notes.con commit Fifth batch for 2.7 (906c32b)
   1#include "cache.h"
   2#include "notes.h"
   3#include "blob.h"
   4#include "tree.h"
   5#include "utf8.h"
   6#include "strbuf.h"
   7#include "tree-walk.h"
   8#include "string-list.h"
   9#include "refs.h"
  10
  11/*
  12 * Use a non-balancing simple 16-tree structure with struct int_node as
  13 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  14 * 16-array of pointers to its children.
  15 * The bottom 2 bits of each pointer is used to identify the pointer type
  16 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  17 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  18 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  19 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  20 *
  21 * The root node is a statically allocated struct int_node.
  22 */
  23struct int_node {
  24        void *a[16];
  25};
  26
  27/*
  28 * Leaf nodes come in two variants, note entries and subtree entries,
  29 * distinguished by the LSb of the leaf node pointer (see above).
  30 * As a note entry, the key is the SHA1 of the referenced object, and the
  31 * value is the SHA1 of the note object.
  32 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  33 * referenced object, using the last byte of the key to store the length of
  34 * the prefix. The value is the SHA1 of the tree object containing the notes
  35 * subtree.
  36 */
  37struct leaf_node {
  38        unsigned char key_sha1[20];
  39        unsigned char val_sha1[20];
  40};
  41
  42/*
  43 * A notes tree may contain entries that are not notes, and that do not follow
  44 * the naming conventions of notes. There are typically none/few of these, but
  45 * we still need to keep track of them. Keep a simple linked list sorted alpha-
  46 * betically on the non-note path. The list is populated when parsing tree
  47 * objects in load_subtree(), and the non-notes are correctly written back into
  48 * the tree objects produced by write_notes_tree().
  49 */
  50struct non_note {
  51        struct non_note *next; /* grounded (last->next == NULL) */
  52        char *path;
  53        unsigned int mode;
  54        unsigned char sha1[20];
  55};
  56
  57#define PTR_TYPE_NULL     0
  58#define PTR_TYPE_INTERNAL 1
  59#define PTR_TYPE_NOTE     2
  60#define PTR_TYPE_SUBTREE  3
  61
  62#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  63#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  64#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  65
  66#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
  67
  68#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  69        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  70
  71struct notes_tree default_notes_tree;
  72
  73static struct string_list display_notes_refs;
  74static struct notes_tree **display_notes_trees;
  75
  76static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
  77                struct int_node *node, unsigned int n);
  78
  79/*
  80 * Search the tree until the appropriate location for the given key is found:
  81 * 1. Start at the root node, with n = 0
  82 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  83 *    subtree entry and remove it; restart search at the current level.
  84 * 3. Use the nth nibble of the key as an index into a:
  85 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  86 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  87 *      restart search at the current level.
  88 *    - Otherwise, we have found one of the following:
  89 *      - a subtree entry which does not match the key
  90 *      - a note entry which may or may not match the key
  91 *      - an unused leaf node (NULL)
  92 *      In any case, set *tree and *n, and return pointer to the tree location.
  93 */
  94static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
  95                unsigned char *n, const unsigned char *key_sha1)
  96{
  97        struct leaf_node *l;
  98        unsigned char i;
  99        void *p = (*tree)->a[0];
 100
 101        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
 102                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 103                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 104                        /* unpack tree and resume search */
 105                        (*tree)->a[0] = NULL;
 106                        load_subtree(t, l, *tree, *n);
 107                        free(l);
 108                        return note_tree_search(t, tree, n, key_sha1);
 109                }
 110        }
 111
 112        i = GET_NIBBLE(*n, key_sha1);
 113        p = (*tree)->a[i];
 114        switch (GET_PTR_TYPE(p)) {
 115        case PTR_TYPE_INTERNAL:
 116                *tree = CLR_PTR_TYPE(p);
 117                (*n)++;
 118                return note_tree_search(t, tree, n, key_sha1);
 119        case PTR_TYPE_SUBTREE:
 120                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 121                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 122                        /* unpack tree and resume search */
 123                        (*tree)->a[i] = NULL;
 124                        load_subtree(t, l, *tree, *n);
 125                        free(l);
 126                        return note_tree_search(t, tree, n, key_sha1);
 127                }
 128                /* fall through */
 129        default:
 130                return &((*tree)->a[i]);
 131        }
 132}
 133
 134/*
 135 * To find a leaf_node:
 136 * Search to the tree location appropriate for the given key:
 137 * If a note entry with matching key, return the note entry, else return NULL.
 138 */
 139static struct leaf_node *note_tree_find(struct notes_tree *t,
 140                struct int_node *tree, unsigned char n,
 141                const unsigned char *key_sha1)
 142{
 143        void **p = note_tree_search(t, &tree, &n, key_sha1);
 144        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 145                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 146                if (!hashcmp(key_sha1, l->key_sha1))
 147                        return l;
 148        }
 149        return NULL;
 150}
 151
 152/*
 153 * How to consolidate an int_node:
 154 * If there are > 1 non-NULL entries, give up and return non-zero.
 155 * Otherwise replace the int_node at the given index in the given parent node
 156 * with the only entry (or a NULL entry if no entries) from the given tree,
 157 * and return 0.
 158 */
 159static int note_tree_consolidate(struct int_node *tree,
 160        struct int_node *parent, unsigned char index)
 161{
 162        unsigned int i;
 163        void *p = NULL;
 164
 165        assert(tree && parent);
 166        assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 167
 168        for (i = 0; i < 16; i++) {
 169                if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 170                        if (p) /* more than one entry */
 171                                return -2;
 172                        p = tree->a[i];
 173                }
 174        }
 175
 176        /* replace tree with p in parent[index] */
 177        parent->a[index] = p;
 178        free(tree);
 179        return 0;
 180}
 181
 182/*
 183 * To remove a leaf_node:
 184 * Search to the tree location appropriate for the given leaf_node's key:
 185 * - If location does not hold a matching entry, abort and do nothing.
 186 * - Copy the matching entry's value into the given entry.
 187 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 188 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 189 */
 190static void note_tree_remove(struct notes_tree *t,
 191                struct int_node *tree, unsigned char n,
 192                struct leaf_node *entry)
 193{
 194        struct leaf_node *l;
 195        struct int_node *parent_stack[20];
 196        unsigned char i, j;
 197        void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 198
 199        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 200        if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 201                return; /* type mismatch, nothing to remove */
 202        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 203        if (hashcmp(l->key_sha1, entry->key_sha1))
 204                return; /* key mismatch, nothing to remove */
 205
 206        /* we have found a matching entry */
 207        hashcpy(entry->val_sha1, l->val_sha1);
 208        free(l);
 209        *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 210
 211        /* consolidate this tree level, and parent levels, if possible */
 212        if (!n)
 213                return; /* cannot consolidate top level */
 214        /* first, build stack of ancestors between root and current node */
 215        parent_stack[0] = t->root;
 216        for (i = 0; i < n; i++) {
 217                j = GET_NIBBLE(i, entry->key_sha1);
 218                parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 219        }
 220        assert(i == n && parent_stack[i] == tree);
 221        /* next, unwind stack until note_tree_consolidate() is done */
 222        while (i > 0 &&
 223               !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 224                                      GET_NIBBLE(i - 1, entry->key_sha1)))
 225                i--;
 226}
 227
 228/*
 229 * To insert a leaf_node:
 230 * Search to the tree location appropriate for the given leaf_node's key:
 231 * - If location is unused (NULL), store the tweaked pointer directly there
 232 * - If location holds a note entry that matches the note-to-be-inserted, then
 233 *   combine the two notes (by calling the given combine_notes function).
 234 * - If location holds a note entry that matches the subtree-to-be-inserted,
 235 *   then unpack the subtree-to-be-inserted into the location.
 236 * - If location holds a matching subtree entry, unpack the subtree at that
 237 *   location, and restart the insert operation from that level.
 238 * - Else, create a new int_node, holding both the node-at-location and the
 239 *   node-to-be-inserted, and store the new int_node into the location.
 240 */
 241static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
 242                unsigned char n, struct leaf_node *entry, unsigned char type,
 243                combine_notes_fn combine_notes)
 244{
 245        struct int_node *new_node;
 246        struct leaf_node *l;
 247        void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 248        int ret = 0;
 249
 250        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 251        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 252        switch (GET_PTR_TYPE(*p)) {
 253        case PTR_TYPE_NULL:
 254                assert(!*p);
 255                if (is_null_sha1(entry->val_sha1))
 256                        free(entry);
 257                else
 258                        *p = SET_PTR_TYPE(entry, type);
 259                return 0;
 260        case PTR_TYPE_NOTE:
 261                switch (type) {
 262                case PTR_TYPE_NOTE:
 263                        if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 264                                /* skip concatenation if l == entry */
 265                                if (!hashcmp(l->val_sha1, entry->val_sha1))
 266                                        return 0;
 267
 268                                ret = combine_notes(l->val_sha1,
 269                                                    entry->val_sha1);
 270                                if (!ret && is_null_sha1(l->val_sha1))
 271                                        note_tree_remove(t, tree, n, entry);
 272                                free(entry);
 273                                return ret;
 274                        }
 275                        break;
 276                case PTR_TYPE_SUBTREE:
 277                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 278                                                    entry->key_sha1)) {
 279                                /* unpack 'entry' */
 280                                load_subtree(t, entry, tree, n);
 281                                free(entry);
 282                                return 0;
 283                        }
 284                        break;
 285                }
 286                break;
 287        case PTR_TYPE_SUBTREE:
 288                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 289                        /* unpack 'l' and restart insert */
 290                        *p = NULL;
 291                        load_subtree(t, l, tree, n);
 292                        free(l);
 293                        return note_tree_insert(t, tree, n, entry, type,
 294                                                combine_notes);
 295                }
 296                break;
 297        }
 298
 299        /* non-matching leaf_node */
 300        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 301               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 302        if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
 303                free(entry);
 304                return 0;
 305        }
 306        new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
 307        ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
 308                               combine_notes);
 309        if (ret)
 310                return ret;
 311        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 312        return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
 313}
 314
 315/* Free the entire notes data contained in the given tree */
 316static void note_tree_free(struct int_node *tree)
 317{
 318        unsigned int i;
 319        for (i = 0; i < 16; i++) {
 320                void *p = tree->a[i];
 321                switch (GET_PTR_TYPE(p)) {
 322                case PTR_TYPE_INTERNAL:
 323                        note_tree_free(CLR_PTR_TYPE(p));
 324                        /* fall through */
 325                case PTR_TYPE_NOTE:
 326                case PTR_TYPE_SUBTREE:
 327                        free(CLR_PTR_TYPE(p));
 328                }
 329        }
 330}
 331
 332/*
 333 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 334 * - hex      - Partial SHA1 segment in ASCII hex format
 335 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 336 * - sha1     - Partial SHA1 value is written here
 337 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 338 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 339 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 340 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 341 */
 342static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 343                unsigned char *sha1, unsigned int sha1_len)
 344{
 345        unsigned int i, len = hex_len >> 1;
 346        if (hex_len % 2 != 0 || len > sha1_len)
 347                return -1;
 348        for (i = 0; i < len; i++) {
 349                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 350                if (val & ~0xff)
 351                        return -1;
 352                *sha1++ = val;
 353                hex += 2;
 354        }
 355        for (; i < sha1_len; i++)
 356                *sha1++ = 0;
 357        return len;
 358}
 359
 360static int non_note_cmp(const struct non_note *a, const struct non_note *b)
 361{
 362        return strcmp(a->path, b->path);
 363}
 364
 365/* note: takes ownership of path string */
 366static void add_non_note(struct notes_tree *t, char *path,
 367                unsigned int mode, const unsigned char *sha1)
 368{
 369        struct non_note *p = t->prev_non_note, *n;
 370        n = (struct non_note *) xmalloc(sizeof(struct non_note));
 371        n->next = NULL;
 372        n->path = path;
 373        n->mode = mode;
 374        hashcpy(n->sha1, sha1);
 375        t->prev_non_note = n;
 376
 377        if (!t->first_non_note) {
 378                t->first_non_note = n;
 379                return;
 380        }
 381
 382        if (non_note_cmp(p, n) < 0)
 383                ; /* do nothing  */
 384        else if (non_note_cmp(t->first_non_note, n) <= 0)
 385                p = t->first_non_note;
 386        else {
 387                /* n sorts before t->first_non_note */
 388                n->next = t->first_non_note;
 389                t->first_non_note = n;
 390                return;
 391        }
 392
 393        /* n sorts equal or after p */
 394        while (p->next && non_note_cmp(p->next, n) <= 0)
 395                p = p->next;
 396
 397        if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
 398                assert(strcmp(p->path, n->path) == 0);
 399                p->mode = n->mode;
 400                hashcpy(p->sha1, n->sha1);
 401                free(n);
 402                t->prev_non_note = p;
 403                return;
 404        }
 405
 406        /* n sorts between p and p->next */
 407        n->next = p->next;
 408        p->next = n;
 409}
 410
 411static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 412                struct int_node *node, unsigned int n)
 413{
 414        unsigned char object_sha1[20];
 415        unsigned int prefix_len;
 416        void *buf;
 417        struct tree_desc desc;
 418        struct name_entry entry;
 419        int len, path_len;
 420        unsigned char type;
 421        struct leaf_node *l;
 422
 423        buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 424        if (!buf)
 425                die("Could not read %s for notes-index",
 426                     sha1_to_hex(subtree->val_sha1));
 427
 428        prefix_len = subtree->key_sha1[19];
 429        assert(prefix_len * 2 >= n);
 430        memcpy(object_sha1, subtree->key_sha1, prefix_len);
 431        while (tree_entry(&desc, &entry)) {
 432                path_len = strlen(entry.path);
 433                len = get_sha1_hex_segment(entry.path, path_len,
 434                                object_sha1 + prefix_len, 20 - prefix_len);
 435                if (len < 0)
 436                        goto handle_non_note; /* entry.path is not a SHA1 */
 437                len += prefix_len;
 438
 439                /*
 440                 * If object SHA1 is complete (len == 20), assume note object
 441                 * If object SHA1 is incomplete (len < 20), and current
 442                 * component consists of 2 hex chars, assume note subtree
 443                 */
 444                if (len <= 20) {
 445                        type = PTR_TYPE_NOTE;
 446                        l = (struct leaf_node *)
 447                                xcalloc(1, sizeof(struct leaf_node));
 448                        hashcpy(l->key_sha1, object_sha1);
 449                        hashcpy(l->val_sha1, entry.sha1);
 450                        if (len < 20) {
 451                                if (!S_ISDIR(entry.mode) || path_len != 2)
 452                                        goto handle_non_note; /* not subtree */
 453                                l->key_sha1[19] = (unsigned char) len;
 454                                type = PTR_TYPE_SUBTREE;
 455                        }
 456                        if (note_tree_insert(t, node, n, l, type,
 457                                             combine_notes_concatenate))
 458                                die("Failed to load %s %s into notes tree "
 459                                    "from %s",
 460                                    type == PTR_TYPE_NOTE ? "note" : "subtree",
 461                                    sha1_to_hex(l->key_sha1), t->ref);
 462                }
 463                continue;
 464
 465handle_non_note:
 466                /*
 467                 * Determine full path for this non-note entry:
 468                 * The filename is already found in entry.path, but the
 469                 * directory part of the path must be deduced from the subtree
 470                 * containing this entry. We assume here that the overall notes
 471                 * tree follows a strict byte-based progressive fanout
 472                 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
 473                 * e.g. 4/36 fanout). This means that if a non-note is found at
 474                 * path "dead/beef", the following code will register it as
 475                 * being found on "de/ad/beef".
 476                 * On the other hand, if you use such non-obvious non-note
 477                 * paths in the middle of a notes tree, you deserve what's
 478                 * coming to you ;). Note that for non-notes that are not
 479                 * SHA1-like at the top level, there will be no problems.
 480                 *
 481                 * To conclude, it is strongly advised to make sure non-notes
 482                 * have at least one non-hex character in the top-level path
 483                 * component.
 484                 */
 485                {
 486                        struct strbuf non_note_path = STRBUF_INIT;
 487                        const char *q = sha1_to_hex(subtree->key_sha1);
 488                        int i;
 489                        for (i = 0; i < prefix_len; i++) {
 490                                strbuf_addch(&non_note_path, *q++);
 491                                strbuf_addch(&non_note_path, *q++);
 492                                strbuf_addch(&non_note_path, '/');
 493                        }
 494                        strbuf_addstr(&non_note_path, entry.path);
 495                        add_non_note(t, strbuf_detach(&non_note_path, NULL),
 496                                     entry.mode, entry.sha1);
 497                }
 498        }
 499        free(buf);
 500}
 501
 502/*
 503 * Determine optimal on-disk fanout for this part of the notes tree
 504 *
 505 * Given a (sub)tree and the level in the internal tree structure, determine
 506 * whether or not the given existing fanout should be expanded for this
 507 * (sub)tree.
 508 *
 509 * Values of the 'fanout' variable:
 510 * - 0: No fanout (all notes are stored directly in the root notes tree)
 511 * - 1: 2/38 fanout
 512 * - 2: 2/2/36 fanout
 513 * - 3: 2/2/2/34 fanout
 514 * etc.
 515 */
 516static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 517                unsigned char fanout)
 518{
 519        /*
 520         * The following is a simple heuristic that works well in practice:
 521         * For each even-numbered 16-tree level (remember that each on-disk
 522         * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 523         * entries at that tree level. If all of them are either int_nodes or
 524         * subtree entries, then there are likely plenty of notes below this
 525         * level, so we return an incremented fanout.
 526         */
 527        unsigned int i;
 528        if ((n % 2) || (n > 2 * fanout))
 529                return fanout;
 530        for (i = 0; i < 16; i++) {
 531                switch (GET_PTR_TYPE(tree->a[i])) {
 532                case PTR_TYPE_SUBTREE:
 533                case PTR_TYPE_INTERNAL:
 534                        continue;
 535                default:
 536                        return fanout;
 537                }
 538        }
 539        return fanout + 1;
 540}
 541
 542static void construct_path_with_fanout(const unsigned char *sha1,
 543                unsigned char fanout, char *path)
 544{
 545        unsigned int i = 0, j = 0;
 546        const char *hex_sha1 = sha1_to_hex(sha1);
 547        assert(fanout < 20);
 548        while (fanout) {
 549                path[i++] = hex_sha1[j++];
 550                path[i++] = hex_sha1[j++];
 551                path[i++] = '/';
 552                fanout--;
 553        }
 554        strcpy(path + i, hex_sha1 + j);
 555}
 556
 557static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
 558                unsigned char n, unsigned char fanout, int flags,
 559                each_note_fn fn, void *cb_data)
 560{
 561        unsigned int i;
 562        void *p;
 563        int ret = 0;
 564        struct leaf_node *l;
 565        static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
 566
 567        fanout = determine_fanout(tree, n, fanout);
 568        for (i = 0; i < 16; i++) {
 569redo:
 570                p = tree->a[i];
 571                switch (GET_PTR_TYPE(p)) {
 572                case PTR_TYPE_INTERNAL:
 573                        /* recurse into int_node */
 574                        ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
 575                                fanout, flags, fn, cb_data);
 576                        break;
 577                case PTR_TYPE_SUBTREE:
 578                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 579                        /*
 580                         * Subtree entries in the note tree represent parts of
 581                         * the note tree that have not yet been explored. There
 582                         * is a direct relationship between subtree entries at
 583                         * level 'n' in the tree, and the 'fanout' variable:
 584                         * Subtree entries at level 'n <= 2 * fanout' should be
 585                         * preserved, since they correspond exactly to a fanout
 586                         * directory in the on-disk structure. However, subtree
 587                         * entries at level 'n > 2 * fanout' should NOT be
 588                         * preserved, but rather consolidated into the above
 589                         * notes tree level. We achieve this by unconditionally
 590                         * unpacking subtree entries that exist below the
 591                         * threshold level at 'n = 2 * fanout'.
 592                         */
 593                        if (n <= 2 * fanout &&
 594                            flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 595                                /* invoke callback with subtree */
 596                                unsigned int path_len =
 597                                        l->key_sha1[19] * 2 + fanout;
 598                                assert(path_len < 40 + 19);
 599                                construct_path_with_fanout(l->key_sha1, fanout,
 600                                                           path);
 601                                /* Create trailing slash, if needed */
 602                                if (path[path_len - 1] != '/')
 603                                        path[path_len++] = '/';
 604                                path[path_len] = '\0';
 605                                ret = fn(l->key_sha1, l->val_sha1, path,
 606                                         cb_data);
 607                        }
 608                        if (n > fanout * 2 ||
 609                            !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 610                                /* unpack subtree and resume traversal */
 611                                tree->a[i] = NULL;
 612                                load_subtree(t, l, tree, n);
 613                                free(l);
 614                                goto redo;
 615                        }
 616                        break;
 617                case PTR_TYPE_NOTE:
 618                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 619                        construct_path_with_fanout(l->key_sha1, fanout, path);
 620                        ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
 621                        break;
 622                }
 623                if (ret)
 624                        return ret;
 625        }
 626        return 0;
 627}
 628
 629struct tree_write_stack {
 630        struct tree_write_stack *next;
 631        struct strbuf buf;
 632        char path[2]; /* path to subtree in next, if any */
 633};
 634
 635static inline int matches_tree_write_stack(struct tree_write_stack *tws,
 636                const char *full_path)
 637{
 638        return  full_path[0] == tws->path[0] &&
 639                full_path[1] == tws->path[1] &&
 640                full_path[2] == '/';
 641}
 642
 643static void write_tree_entry(struct strbuf *buf, unsigned int mode,
 644                const char *path, unsigned int path_len, const
 645                unsigned char *sha1)
 646{
 647        strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
 648        strbuf_add(buf, sha1, 20);
 649}
 650
 651static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
 652                const char *path)
 653{
 654        struct tree_write_stack *n;
 655        assert(!tws->next);
 656        assert(tws->path[0] == '\0' && tws->path[1] == '\0');
 657        n = (struct tree_write_stack *)
 658                xmalloc(sizeof(struct tree_write_stack));
 659        n->next = NULL;
 660        strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
 661        n->path[0] = n->path[1] = '\0';
 662        tws->next = n;
 663        tws->path[0] = path[0];
 664        tws->path[1] = path[1];
 665}
 666
 667static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
 668{
 669        int ret;
 670        struct tree_write_stack *n = tws->next;
 671        unsigned char s[20];
 672        if (n) {
 673                ret = tree_write_stack_finish_subtree(n);
 674                if (ret)
 675                        return ret;
 676                ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
 677                if (ret)
 678                        return ret;
 679                strbuf_release(&n->buf);
 680                free(n);
 681                tws->next = NULL;
 682                write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
 683                tws->path[0] = tws->path[1] = '\0';
 684        }
 685        return 0;
 686}
 687
 688static int write_each_note_helper(struct tree_write_stack *tws,
 689                const char *path, unsigned int mode,
 690                const unsigned char *sha1)
 691{
 692        size_t path_len = strlen(path);
 693        unsigned int n = 0;
 694        int ret;
 695
 696        /* Determine common part of tree write stack */
 697        while (tws && 3 * n < path_len &&
 698               matches_tree_write_stack(tws, path + 3 * n)) {
 699                n++;
 700                tws = tws->next;
 701        }
 702
 703        /* tws point to last matching tree_write_stack entry */
 704        ret = tree_write_stack_finish_subtree(tws);
 705        if (ret)
 706                return ret;
 707
 708        /* Start subtrees needed to satisfy path */
 709        while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
 710                tree_write_stack_init_subtree(tws, path + 3 * n);
 711                n++;
 712                tws = tws->next;
 713        }
 714
 715        /* There should be no more directory components in the given path */
 716        assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 717
 718        /* Finally add given entry to the current tree object */
 719        write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
 720                         sha1);
 721
 722        return 0;
 723}
 724
 725struct write_each_note_data {
 726        struct tree_write_stack *root;
 727        struct non_note *next_non_note;
 728};
 729
 730static int write_each_non_note_until(const char *note_path,
 731                struct write_each_note_data *d)
 732{
 733        struct non_note *n = d->next_non_note;
 734        int cmp = 0, ret;
 735        while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
 736                if (note_path && cmp == 0)
 737                        ; /* do nothing, prefer note to non-note */
 738                else {
 739                        ret = write_each_note_helper(d->root, n->path, n->mode,
 740                                                     n->sha1);
 741                        if (ret)
 742                                return ret;
 743                }
 744                n = n->next;
 745        }
 746        d->next_non_note = n;
 747        return 0;
 748}
 749
 750static int write_each_note(const unsigned char *object_sha1,
 751                const unsigned char *note_sha1, char *note_path,
 752                void *cb_data)
 753{
 754        struct write_each_note_data *d =
 755                (struct write_each_note_data *) cb_data;
 756        size_t note_path_len = strlen(note_path);
 757        unsigned int mode = 0100644;
 758
 759        if (note_path[note_path_len - 1] == '/') {
 760                /* subtree entry */
 761                note_path_len--;
 762                note_path[note_path_len] = '\0';
 763                mode = 040000;
 764        }
 765        assert(note_path_len <= 40 + 19);
 766
 767        /* Weave non-note entries into note entries */
 768        return  write_each_non_note_until(note_path, d) ||
 769                write_each_note_helper(d->root, note_path, mode, note_sha1);
 770}
 771
 772struct note_delete_list {
 773        struct note_delete_list *next;
 774        const unsigned char *sha1;
 775};
 776
 777static int prune_notes_helper(const unsigned char *object_sha1,
 778                const unsigned char *note_sha1, char *note_path,
 779                void *cb_data)
 780{
 781        struct note_delete_list **l = (struct note_delete_list **) cb_data;
 782        struct note_delete_list *n;
 783
 784        if (has_sha1_file(object_sha1))
 785                return 0; /* nothing to do for this note */
 786
 787        /* failed to find object => prune this note */
 788        n = (struct note_delete_list *) xmalloc(sizeof(*n));
 789        n->next = *l;
 790        n->sha1 = object_sha1;
 791        *l = n;
 792        return 0;
 793}
 794
 795int combine_notes_concatenate(unsigned char *cur_sha1,
 796                const unsigned char *new_sha1)
 797{
 798        char *cur_msg = NULL, *new_msg = NULL, *buf;
 799        unsigned long cur_len, new_len, buf_len;
 800        enum object_type cur_type, new_type;
 801        int ret;
 802
 803        /* read in both note blob objects */
 804        if (!is_null_sha1(new_sha1))
 805                new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 806        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 807                free(new_msg);
 808                return 0;
 809        }
 810        if (!is_null_sha1(cur_sha1))
 811                cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 812        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 813                free(cur_msg);
 814                free(new_msg);
 815                hashcpy(cur_sha1, new_sha1);
 816                return 0;
 817        }
 818
 819        /* we will separate the notes by two newlines anyway */
 820        if (cur_msg[cur_len - 1] == '\n')
 821                cur_len--;
 822
 823        /* concatenate cur_msg and new_msg into buf */
 824        buf_len = cur_len + 2 + new_len;
 825        buf = (char *) xmalloc(buf_len);
 826        memcpy(buf, cur_msg, cur_len);
 827        buf[cur_len] = '\n';
 828        buf[cur_len + 1] = '\n';
 829        memcpy(buf + cur_len + 2, new_msg, new_len);
 830        free(cur_msg);
 831        free(new_msg);
 832
 833        /* create a new blob object from buf */
 834        ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
 835        free(buf);
 836        return ret;
 837}
 838
 839int combine_notes_overwrite(unsigned char *cur_sha1,
 840                const unsigned char *new_sha1)
 841{
 842        hashcpy(cur_sha1, new_sha1);
 843        return 0;
 844}
 845
 846int combine_notes_ignore(unsigned char *cur_sha1,
 847                const unsigned char *new_sha1)
 848{
 849        return 0;
 850}
 851
 852/*
 853 * Add the lines from the named object to list, with trailing
 854 * newlines removed.
 855 */
 856static int string_list_add_note_lines(struct string_list *list,
 857                                      const unsigned char *sha1)
 858{
 859        char *data;
 860        unsigned long len;
 861        enum object_type t;
 862
 863        if (is_null_sha1(sha1))
 864                return 0;
 865
 866        /* read_sha1_file NUL-terminates */
 867        data = read_sha1_file(sha1, &t, &len);
 868        if (t != OBJ_BLOB || !data || !len) {
 869                free(data);
 870                return t != OBJ_BLOB || !data;
 871        }
 872
 873        /*
 874         * If the last line of the file is EOL-terminated, this will
 875         * add an empty string to the list.  But it will be removed
 876         * later, along with any empty strings that came from empty
 877         * lines within the file.
 878         */
 879        string_list_split(list, data, '\n', -1);
 880        free(data);
 881        return 0;
 882}
 883
 884static int string_list_join_lines_helper(struct string_list_item *item,
 885                                         void *cb_data)
 886{
 887        struct strbuf *buf = cb_data;
 888        strbuf_addstr(buf, item->string);
 889        strbuf_addch(buf, '\n');
 890        return 0;
 891}
 892
 893int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
 894                const unsigned char *new_sha1)
 895{
 896        struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
 897        struct strbuf buf = STRBUF_INIT;
 898        int ret = 1;
 899
 900        /* read both note blob objects into unique_lines */
 901        if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
 902                goto out;
 903        if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
 904                goto out;
 905        string_list_remove_empty_items(&sort_uniq_list, 0);
 906        string_list_sort(&sort_uniq_list);
 907        string_list_remove_duplicates(&sort_uniq_list, 0);
 908
 909        /* create a new blob object from sort_uniq_list */
 910        if (for_each_string_list(&sort_uniq_list,
 911                                 string_list_join_lines_helper, &buf))
 912                goto out;
 913
 914        ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
 915
 916out:
 917        strbuf_release(&buf);
 918        string_list_clear(&sort_uniq_list, 0);
 919        return ret;
 920}
 921
 922static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
 923                                   int flag, void *cb)
 924{
 925        struct string_list *refs = cb;
 926        if (!unsorted_string_list_has_string(refs, refname))
 927                string_list_append(refs, refname);
 928        return 0;
 929}
 930
 931/*
 932 * The list argument must have strdup_strings set on it.
 933 */
 934void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
 935{
 936        assert(list->strdup_strings);
 937        if (has_glob_specials(glob)) {
 938                for_each_glob_ref(string_list_add_one_ref, glob, list);
 939        } else {
 940                unsigned char sha1[20];
 941                if (get_sha1(glob, sha1))
 942                        warning("notes ref %s is invalid", glob);
 943                if (!unsorted_string_list_has_string(list, glob))
 944                        string_list_append(list, glob);
 945        }
 946}
 947
 948void string_list_add_refs_from_colon_sep(struct string_list *list,
 949                                         const char *globs)
 950{
 951        struct string_list split = STRING_LIST_INIT_NODUP;
 952        char *globs_copy = xstrdup(globs);
 953        int i;
 954
 955        string_list_split_in_place(&split, globs_copy, ':', -1);
 956        string_list_remove_empty_items(&split, 0);
 957
 958        for (i = 0; i < split.nr; i++)
 959                string_list_add_refs_by_glob(list, split.items[i].string);
 960
 961        string_list_clear(&split, 0);
 962        free(globs_copy);
 963}
 964
 965static int notes_display_config(const char *k, const char *v, void *cb)
 966{
 967        int *load_refs = cb;
 968
 969        if (*load_refs && !strcmp(k, "notes.displayref")) {
 970                if (!v)
 971                        config_error_nonbool(k);
 972                string_list_add_refs_by_glob(&display_notes_refs, v);
 973        }
 974
 975        return 0;
 976}
 977
 978const char *default_notes_ref(void)
 979{
 980        const char *notes_ref = NULL;
 981        if (!notes_ref)
 982                notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 983        if (!notes_ref)
 984                notes_ref = notes_ref_name; /* value of core.notesRef config */
 985        if (!notes_ref)
 986                notes_ref = GIT_NOTES_DEFAULT_REF;
 987        return notes_ref;
 988}
 989
 990void init_notes(struct notes_tree *t, const char *notes_ref,
 991                combine_notes_fn combine_notes, int flags)
 992{
 993        unsigned char sha1[20], object_sha1[20];
 994        unsigned mode;
 995        struct leaf_node root_tree;
 996
 997        if (!t)
 998                t = &default_notes_tree;
 999        assert(!t->initialized);
1000
1001        if (!notes_ref)
1002                notes_ref = default_notes_ref();
1003
1004        if (!combine_notes)
1005                combine_notes = combine_notes_concatenate;
1006
1007        t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1008        t->first_non_note = NULL;
1009        t->prev_non_note = NULL;
1010        t->ref = xstrdup_or_null(notes_ref);
1011        t->combine_notes = combine_notes;
1012        t->initialized = 1;
1013        t->dirty = 0;
1014
1015        if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1016            read_ref(notes_ref, object_sha1))
1017                return;
1018        if (get_tree_entry(object_sha1, "", sha1, &mode))
1019                die("Failed to read notes tree referenced by %s (%s)",
1020                    notes_ref, sha1_to_hex(object_sha1));
1021
1022        hashclr(root_tree.key_sha1);
1023        hashcpy(root_tree.val_sha1, sha1);
1024        load_subtree(t, &root_tree, t->root, 0);
1025}
1026
1027struct notes_tree **load_notes_trees(struct string_list *refs)
1028{
1029        struct string_list_item *item;
1030        int counter = 0;
1031        struct notes_tree **trees;
1032        trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *));
1033        for_each_string_list_item(item, refs) {
1034                struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1035                init_notes(t, item->string, combine_notes_ignore, 0);
1036                trees[counter++] = t;
1037        }
1038        trees[counter] = NULL;
1039        return trees;
1040}
1041
1042void init_display_notes(struct display_notes_opt *opt)
1043{
1044        char *display_ref_env;
1045        int load_config_refs = 0;
1046        display_notes_refs.strdup_strings = 1;
1047
1048        assert(!display_notes_trees);
1049
1050        if (!opt || opt->use_default_notes > 0 ||
1051            (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1052                string_list_append(&display_notes_refs, default_notes_ref());
1053                display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1054                if (display_ref_env) {
1055                        string_list_add_refs_from_colon_sep(&display_notes_refs,
1056                                                            display_ref_env);
1057                        load_config_refs = 0;
1058                } else
1059                        load_config_refs = 1;
1060        }
1061
1062        git_config(notes_display_config, &load_config_refs);
1063
1064        if (opt) {
1065                struct string_list_item *item;
1066                for_each_string_list_item(item, &opt->extra_notes_refs)
1067                        string_list_add_refs_by_glob(&display_notes_refs,
1068                                                     item->string);
1069        }
1070
1071        display_notes_trees = load_notes_trees(&display_notes_refs);
1072        string_list_clear(&display_notes_refs, 0);
1073}
1074
1075int add_note(struct notes_tree *t, const unsigned char *object_sha1,
1076                const unsigned char *note_sha1, combine_notes_fn combine_notes)
1077{
1078        struct leaf_node *l;
1079
1080        if (!t)
1081                t = &default_notes_tree;
1082        assert(t->initialized);
1083        t->dirty = 1;
1084        if (!combine_notes)
1085                combine_notes = t->combine_notes;
1086        l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1087        hashcpy(l->key_sha1, object_sha1);
1088        hashcpy(l->val_sha1, note_sha1);
1089        return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1090}
1091
1092int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1093{
1094        struct leaf_node l;
1095
1096        if (!t)
1097                t = &default_notes_tree;
1098        assert(t->initialized);
1099        hashcpy(l.key_sha1, object_sha1);
1100        hashclr(l.val_sha1);
1101        note_tree_remove(t, t->root, 0, &l);
1102        if (is_null_sha1(l.val_sha1)) /* no note was removed */
1103                return 1;
1104        t->dirty = 1;
1105        return 0;
1106}
1107
1108const unsigned char *get_note(struct notes_tree *t,
1109                const unsigned char *object_sha1)
1110{
1111        struct leaf_node *found;
1112
1113        if (!t)
1114                t = &default_notes_tree;
1115        assert(t->initialized);
1116        found = note_tree_find(t, t->root, 0, object_sha1);
1117        return found ? found->val_sha1 : NULL;
1118}
1119
1120int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1121                void *cb_data)
1122{
1123        if (!t)
1124                t = &default_notes_tree;
1125        assert(t->initialized);
1126        return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1127}
1128
1129int write_notes_tree(struct notes_tree *t, unsigned char *result)
1130{
1131        struct tree_write_stack root;
1132        struct write_each_note_data cb_data;
1133        int ret;
1134
1135        if (!t)
1136                t = &default_notes_tree;
1137        assert(t->initialized);
1138
1139        /* Prepare for traversal of current notes tree */
1140        root.next = NULL; /* last forward entry in list is grounded */
1141        strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1142        root.path[0] = root.path[1] = '\0';
1143        cb_data.root = &root;
1144        cb_data.next_non_note = t->first_non_note;
1145
1146        /* Write tree objects representing current notes tree */
1147        ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1148                                FOR_EACH_NOTE_YIELD_SUBTREES,
1149                        write_each_note, &cb_data) ||
1150                write_each_non_note_until(NULL, &cb_data) ||
1151                tree_write_stack_finish_subtree(&root) ||
1152                write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1153        strbuf_release(&root.buf);
1154        return ret;
1155}
1156
1157void prune_notes(struct notes_tree *t, int flags)
1158{
1159        struct note_delete_list *l = NULL;
1160
1161        if (!t)
1162                t = &default_notes_tree;
1163        assert(t->initialized);
1164
1165        for_each_note(t, 0, prune_notes_helper, &l);
1166
1167        while (l) {
1168                if (flags & NOTES_PRUNE_VERBOSE)
1169                        printf("%s\n", sha1_to_hex(l->sha1));
1170                if (!(flags & NOTES_PRUNE_DRYRUN))
1171                        remove_note(t, l->sha1);
1172                l = l->next;
1173        }
1174}
1175
1176void free_notes(struct notes_tree *t)
1177{
1178        if (!t)
1179                t = &default_notes_tree;
1180        if (t->root)
1181                note_tree_free(t->root);
1182        free(t->root);
1183        while (t->first_non_note) {
1184                t->prev_non_note = t->first_non_note->next;
1185                free(t->first_non_note->path);
1186                free(t->first_non_note);
1187                t->first_non_note = t->prev_non_note;
1188        }
1189        free(t->ref);
1190        memset(t, 0, sizeof(struct notes_tree));
1191}
1192
1193/*
1194 * Fill the given strbuf with the notes associated with the given object.
1195 *
1196 * If the given notes_tree structure is not initialized, it will be auto-
1197 * initialized to the default value (see documentation for init_notes() above).
1198 * If the given notes_tree is NULL, the internal/default notes_tree will be
1199 * used instead.
1200 *
1201 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1202 * for human consumption.
1203 */
1204static void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1205                        struct strbuf *sb, const char *output_encoding, int raw)
1206{
1207        static const char utf8[] = "utf-8";
1208        const unsigned char *sha1;
1209        char *msg, *msg_p;
1210        unsigned long linelen, msglen;
1211        enum object_type type;
1212
1213        if (!t)
1214                t = &default_notes_tree;
1215        if (!t->initialized)
1216                init_notes(t, NULL, NULL, 0);
1217
1218        sha1 = get_note(t, object_sha1);
1219        if (!sha1)
1220                return;
1221
1222        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) {
1223                free(msg);
1224                return;
1225        }
1226
1227        if (output_encoding && *output_encoding &&
1228            !is_encoding_utf8(output_encoding)) {
1229                char *reencoded = reencode_string(msg, output_encoding, utf8);
1230                if (reencoded) {
1231                        free(msg);
1232                        msg = reencoded;
1233                        msglen = strlen(msg);
1234                }
1235        }
1236
1237        /* we will end the annotation by a newline anyway */
1238        if (msglen && msg[msglen - 1] == '\n')
1239                msglen--;
1240
1241        if (!raw) {
1242                const char *ref = t->ref;
1243                if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1244                        strbuf_addstr(sb, "\nNotes:\n");
1245                } else {
1246                        if (starts_with(ref, "refs/"))
1247                                ref += 5;
1248                        if (starts_with(ref, "notes/"))
1249                                ref += 6;
1250                        strbuf_addf(sb, "\nNotes (%s):\n", ref);
1251                }
1252        }
1253
1254        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1255                linelen = strchrnul(msg_p, '\n') - msg_p;
1256
1257                if (!raw)
1258                        strbuf_addstr(sb, "    ");
1259                strbuf_add(sb, msg_p, linelen);
1260                strbuf_addch(sb, '\n');
1261        }
1262
1263        free(msg);
1264}
1265
1266void format_display_notes(const unsigned char *object_sha1,
1267                          struct strbuf *sb, const char *output_encoding, int raw)
1268{
1269        int i;
1270        assert(display_notes_trees);
1271        for (i = 0; display_notes_trees[i]; i++)
1272                format_note(display_notes_trees[i], object_sha1, sb,
1273                            output_encoding, raw);
1274}
1275
1276int copy_note(struct notes_tree *t,
1277              const unsigned char *from_obj, const unsigned char *to_obj,
1278              int force, combine_notes_fn combine_notes)
1279{
1280        const unsigned char *note = get_note(t, from_obj);
1281        const unsigned char *existing_note = get_note(t, to_obj);
1282
1283        if (!force && existing_note)
1284                return 1;
1285
1286        if (note)
1287                return add_note(t, to_obj, note, combine_notes);
1288        else if (existing_note)
1289                return add_note(t, to_obj, null_sha1, combine_notes);
1290
1291        return 0;
1292}
1293
1294void expand_notes_ref(struct strbuf *sb)
1295{
1296        if (starts_with(sb->buf, "refs/notes/"))
1297                return; /* we're happy */
1298        else if (starts_with(sb->buf, "notes/"))
1299                strbuf_insert(sb, 0, "refs/", 5);
1300        else
1301                strbuf_insert(sb, 0, "refs/notes/", 11);
1302}