1);
614 construct_path_with_fanout(l->key_oid.hash,
615 fanout,
616 path);
617 /* Create trailing slash, if needed */
618 if (path[path_len - 1] != '/')
619 path[path_len++] = '/';
620 path[path_len] = '\0';
621 ret = fn(&l->key_oid, &l->val_oid,
622 path,
623 cb_data);
624 }
625 if (n > fanout * 2 ||
626 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
627 /* unpack subtree and resume traversal */
628 tree->a[i] = NULL;
629 load_subtree(t, l, tree, n);
630 free(l);
631 goto redo;
632 }
633 break;
634 case PTR_TYPE_NOTE:
635 l = (struct leaf_node *) CLR_PTR_TYPE(p);
636 construct_path_with_fanout(l->key_oid.hash, fanout,
637 path);
638 ret = fn(&l->key_oid, &l->val_oid, path,
639 cb_data);
640 break;
641 }
642 if (ret)
643 return ret;
644 }
645 return 0;
646}
647
648struct tree_write_stack {
649 struct tree_write_stack *next;
650 struct strbuf buf;
651 char path[2]; /* path to subtree in next, if any */
652};
653
654static inline int matches_tree_write_stack(struct tree_write_stack *tws,
655 const char *full_path)
656{
657 return full_path[0] == tws->path[0] &&
658 full_path[1] == tws->path[1] &&
659 full_path[2] == '/';
660}
661
662static void write_tree_entry(struct strbuf *buf, unsigned int mode,
663 const char *path, unsigned int path_len, const
664 unsigned char *sha1)
665{
666 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
667 strbuf_add(buf, sha1, GIT_SHA1_RAWSZ);
668}
669
670static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
671 const char *path)
672{
673 struct tree_write_stack *n;
674 assert(!tws->next);
675 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
676 n = (struct tree_write_stack *)
677 xmalloc(sizeof(struct tree_write_stack));
678 n->next = NULL;
679 strbuf_init(&n->buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries per tree */
680 n->path[0] = n->path[1] = '\0';
681 tws->next = n;
682 tws->path[0] = path[0];
683 tws->path[1] = path[1];
684}
685
686static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
687{
688 int ret;
689 struct tree_write_stack *n = tws->next;
690 struct object_id s;
691 if (n) {
692 ret = tree_write_stack_finish_subtree(n);
693 if (ret)
694 return ret;
695 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s.hash);
696 if (ret)
697 return ret;
698 strbuf_release(&n->buf);
699 free(n);
700 tws->next = NULL;
701 write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
702 tws->path[0] = tws->path[1] = '\0';
703 }
704 return 0;
705}
706
707static int write_each_note_helper(struct tree_write_stack *tws,
708 const char *path, unsigned int mode,
709 const struct object_id *oid)
710{
711 size_t path_len = strlen(path);
712 unsigned int n = 0;
713 int ret;
714
715 /* Determine common part of tree write stack */
716 while (tws && 3 * n < path_len &&
717 matches_tree_write_stack(tws, path + 3 * n)) {
718 n++;
719 tws = tws->next;
720 }
721
722 /* tws point to last matching tree_write_stack entry */
723 ret = tree_write_stack_finish_subtree(tws);
724 if (ret)
725 return ret;
726
727 /* Start subtrees needed to satisfy path */
728 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
729 tree_write_stack_init_subtree(tws, path + 3 * n);
730 n++;
731 tws = tws->next;
732 }
733
734 /* There should be no more directory components in the given path */
735 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
736
737 /* Finally add given entry to the current tree object */
738 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
739 oid->hash);
740
741 return 0;
742}
743
744struct write_each_note_data {
745 struct tree_write_stack *root;
746 struct non_note *next_non_note;
747};
748
749static int write_each_non_note_until(const char *note_path,
750 struct write_each_note_data *d)
751{
752 struct non_note *n = d->next_non_note;
753 int cmp = 0, ret;
754 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
755 if (note_path && cmp == 0)
756 ; /* do nothing, prefer note to non-note */
757 else {
758 ret = write_each_note_helper(d->root, n->path, n->mode,
759 &n->oid);
760 if (ret)
761 return ret;
762 }
763 n = n->next;
764 }
765 d->next_non_note = n;
766 return 0;
767}
768
769static int write_each_note(const struct object_id *object_oid,
770 const struct object_id *note_oid, char *note_path,
771 void *cb_data)
772{
773 struct write_each_note_data *d =
774 (struct write_each_note_data *) cb_data;
775 size_t note_path_len = strlen(note_path);
776 unsigned int mode = 0100644;
777
778 if (note_path[note_path_len - 1] == '/') {
779 /* subtree entry */
780 note_path_len--;
781 note_path[note_path_len] = '\0';
782 mode = 040000;
783 }
784 assert(note_path_len <= GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS);
785
786 /* Weave non-note entries into note entries */
787 return write_each_non_note_until(note_path, d) ||
788 write_each_note_helper(d->root, note_path, mode, note_oid);
789}
790
791struct note_delete_list {
792 struct note_delete_list *next;
793 const unsigned char *sha1;
794};
795
796static int prune_notes_helper(const struct object_id *object_oid,
797 const struct object_id *note_oid, char *note_path,
798 void *cb_data)
799{
800 struct note_delete_list **l = (struct note_delete_list **) cb_data;
801 struct note_delete_list *n;
802
803 if (has_object_file(object_oid))
804 return 0; /* nothing to do for this note */
805
806 /* failed to find object => prune this note */
807 n = (struct note_delete_list *) xmalloc(sizeof(*n));
808 n->next = *l;
809 n->sha1 = object_oid->hash;
810 *l = n;
811 return 0;
812}
813
814int combine_notes_concatenate(unsigned char *cur_sha1,
815 const unsigned char *new_sha1)
816{
817 char *cur_msg = NULL, *new_msg = NULL, *buf;
818 unsigned long cur_len, new_len, buf_len;
819 enum object_type cur_type, new_type;
820 int ret;
821
822 /* read in both note blob objects */
823 if (!is_null_sha1(new_sha1))
824 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
825 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
826 free(new_msg);
827 return 0;
828 }
829 if (!is_null_sha1(cur_sha1))
830 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
831 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
832 free(cur_msg);
833 free(new_msg);
834 hashcpy(cur_sha1, new_sha1);
835 return 0;
836 }
837
838 /* we will separate the notes by two newlines anyway */
839 if (cur_msg[cur_len - 1] == '\n')
840 cur_len--;
841
842 /* concatenate cur_msg and new_msg into buf */
843 buf_len = cur_len + 2 + new_len;
844 buf = (char *) xmalloc(buf_len);
845 memcpy(buf, cur_msg, cur_len);
846 buf[cur_len] = '\n';
847 buf[cur_len + 1] = '\n';
848 memcpy(buf + cur_len + 2, new_msg, new_len);
849 free(cur_msg);
850 free(new_msg);
851
852 /* create a new blob object from buf */
853 ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
854 free(buf);
855 return ret;
856}
857
858int combine_notes_overwrite(unsigned char *cur_sha1,
859 const unsigned char *new_sha1)
860{
861 hashcpy(cur_sha1, new_sha1);
862 return 0;
863}
864
865int combine_notes_ignore(unsigned char *cur_sha1,
866 const unsigned char *new_sha1)
867{
868 return 0;
869}
870
871/*
872 * Add the lines from the named object to list, with trailing
873 * newlines removed.
874 */
875static int string_list_add_note_lines(struct string_list *list,
876 const unsigned char *sha1)
877{
878 char *data;
879 unsigned long len;
880 enum object_type t;
881
882 if (is_null_sha1(sha1))
883 return 0;
884
885 /* read_sha1_file NUL-terminates */
886 data = read_sha1_file(sha1, &t, &len);
887 if (t != OBJ_BLOB || !data || !len) {
888 free(data);
889 return t != OBJ_BLOB || !data;
890 }
891
892 /*
893 * If the last line of the file is EOL-terminated, this will
894 * add an empty string to the list. But it will be removed
895 * later, along with any empty strings that came from empty
896 * lines within the file.
897 */
898 string_list_split(list, data, '\n', -1);
899 free(data);
900 return 0;
901}
902
903static int string_list_join_lines_helper(struct string_list_item *item,
904 void *cb_data)
905{
906 struct strbuf *buf = cb_data;
907 strbuf_addstr(buf, item->string);
908 strbuf_addch(buf, '\n');
909 return 0;
910}
911
912int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
913 const unsigned char *new_sha1)
914{
915 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
916 struct strbuf buf = STRBUF_INIT;
917 int ret = 1;
918
919 /* read both note blob objects into unique_lines */
920 if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
921 goto out;
922 if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
923 goto out;
924 string_list_remove_empty_items(&sort_uniq_list, 0);
925 string_list_sort(&sort_uniq_list);
926 string_list_remove_duplicates(&sort_uniq_list, 0);
927
928 /* create a new blob object from sort_uniq_list */
929 if (for_each_string_list(&sort_uniq_list,
930 string_list_join_lines_helper, &buf))
931 goto out;
932
933 ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
934
935out:
936 strbuf_release(&buf);
937 string_list_clear(&sort_uniq_list, 0);
938 return ret;
939}
940
941static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
942 int flag, void *cb)
943{
944 struct string_list *refs = cb;
945 if (!unsorted_string_list_has_string(refs, refname))
946 string_list_append(refs, refname);
947 return 0;
948}
949
950/*
951 * The list argument must have strdup_strings set on it.
952 */
953void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
954{
955 assert(list->strdup_strings);
956 if (has_glob_specials(glob)) {
957 for_each_glob_ref(string_list_add_one_ref, glob, list);
958 } else {
959 struct object_id oid;
960 if (get_oid(glob, &oid))
961 warning("notes ref %s is invalid", glob);
962 if (!unsorted_string_list_has_string(list, glob))
963 string_list_append(list, glob);
964 }
965}
966
967void string_list_add_refs_from_colon_sep(struct string_list *list,
968 const char *globs)
969{
970 struct string_list split = STRING_LIST_INIT_NODUP;
971 char *globs_copy = xstrdup(globs);
972 int i;
973
974 string_list_split_in_place(&split, globs_copy, ':', -1);
975 string_list_remove_empty_items(&split, 0);
976
977 for (i = 0; i < split.nr; i++)
978 string_list_add_refs_by_glob(list, split.items[i].string);
979
980 string_list_clear(&split, 0);
981 free(globs_copy);
982}
983
984static int notes_display_config(const char *k, const char *v, void *cb)
985{
986 int *load_refs = cb;
987
988 if (*load_refs && !strcmp(k, "notes.displayref")) {
989 if (!v)
990 config_error_nonbool(k);
991 string_list_add_refs_by_glob(&display_notes_refs, v);
992 }
993
994 return 0;
995}
996
997const char *default_notes_ref(void)
998{
999 const char *notes_ref = NULL;
1000 if (!notes_ref)
1001 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
1002 if (!notes_ref)
1003 notes_ref = notes_ref_name; /* value of core.notesRef config */
1004 if (!notes_ref)
1005 notes_ref = GIT_NOTES_DEFAULT_REF;
1006 return notes_ref;
1007}
1008
1009void init_notes(struct notes_tree *t, const char *notes_ref,
1010 combine_notes_fn combine_notes, int flags)
1011{
1012 struct object_id oid, object_oid;
1013 unsigned mode;
1014 struct leaf_node root_tree;
1015
1016 if (!t)
1017 t = &default_notes_tree;
1018 assert(!t->initialized);
1019
1020 if (!notes_ref)
1021 notes_ref = default_notes_ref();
1022
1023 if (!combine_notes)
1024 combine_notes = combine_notes_concatenate;
1025
1026 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1027 t->first_non_note = NULL;
1028 t->prev_non_note = NULL;
1029 t->ref = xstrdup_or_null(notes_ref);
1030 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1031 t->combine_notes = combine_notes;
1032 t->initialized = 1;
1033 t->dirty = 0;
1034
1035 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1036 get_sha1_treeish(notes_ref, object_oid.hash))
1037 return;
1038 if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1039 die("Cannot use notes ref %s", notes_ref);
1040 if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1041 die("Failed to read notes tree referenced by %s (%s)",
1042 notes_ref, oid_to_hex(&object_oid));
1043
1044 oidclr(&root_tree.key_oid);
1045 oidcpy(&root_tree.val_oid, &oid);
1046 load_subtree(t, &root_tree, t->root, 0);
1047}
1048
1049struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1050{
1051 struct string_list_item *item;
1052 int counter = 0;
1053 struct notes_tree **trees;
1054 ALLOC_ARRAY(trees, refs->nr + 1);
1055 for_each_string_list_item(item, refs) {
1056 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1057 init_notes(t, item->string, combine_notes_ignore, flags);
1058 trees[counter++] = t;
1059 }
1060 trees[counter] = NULL;
1061 return trees;
1062}
1063
1064void init_display_notes(struct display_notes_opt *opt)
1065{
1066 char *display_ref_env;
1067 int load_config_refs = 0;
1068 display_notes_refs.strdup_strings = 1;
1069
1070 assert(!display_notes_trees);
1071
1072 if (!opt || opt->use_default_notes > 0 ||
1073 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1074 string_list_append(&display_notes_refs, default_notes_ref());
1075 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1076 if (display_ref_env) {
1077 string_list_add_refs_from_colon_sep(&display_notes_refs,
1078 display_ref_env);
1079 load_config_refs = 0;
1080 } else
1081 load_config_refs = 1;
1082 }
1083
1084 git_config(notes_display_config, &load_config_refs);
1085
1086 if (opt) {
1087 struct string_list_item *item;
1088 for_each_string_list_item(item, &opt->extra_notes_refs)
1089 string_list_add_refs_by_glob(&display_notes_refs,
1090 item->string);
1091 }
1092
1093 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1094 string_list_clear(&display_notes_refs, 0);
1095}
1096
1097int add_note(struct notes_tree *t, const struct object_id *object_oid,
1098 const struct object_id *note_oid, combine_notes_fn combine_notes)
1099{
1100 struct leaf_node *l;
1101
1102 if (!t)
1103 t = &default_notes_tree;
1104 assert(t->initialized);
1105 t->dirty = 1;
1106 if (!combine_notes)
1107 combine_notes = t->combine_notes;
1108 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1109 oidcpy(&l->key_oid, object_oid);
1110 oidcpy(&l->val_oid, note_oid);
1111 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1112}
1113
1114int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1115{
1116 struct leaf_node l;
1117
1118 if (!t)
1119 t = &default_notes_tree;
1120 assert(t->initialized);
1121 hashcpy(l.key_oid.hash, object_sha1);
1122 oidclr(&l.val_oid);
1123 note_tree_remove(t, t->root, 0, &l);
1124 if (is_null_oid(&l.val_oid)) /* no note was removed */
1125 return 1;
1126 t->dirty = 1;
1127 return 0;
1128}
1129
1130const struct object_id *get_note(struct notes_tree *t,
1131 const struct object_id *oid)
1132{
1133 struct leaf_node *found;
1134
1135 if (!t)
1136 t = &default_notes_tree;
1137 assert(t->initialized);
1138 found = note_tree_find(t, t->root, 0, oid->hash);
1139 return found ? &found->val_oid : NULL;
1140}
1141
1142int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1143 void *cb_data)
1144{
1145 if (!t)
1146 t = &default_notes_tree;
1147 assert(t->initialized);
1148 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1149}
1150
1151int write_notes_tree(struct notes_tree *t, unsigned char *result)
1152{
1153 struct tree_write_stack root;
1154 struct write_each_note_data cb_data;
1155 int ret;
1156
1157 if (!t)
1158 t = &default_notes_tree;
1159 assert(t->initialized);
1160
1161 /* Prepare for traversal of current notes tree */
1162 root.next = NULL; /* last forward entry in list is grounded */
1163 strbuf_init(&root.buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries */
1164 root.path[0] = root.path[1] = '\0';
1165 cb_data.root = &root;
1166 cb_data.next_non_note = t->first_non_note;
1167
1168 /* Write tree objects representing current notes tree */
1169 ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1170 FOR_EACH_NOTE_YIELD_SUBTREES,
1171 write_each_note, &cb_data) ||
1172 write_each_non_note_until(NULL, &cb_data) ||
1173 tree_write_stack_finish_subtree(&root) ||
1174 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1175 strbuf_release(&root.buf);
1176 return ret;
1177}
1178
1179void prune_notes(struct notes_tree *t, int flags)
1180{
1181 struct note_delete_list *l = NULL;
1182
1183 if (!t)
1184 t = &default_notes_tree;
1185 assert(t->initialized);
1186
1187 for_each_note(t, 0, prune_notes_helper, &l);
1188
1189 while (l) {
1190 if (flags & NOTES_PRUNE_VERBOSE)
1191 printf("%s\n", sha1_to_hex(l->sha1));
1192 if (!(flags & NOTES_PRUNE_DRYRUN))
1193 remove_note(t, l->sha1);
1194 l = l->next;
1195 }
1196}
1197
1198void free_notes(struct notes_tree *t)
1199{
1200 if (!t)
1201 t = &default_notes_tree;
1202 if (t->root)
1203 note_tree_free(t->root);
1204 free(t->root);
1205 while (t->first_non_note) {
1206 t->prev_non_note = t->first_non_note->next;
1207 free(t->first_non_note->path);
1208 free(t->first_non_note);
1209 t->first_non_note = t->prev_non_note;
1210 }
1211 free(t->ref);
1212 memset(t, 0, sizeof(struct notes_tree));
1213}
1214
1215/*
1216 * Fill the given strbuf with the notes associated with the given object.
1217 *
1218 * If the given notes_tree structure is not initialized, it will be auto-
1219 * initialized to the default value (see documentation for init_notes() above).
1220 * If the given notes_tree is NULL, the internal/default notes_tree will be
1221 * used instead.
1222 *
1223 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1224 * for human consumption.
1225 */
1226static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1227 struct strbuf *sb, const char *output_encoding, int raw)
1228{
1229 static const char utf8[] = "utf-8";
1230 const struct object_id *oid;
1231 char *msg, *msg_p;
1232 unsigned long linelen, msglen;
1233 enum object_type type;
1234
1235 if (!t)
1236 t = &default_notes_tree;
1237 if (!t->initialized)
1238 init_notes(t, NULL, NULL, 0);
1239
1240 oid = get_note(t, object_oid);
1241 if (!oid)
1242 return;
1243
1244 if (!(msg = read_sha1_file(oid->hash, &type, &msglen)) || type != OBJ_BLOB) {
1245 free(msg);
1246 return;
1247 }
1248
1249 if (output_encoding && *output_encoding &&
1250 !is_encoding_utf8(output_encoding)) {
1251 char *reencoded = reencode_string(msg, output_encoding, utf8);
1252 if (reencoded) {
1253 free(msg);
1254 msg = reencoded;
1255 msglen = strlen(msg);
1256 }
1257 }
1258
1259 /* we will end the annotation by a newline anyway */
1260 if (msglen && msg[msglen - 1] == '\n')
1261 msglen--;
1262
1263 if (!raw) {
1264 const char *ref = t->ref;
1265 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1266 strbuf_addstr(sb, "\nNotes:\n");
1267 } else {
1268 if (starts_with(ref, "refs/"))
1269 ref += 5;
1270 if (starts_with(ref, "notes/"))
1271 ref += 6;
1272 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1273 }
1274 }
1275
1276 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1277 linelen = strchrnul(msg_p, '\n') - msg_p;
1278
1279 if (!raw)
1280 strbuf_addstr(sb, " ");
1281 strbuf_add(sb, msg_p, linelen);
1282 strbuf_addch(sb, '\n');
1283 }
1284
1285 free(msg);
1286}
1287
1288void format_display_notes(const struct object_id *object_oid,
1289 struct strbuf *sb, const char *output_encoding, int raw)
1290{
1291 int i;
1292 assert(display_notes_trees);
1293 for (i = 0; display_notes_trees[i]; i++)
1294 format_note(display_notes_trees[i], object_oid, sb,
1295 output_encoding, raw);
1296}
1297
1298int copy_note(struct notes_tree *t,
1299 const struct object_id *from_obj, const struct object_id *to_obj,
1300 int force, combine_notes_fn combine_notes)
1301{
1302 const struct object_id *note = get_note(t, from_obj);
1303 const struct object_id *existing_note = get_note(t, to_obj);
1304
1305 if (!force && existing_note)
1306 return 1;
1307
1308 if (note)
1309 return add_note(t, to_obj, note, combine_notes);
1310 else if (existing_note)
1311 return add_note(t, to_obj, &null_oid, combine_notes);
1312
1313 return 0;
1314}
1315
1316void expand_notes_ref(struct strbuf *sb)
1317{
1318 if (starts_with(sb->buf, "refs/notes/"))
1319 return; /* we're happy */
1320 else if (starts_with(sb->buf, "notes/"))
1321 strbuf_insert(sb, 0, "refs/", 5);
1322 else
1323 strbuf_insert(sb, 0, "refs/notes/", 11);
1324}
1325
1326void expand_loose_notes_ref(struct strbuf *sb)
1327{
1328 struct object_id object;
1329
1330 if (get_oid(sb->buf, &object)) {
1331 /* fallback to expand_notes_ref */
1332 expand_notes_ref(sb);
1333 }
1334}