refs / ref-cache.con commit completion: add --option completion for most builtin commands (9f642a7)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
   8{
   9        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  10        dir->entries[dir->nr++] = entry;
  11        /* optimize for the case that entries are added in order */
  12        if (dir->nr == 1 ||
  13            (dir->nr == dir->sorted + 1 &&
  14             strcmp(dir->entries[dir->nr - 2]->name,
  15                    dir->entries[dir->nr - 1]->name) < 0))
  16                dir->sorted = dir->nr;
  17}
  18
  19struct ref_dir *get_ref_dir(struct ref_entry *entry)
  20{
  21        struct ref_dir *dir;
  22        assert(entry->flag & REF_DIR);
  23        dir = &entry->u.subdir;
  24        if (entry->flag & REF_INCOMPLETE) {
  25                if (!dir->cache->fill_ref_dir)
  26                        die("BUG: incomplete ref_store without fill_ref_dir function");
  27
  28                dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
  29                entry->flag &= ~REF_INCOMPLETE;
  30        }
  31        return dir;
  32}
  33
  34struct ref_entry *create_ref_entry(const char *refname,
  35                                   const struct object_id *oid, int flag)
  36{
  37        struct ref_entry *ref;
  38
  39        FLEX_ALLOC_STR(ref, name, refname);
  40        oidcpy(&ref->u.value.oid, oid);
  41        ref->flag = flag;
  42        return ref;
  43}
  44
  45struct ref_cache *create_ref_cache(struct ref_store *refs,
  46                                   fill_ref_dir_fn *fill_ref_dir)
  47{
  48        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  49
  50        ret->ref_store = refs;
  51        ret->fill_ref_dir = fill_ref_dir;
  52        ret->root = create_dir_entry(ret, "", 0, 1);
  53        return ret;
  54}
  55
  56static void clear_ref_dir(struct ref_dir *dir);
  57
  58static void free_ref_entry(struct ref_entry *entry)
  59{
  60        if (entry->flag & REF_DIR) {
  61                /*
  62                 * Do not use get_ref_dir() here, as that might
  63                 * trigger the reading of loose refs.
  64                 */
  65                clear_ref_dir(&entry->u.subdir);
  66        }
  67        free(entry);
  68}
  69
  70void free_ref_cache(struct ref_cache *cache)
  71{
  72        free_ref_entry(cache->root);
  73        free(cache);
  74}
  75
  76/*
  77 * Clear and free all entries in dir, recursively.
  78 */
  79static void clear_ref_dir(struct ref_dir *dir)
  80{
  81        int i;
  82        for (i = 0; i < dir->nr; i++)
  83                free_ref_entry(dir->entries[i]);
  84        FREE_AND_NULL(dir->entries);
  85        dir->sorted = dir->nr = dir->alloc = 0;
  86}
  87
  88struct ref_entry *create_dir_entry(struct ref_cache *cache,
  89                                   const char *dirname, size_t len,
  90                                   int incomplete)
  91{
  92        struct ref_entry *direntry;
  93
  94        FLEX_ALLOC_MEM(direntry, name, dirname, len);
  95        direntry->u.subdir.cache = cache;
  96        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
  97        return direntry;
  98}
  99
 100static int ref_entry_cmp(const void *a, const void *b)
 101{
 102        struct ref_entry *one = *(struct ref_entry **)a;
 103        struct ref_entry *two = *(struct ref_entry **)b;
 104        return strcmp(one->name, two->name);
 105}
 106
 107static void sort_ref_dir(struct ref_dir *dir);
 108
 109struct string_slice {
 110        size_t len;
 111        const char *str;
 112};
 113
 114static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 115{
 116        const struct string_slice *key = key_;
 117        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 118        int cmp = strncmp(key->str, ent->name, key->len);
 119        if (cmp)
 120                return cmp;
 121        return '\0' - (unsigned char)ent->name[key->len];
 122}
 123
 124int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 125{
 126        struct ref_entry **r;
 127        struct string_slice key;
 128
 129        if (refname == NULL || !dir->nr)
 130                return -1;
 131
 132        sort_ref_dir(dir);
 133        key.len = len;
 134        key.str = refname;
 135        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 136                    ref_entry_cmp_sslice);
 137
 138        if (r == NULL)
 139                return -1;
 140
 141        return r - dir->entries;
 142}
 143
 144/*
 145 * Search for a directory entry directly within dir (without
 146 * recursing).  Sort dir if necessary.  subdirname must be a directory
 147 * name (i.e., end in '/').  If mkdir is set, then create the
 148 * directory if it is missing; otherwise, return NULL if the desired
 149 * directory cannot be found.  dir must already be complete.
 150 */
 151static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 152                                         const char *subdirname, size_t len,
 153                                         int mkdir)
 154{
 155        int entry_index = search_ref_dir(dir, subdirname, len);
 156        struct ref_entry *entry;
 157        if (entry_index == -1) {
 158                if (!mkdir)
 159                        return NULL;
 160                /*
 161                 * Since dir is complete, the absence of a subdir
 162                 * means that the subdir really doesn't exist;
 163                 * therefore, create an empty record for it but mark
 164                 * the record complete.
 165                 */
 166                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 167                add_entry_to_dir(dir, entry);
 168        } else {
 169                entry = dir->entries[entry_index];
 170        }
 171        return get_ref_dir(entry);
 172}
 173
 174/*
 175 * If refname is a reference name, find the ref_dir within the dir
 176 * tree that should hold refname. If refname is a directory name
 177 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
 178 * represent the top-level directory and must already be complete.
 179 * Sort ref_dirs and recurse into subdirectories as necessary. If
 180 * mkdir is set, then create any missing directories; otherwise,
 181 * return NULL if the desired directory cannot be found.
 182 */
 183static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 184                                           const char *refname, int mkdir)
 185{
 186        const char *slash;
 187        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 188                size_t dirnamelen = slash - refname + 1;
 189                struct ref_dir *subdir;
 190                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 191                if (!subdir) {
 192                        dir = NULL;
 193                        break;
 194                }
 195                dir = subdir;
 196        }
 197
 198        return dir;
 199}
 200
 201struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 202{
 203        int entry_index;
 204        struct ref_entry *entry;
 205        dir = find_containing_dir(dir, refname, 0);
 206        if (!dir)
 207                return NULL;
 208        entry_index = search_ref_dir(dir, refname, strlen(refname));
 209        if (entry_index == -1)
 210                return NULL;
 211        entry = dir->entries[entry_index];
 212        return (entry->flag & REF_DIR) ? NULL : entry;
 213}
 214
 215int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 216{
 217        int refname_len = strlen(refname);
 218        int entry_index;
 219        struct ref_entry *entry;
 220        int is_dir = refname[refname_len - 1] == '/';
 221        if (is_dir) {
 222                /*
 223                 * refname represents a reference directory.  Remove
 224                 * the trailing slash; otherwise we will get the
 225                 * directory *representing* refname rather than the
 226                 * one *containing* it.
 227                 */
 228                char *dirname = xmemdupz(refname, refname_len - 1);
 229                dir = find_containing_dir(dir, dirname, 0);
 230                free(dirname);
 231        } else {
 232                dir = find_containing_dir(dir, refname, 0);
 233        }
 234        if (!dir)
 235                return -1;
 236        entry_index = search_ref_dir(dir, refname, refname_len);
 237        if (entry_index == -1)
 238                return -1;
 239        entry = dir->entries[entry_index];
 240
 241        memmove(&dir->entries[entry_index],
 242                &dir->entries[entry_index + 1],
 243                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 244                );
 245        dir->nr--;
 246        if (dir->sorted > entry_index)
 247                dir->sorted--;
 248        free_ref_entry(entry);
 249        return dir->nr;
 250}
 251
 252int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 253{
 254        dir = find_containing_dir(dir, ref->name, 1);
 255        if (!dir)
 256                return -1;
 257        add_entry_to_dir(dir, ref);
 258        return 0;
 259}
 260
 261/*
 262 * Emit a warning and return true iff ref1 and ref2 have the same name
 263 * and the same oid. Die if they have the same name but different
 264 * oids.
 265 */
 266static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 267{
 268        if (strcmp(ref1->name, ref2->name))
 269                return 0;
 270
 271        /* Duplicate name; make sure that they don't conflict: */
 272
 273        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 274                /* This is impossible by construction */
 275                die("Reference directory conflict: %s", ref1->name);
 276
 277        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 278                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 279
 280        warning("Duplicated ref: %s", ref1->name);
 281        return 1;
 282}
 283
 284/*
 285 * Sort the entries in dir non-recursively (if they are not already
 286 * sorted) and remove any duplicate entries.
 287 */
 288static void sort_ref_dir(struct ref_dir *dir)
 289{
 290        int i, j;
 291        struct ref_entry *last = NULL;
 292
 293        /*
 294         * This check also prevents passing a zero-length array to qsort(),
 295         * which is a problem on some platforms.
 296         */
 297        if (dir->sorted == dir->nr)
 298                return;
 299
 300        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 301
 302        /* Remove any duplicates: */
 303        for (i = 0, j = 0; j < dir->nr; j++) {
 304                struct ref_entry *entry = dir->entries[j];
 305                if (last && is_dup_ref(last, entry))
 306                        free_ref_entry(entry);
 307                else
 308                        last = dir->entries[i++] = entry;
 309        }
 310        dir->sorted = dir->nr = i;
 311}
 312
 313enum prefix_state {
 314        /* All refs within the directory would match prefix: */
 315        PREFIX_CONTAINS_DIR,
 316
 317        /* Some, but not all, refs within the directory might match prefix: */
 318        PREFIX_WITHIN_DIR,
 319
 320        /* No refs within the directory could possibly match prefix: */
 321        PREFIX_EXCLUDES_DIR
 322};
 323
 324/*
 325 * Return a `prefix_state` constant describing the relationship
 326 * between the directory with the specified `dirname` and `prefix`.
 327 */
 328static enum prefix_state overlaps_prefix(const char *dirname,
 329                                         const char *prefix)
 330{
 331        while (*prefix && *dirname == *prefix) {
 332                dirname++;
 333                prefix++;
 334        }
 335        if (!*prefix)
 336                return PREFIX_CONTAINS_DIR;
 337        else if (!*dirname)
 338                return PREFIX_WITHIN_DIR;
 339        else
 340                return PREFIX_EXCLUDES_DIR;
 341}
 342
 343/*
 344 * Load all of the refs from `dir` (recursively) that could possibly
 345 * contain references matching `prefix` into our in-memory cache. If
 346 * `prefix` is NULL, prime unconditionally.
 347 */
 348static void prime_ref_dir(struct ref_dir *dir, const char *prefix)
 349{
 350        /*
 351         * The hard work of loading loose refs is done by get_ref_dir(), so we
 352         * just need to recurse through all of the sub-directories. We do not
 353         * even need to care about sorting, as traversal order does not matter
 354         * to us.
 355         */
 356        int i;
 357        for (i = 0; i < dir->nr; i++) {
 358                struct ref_entry *entry = dir->entries[i];
 359                if (!(entry->flag & REF_DIR)) {
 360                        /* Not a directory; no need to recurse. */
 361                } else if (!prefix) {
 362                        /* Recurse in any case: */
 363                        prime_ref_dir(get_ref_dir(entry), NULL);
 364                } else {
 365                        switch (overlaps_prefix(entry->name, prefix)) {
 366                        case PREFIX_CONTAINS_DIR:
 367                                /*
 368                                 * Recurse, and from here down we
 369                                 * don't have to check the prefix
 370                                 * anymore:
 371                                 */
 372                                prime_ref_dir(get_ref_dir(entry), NULL);
 373                                break;
 374                        case PREFIX_WITHIN_DIR:
 375                                prime_ref_dir(get_ref_dir(entry), prefix);
 376                                break;
 377                        case PREFIX_EXCLUDES_DIR:
 378                                /* No need to prime this directory. */
 379                                break;
 380                        }
 381                }
 382        }
 383}
 384
 385/*
 386 * A level in the reference hierarchy that is currently being iterated
 387 * through.
 388 */
 389struct cache_ref_iterator_level {
 390        /*
 391         * The ref_dir being iterated over at this level. The ref_dir
 392         * is sorted before being stored here.
 393         */
 394        struct ref_dir *dir;
 395
 396        enum prefix_state prefix_state;
 397
 398        /*
 399         * The index of the current entry within dir (which might
 400         * itself be a directory). If index == -1, then the iteration
 401         * hasn't yet begun. If index == dir->nr, then the iteration
 402         * through this level is over.
 403         */
 404        int index;
 405};
 406
 407/*
 408 * Represent an iteration through a ref_dir in the memory cache. The
 409 * iteration recurses through subdirectories.
 410 */
 411struct cache_ref_iterator {
 412        struct ref_iterator base;
 413
 414        /*
 415         * The number of levels currently on the stack. This is always
 416         * at least 1, because when it becomes zero the iteration is
 417         * ended and this struct is freed.
 418         */
 419        size_t levels_nr;
 420
 421        /* The number of levels that have been allocated on the stack */
 422        size_t levels_alloc;
 423
 424        /*
 425         * Only include references with this prefix in the iteration.
 426         * The prefix is matched textually, without regard for path
 427         * component boundaries.
 428         */
 429        const char *prefix;
 430
 431        /*
 432         * A stack of levels. levels[0] is the uppermost level that is
 433         * being iterated over in this iteration. (This is not
 434         * necessary the top level in the references hierarchy. If we
 435         * are iterating through a subtree, then levels[0] will hold
 436         * the ref_dir for that subtree, and subsequent levels will go
 437         * on from there.)
 438         */
 439        struct cache_ref_iterator_level *levels;
 440};
 441
 442static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 443{
 444        struct cache_ref_iterator *iter =
 445                (struct cache_ref_iterator *)ref_iterator;
 446
 447        while (1) {
 448                struct cache_ref_iterator_level *level =
 449                        &iter->levels[iter->levels_nr - 1];
 450                struct ref_dir *dir = level->dir;
 451                struct ref_entry *entry;
 452                enum prefix_state entry_prefix_state;
 453
 454                if (level->index == -1)
 455                        sort_ref_dir(dir);
 456
 457                if (++level->index == level->dir->nr) {
 458                        /* This level is exhausted; pop up a level */
 459                        if (--iter->levels_nr == 0)
 460                                return ref_iterator_abort(ref_iterator);
 461
 462                        continue;
 463                }
 464
 465                entry = dir->entries[level->index];
 466
 467                if (level->prefix_state == PREFIX_WITHIN_DIR) {
 468                        entry_prefix_state = overlaps_prefix(entry->name, iter->prefix);
 469                        if (entry_prefix_state == PREFIX_EXCLUDES_DIR)
 470                                continue;
 471                } else {
 472                        entry_prefix_state = level->prefix_state;
 473                }
 474
 475                if (entry->flag & REF_DIR) {
 476                        /* push down a level */
 477                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 478                                   iter->levels_alloc);
 479
 480                        level = &iter->levels[iter->levels_nr++];
 481                        level->dir = get_ref_dir(entry);
 482                        level->prefix_state = entry_prefix_state;
 483                        level->index = -1;
 484                } else {
 485                        iter->base.refname = entry->name;
 486                        iter->base.oid = &entry->u.value.oid;
 487                        iter->base.flags = entry->flag;
 488                        return ITER_OK;
 489                }
 490        }
 491}
 492
 493static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 494                                   struct object_id *peeled)
 495{
 496        return peel_object(ref_iterator->oid, peeled);
 497}
 498
 499static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 500{
 501        struct cache_ref_iterator *iter =
 502                (struct cache_ref_iterator *)ref_iterator;
 503
 504        free((char *)iter->prefix);
 505        free(iter->levels);
 506        base_ref_iterator_free(ref_iterator);
 507        return ITER_DONE;
 508}
 509
 510static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 511        cache_ref_iterator_advance,
 512        cache_ref_iterator_peel,
 513        cache_ref_iterator_abort
 514};
 515
 516struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
 517                                              const char *prefix,
 518                                              int prime_dir)
 519{
 520        struct ref_dir *dir;
 521        struct cache_ref_iterator *iter;
 522        struct ref_iterator *ref_iterator;
 523        struct cache_ref_iterator_level *level;
 524
 525        dir = get_ref_dir(cache->root);
 526        if (prefix && *prefix)
 527                dir = find_containing_dir(dir, prefix, 0);
 528        if (!dir)
 529                /* There's nothing to iterate over. */
 530                return empty_ref_iterator_begin();
 531
 532        if (prime_dir)
 533                prime_ref_dir(dir, prefix);
 534
 535        iter = xcalloc(1, sizeof(*iter));
 536        ref_iterator = &iter->base;
 537        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable, 1);
 538        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 539
 540        iter->levels_nr = 1;
 541        level = &iter->levels[0];
 542        level->index = -1;
 543        level->dir = dir;
 544
 545        if (prefix && *prefix) {
 546                iter->prefix = xstrdup(prefix);
 547                level->prefix_state = PREFIX_WITHIN_DIR;
 548        } else {
 549                level->prefix_state = PREFIX_CONTAINS_DIR;
 550        }
 551
 552        return ref_iterator;
 553}