refs / refs-internal.hon commit Merge branch 'jt/test-protocol-version' into jt/fetch-no-update-shallow-in-proto-v2 (a51423b)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4#include "cache.h"
   5#include "refs.h"
   6#include "iterator.h"
   7
   8struct ref_transaction;
   9
  10/*
  11 * Data structures and functions for the internal use of the refs
  12 * module. Code outside of the refs module should use only the public
  13 * functions defined in "refs.h", and should *not* include this file.
  14 */
  15
  16/*
  17 * The following flags can appear in `ref_update::flags`. Their
  18 * numerical values must not conflict with those of REF_NO_DEREF and
  19 * REF_FORCE_CREATE_REFLOG, which are also stored in
  20 * `ref_update::flags`.
  21 */
  22
  23/*
  24 * The reference should be updated to new_oid.
  25 */
  26#define REF_HAVE_NEW (1 << 2)
  27
  28/*
  29 * The current reference's value should be checked to make sure that
  30 * it agrees with old_oid.
  31 */
  32#define REF_HAVE_OLD (1 << 3)
  33
  34/*
  35 * Return the length of time to retry acquiring a loose reference lock
  36 * before giving up, in milliseconds:
  37 */
  38long get_files_ref_lock_timeout_ms(void);
  39
  40/*
  41 * Return true iff refname is minimally safe. "Safe" here means that
  42 * deleting a loose reference by this name will not do any damage, for
  43 * example by causing a file that is not a reference to be deleted.
  44 * This function does not check that the reference name is legal; for
  45 * that, use check_refname_format().
  46 *
  47 * A refname that starts with "refs/" is considered safe iff it
  48 * doesn't contain any "." or ".." components or consecutive '/'
  49 * characters, end with '/', or (on Windows) contain any '\'
  50 * characters. Names that do not start with "refs/" are considered
  51 * safe iff they consist entirely of upper case characters and '_'
  52 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  53 */
  54int refname_is_safe(const char *refname);
  55
  56/*
  57 * Helper function: return true if refname, which has the specified
  58 * oid and flags, can be resolved to an object in the database. If the
  59 * referred-to object does not exist, emit a warning and return false.
  60 */
  61int ref_resolves_to_object(const char *refname,
  62                           const struct object_id *oid,
  63                           unsigned int flags);
  64
  65enum peel_status {
  66        /* object was peeled successfully: */
  67        PEEL_PEELED = 0,
  68
  69        /*
  70         * object cannot be peeled because the named object (or an
  71         * object referred to by a tag in the peel chain), does not
  72         * exist.
  73         */
  74        PEEL_INVALID = -1,
  75
  76        /* object cannot be peeled because it is not a tag: */
  77        PEEL_NON_TAG = -2,
  78
  79        /* ref_entry contains no peeled value because it is a symref: */
  80        PEEL_IS_SYMREF = -3,
  81
  82        /*
  83         * ref_entry cannot be peeled because it is broken (i.e., the
  84         * symbolic reference cannot even be resolved to an object
  85         * name):
  86         */
  87        PEEL_BROKEN = -4
  88};
  89
  90/*
  91 * Peel the named object; i.e., if the object is a tag, resolve the
  92 * tag recursively until a non-tag is found.  If successful, store the
  93 * result to oid and return PEEL_PEELED.  If the object is not a tag
  94 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
  95 * and leave oid unchanged.
  96 */
  97enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
  98
  99/*
 100 * Copy the reflog message msg to sb while cleaning up the whitespaces.
 101 * Especially, convert LF to space, because reflog file is one line per entry.
 102 */
 103void copy_reflog_msg(struct strbuf *sb, const char *msg);
 104
 105/**
 106 * Information needed for a single ref update. Set new_oid to the new
 107 * value or to null_oid to delete the ref. To check the old value
 108 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
 109 * to the old value, or to null_oid to ensure the ref does not exist
 110 * before update.
 111 */
 112struct ref_update {
 113        /*
 114         * If (flags & REF_HAVE_NEW), set the reference to this value
 115         * (or delete it, if `new_oid` is `null_oid`).
 116         */
 117        struct object_id new_oid;
 118
 119        /*
 120         * If (flags & REF_HAVE_OLD), check that the reference
 121         * previously had this value (or didn't previously exist, if
 122         * `old_oid` is `null_oid`).
 123         */
 124        struct object_id old_oid;
 125
 126        /*
 127         * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
 128         * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
 129         */
 130        unsigned int flags;
 131
 132        void *backend_data;
 133        unsigned int type;
 134        char *msg;
 135
 136        /*
 137         * If this ref_update was split off of a symref update via
 138         * split_symref_update(), then this member points at that
 139         * update. This is used for two purposes:
 140         * 1. When reporting errors, we report the refname under which
 141         *    the update was originally requested.
 142         * 2. When we read the old value of this reference, we
 143         *    propagate it back to its parent update for recording in
 144         *    the latter's reflog.
 145         */
 146        struct ref_update *parent_update;
 147
 148        const char refname[FLEX_ARRAY];
 149};
 150
 151int refs_read_raw_ref(struct ref_store *ref_store,
 152                      const char *refname, struct object_id *oid,
 153                      struct strbuf *referent, unsigned int *type);
 154
 155/*
 156 * Write an error to `err` and return a nonzero value iff the same
 157 * refname appears multiple times in `refnames`. `refnames` must be
 158 * sorted on entry to this function.
 159 */
 160int ref_update_reject_duplicates(struct string_list *refnames,
 161                                 struct strbuf *err);
 162
 163/*
 164 * Add a ref_update with the specified properties to transaction, and
 165 * return a pointer to the new object. This function does not verify
 166 * that refname is well-formed. new_oid and old_oid are only
 167 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 168 * respectively, are set in flags.
 169 */
 170struct ref_update *ref_transaction_add_update(
 171                struct ref_transaction *transaction,
 172                const char *refname, unsigned int flags,
 173                const struct object_id *new_oid,
 174                const struct object_id *old_oid,
 175                const char *msg);
 176
 177/*
 178 * Transaction states.
 179 *
 180 * OPEN:   The transaction is initialized and new updates can still be
 181 *         added to it. An OPEN transaction can be prepared,
 182 *         committed, freed, or aborted (freeing and aborting an open
 183 *         transaction are equivalent).
 184 *
 185 * PREPARED: ref_transaction_prepare(), which locks all of the
 186 *         references involved in the update and checks that the
 187 *         update has no errors, has been called successfully for the
 188 *         transaction. A PREPARED transaction can be committed or
 189 *         aborted.
 190 *
 191 * CLOSED: The transaction is no longer active. A transaction becomes
 192 *         CLOSED if there is a failure while building the transaction
 193 *         or if a transaction is committed or aborted. A CLOSED
 194 *         transaction can only be freed.
 195 */
 196enum ref_transaction_state {
 197        REF_TRANSACTION_OPEN     = 0,
 198        REF_TRANSACTION_PREPARED = 1,
 199        REF_TRANSACTION_CLOSED   = 2
 200};
 201
 202/*
 203 * Data structure for holding a reference transaction, which can
 204 * consist of checks and updates to multiple references, carried out
 205 * as atomically as possible.  This structure is opaque to callers.
 206 */
 207struct ref_transaction {
 208        struct ref_store *ref_store;
 209        struct ref_update **updates;
 210        size_t alloc;
 211        size_t nr;
 212        enum ref_transaction_state state;
 213        void *backend_data;
 214};
 215
 216/*
 217 * Check for entries in extras that are within the specified
 218 * directory, where dirname is a reference directory name including
 219 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 220 * conflicting references that are found in skip. If there is a
 221 * conflicting reference, return its name.
 222 *
 223 * extras and skip must be sorted lists of reference names. Either one
 224 * can be NULL, signifying the empty list.
 225 */
 226const char *find_descendant_ref(const char *dirname,
 227                                const struct string_list *extras,
 228                                const struct string_list *skip);
 229
 230/*
 231 * Check whether an attempt to rename old_refname to new_refname would
 232 * cause a D/F conflict with any existing reference (other than
 233 * possibly old_refname). If there would be a conflict, emit an error
 234 * message and return false; otherwise, return true.
 235 *
 236 * Note that this function is not safe against all races with other
 237 * processes (though rename_ref() catches some races that might get by
 238 * this check).
 239 */
 240int refs_rename_ref_available(struct ref_store *refs,
 241                              const char *old_refname,
 242                              const char *new_refname);
 243
 244/* We allow "recursive" symbolic refs. Only within reason, though */
 245#define SYMREF_MAXDEPTH 5
 246
 247/* Include broken references in a do_for_each_ref*() iteration: */
 248#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 249
 250/*
 251 * Reference iterators
 252 *
 253 * A reference iterator encapsulates the state of an in-progress
 254 * iteration over references. Create an instance of `struct
 255 * ref_iterator` via one of the functions in this module.
 256 *
 257 * A freshly-created ref_iterator doesn't yet point at a reference. To
 258 * advance the iterator, call ref_iterator_advance(). If successful,
 259 * this sets the iterator's refname, oid, and flags fields to describe
 260 * the next reference and returns ITER_OK. The data pointed at by
 261 * refname and oid belong to the iterator; if you want to retain them
 262 * after calling ref_iterator_advance() again or calling
 263 * ref_iterator_abort(), you must make a copy. When the iteration has
 264 * been exhausted, ref_iterator_advance() releases any resources
 265 * assocated with the iteration, frees the ref_iterator object, and
 266 * returns ITER_DONE. If you want to abort the iteration early, call
 267 * ref_iterator_abort(), which also frees the ref_iterator object and
 268 * any associated resources. If there was an internal error advancing
 269 * to the next entry, ref_iterator_advance() aborts the iteration,
 270 * frees the ref_iterator, and returns ITER_ERROR.
 271 *
 272 * The reference currently being looked at can be peeled by calling
 273 * ref_iterator_peel(). This function is often faster than peel_ref(),
 274 * so it should be preferred when iterating over references.
 275 *
 276 * Putting it all together, a typical iteration looks like this:
 277 *
 278 *     int ok;
 279 *     struct ref_iterator *iter = ...;
 280 *
 281 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 282 *             if (want_to_stop_iteration()) {
 283 *                     ok = ref_iterator_abort(iter);
 284 *                     break;
 285 *             }
 286 *
 287 *             // Access information about the current reference:
 288 *             if (!(iter->flags & REF_ISSYMREF))
 289 *                     printf("%s is %s\n", iter->refname, oid_to_hex(iter->oid));
 290 *
 291 *             // If you need to peel the reference:
 292 *             ref_iterator_peel(iter, &oid);
 293 *     }
 294 *
 295 *     if (ok != ITER_DONE)
 296 *             handle_error();
 297 */
 298struct ref_iterator {
 299        struct ref_iterator_vtable *vtable;
 300
 301        /*
 302         * Does this `ref_iterator` iterate over references in order
 303         * by refname?
 304         */
 305        unsigned int ordered : 1;
 306
 307        const char *refname;
 308        const struct object_id *oid;
 309        unsigned int flags;
 310};
 311
 312/*
 313 * Advance the iterator to the first or next item and return ITER_OK.
 314 * If the iteration is exhausted, free the resources associated with
 315 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 316 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 317 * call this function again after it has returned ITER_DONE or
 318 * ITER_ERROR.
 319 */
 320int ref_iterator_advance(struct ref_iterator *ref_iterator);
 321
 322/*
 323 * If possible, peel the reference currently being viewed by the
 324 * iterator. Return 0 on success.
 325 */
 326int ref_iterator_peel(struct ref_iterator *ref_iterator,
 327                      struct object_id *peeled);
 328
 329/*
 330 * End the iteration before it has been exhausted, freeing the
 331 * reference iterator and any associated resources and returning
 332 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 333 */
 334int ref_iterator_abort(struct ref_iterator *ref_iterator);
 335
 336/*
 337 * An iterator over nothing (its first ref_iterator_advance() call
 338 * returns ITER_DONE).
 339 */
 340struct ref_iterator *empty_ref_iterator_begin(void);
 341
 342/*
 343 * Return true iff ref_iterator is an empty_ref_iterator.
 344 */
 345int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 346
 347/*
 348 * Return an iterator that goes over each reference in `refs` for
 349 * which the refname begins with prefix. If trim is non-zero, then
 350 * trim that many characters off the beginning of each refname. flags
 351 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 352 * the iteration. The output is ordered by refname.
 353 */
 354struct ref_iterator *refs_ref_iterator_begin(
 355                struct ref_store *refs,
 356                const char *prefix, int trim, int flags);
 357
 358/*
 359 * A callback function used to instruct merge_ref_iterator how to
 360 * interleave the entries from iter0 and iter1. The function should
 361 * return one of the constants defined in enum iterator_selection. It
 362 * must not advance either of the iterators itself.
 363 *
 364 * The function must be prepared to handle the case that iter0 and/or
 365 * iter1 is NULL, which indicates that the corresponding sub-iterator
 366 * has been exhausted. Its return value must be consistent with the
 367 * current states of the iterators; e.g., it must not return
 368 * ITER_SKIP_1 if iter1 has already been exhausted.
 369 */
 370typedef enum iterator_selection ref_iterator_select_fn(
 371                struct ref_iterator *iter0, struct ref_iterator *iter1,
 372                void *cb_data);
 373
 374/*
 375 * Iterate over the entries from iter0 and iter1, with the values
 376 * interleaved as directed by the select function. The iterator takes
 377 * ownership of iter0 and iter1 and frees them when the iteration is
 378 * over. A derived class should set `ordered` to 1 or 0 based on
 379 * whether it generates its output in order by reference name.
 380 */
 381struct ref_iterator *merge_ref_iterator_begin(
 382                int ordered,
 383                struct ref_iterator *iter0, struct ref_iterator *iter1,
 384                ref_iterator_select_fn *select, void *cb_data);
 385
 386/*
 387 * An iterator consisting of the union of the entries from front and
 388 * back. If there are entries common to the two sub-iterators, use the
 389 * one from front. Each iterator must iterate over its entries in
 390 * strcmp() order by refname for this to work.
 391 *
 392 * The new iterator takes ownership of its arguments and frees them
 393 * when the iteration is over. As a convenience to callers, if front
 394 * or back is an empty_ref_iterator, then abort that one immediately
 395 * and return the other iterator directly, without wrapping it.
 396 */
 397struct ref_iterator *overlay_ref_iterator_begin(
 398                struct ref_iterator *front, struct ref_iterator *back);
 399
 400/*
 401 * Wrap iter0, only letting through the references whose names start
 402 * with prefix. If trim is set, set iter->refname to the name of the
 403 * reference with that many characters trimmed off the front;
 404 * otherwise set it to the full refname. The new iterator takes over
 405 * ownership of iter0 and frees it when iteration is over. It makes
 406 * its own copy of prefix.
 407 *
 408 * As an convenience to callers, if prefix is the empty string and
 409 * trim is zero, this function returns iter0 directly, without
 410 * wrapping it.
 411 *
 412 * The resulting ref_iterator is ordered if iter0 is.
 413 */
 414struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 415                                               const char *prefix,
 416                                               int trim);
 417
 418/* Internal implementation of reference iteration: */
 419
 420/*
 421 * Base class constructor for ref_iterators. Initialize the
 422 * ref_iterator part of iter, setting its vtable pointer as specified.
 423 * `ordered` should be set to 1 if the iterator will iterate over
 424 * references in order by refname; otherwise it should be set to 0.
 425 * This is meant to be called only by the initializers of derived
 426 * classes.
 427 */
 428void base_ref_iterator_init(struct ref_iterator *iter,
 429                            struct ref_iterator_vtable *vtable,
 430                            int ordered);
 431
 432/*
 433 * Base class destructor for ref_iterators. Destroy the ref_iterator
 434 * part of iter and shallow-free the object. This is meant to be
 435 * called only by the destructors of derived classes.
 436 */
 437void base_ref_iterator_free(struct ref_iterator *iter);
 438
 439/* Virtual function declarations for ref_iterators: */
 440
 441typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 442
 443typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 444                                 struct object_id *peeled);
 445
 446/*
 447 * Implementations of this function should free any resources specific
 448 * to the derived class, then call base_ref_iterator_free() to clean
 449 * up and free the ref_iterator object.
 450 */
 451typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 452
 453struct ref_iterator_vtable {
 454        ref_iterator_advance_fn *advance;
 455        ref_iterator_peel_fn *peel;
 456        ref_iterator_abort_fn *abort;
 457};
 458
 459/*
 460 * current_ref_iter is a performance hack: when iterating over
 461 * references using the for_each_ref*() functions, current_ref_iter is
 462 * set to the reference iterator before calling the callback function.
 463 * If the callback function calls peel_ref(), then peel_ref() first
 464 * checks whether the reference to be peeled is the one referred to by
 465 * the iterator (it usually is) and if so, asks the iterator for the
 466 * peeled version of the reference if it is available. This avoids a
 467 * refname lookup in a common case. current_ref_iter is set to NULL
 468 * when the iteration is over.
 469 */
 470extern struct ref_iterator *current_ref_iter;
 471
 472/*
 473 * The common backend for the for_each_*ref* functions. Call fn for
 474 * each reference in iter. If the iterator itself ever returns
 475 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 476 * the iteration and return that value. Otherwise, return 0. In any
 477 * case, free the iterator when done. This function is basically an
 478 * adapter between the callback style of reference iteration and the
 479 * iterator style.
 480 */
 481int do_for_each_repo_ref_iterator(struct repository *r,
 482                                  struct ref_iterator *iter,
 483                                  each_repo_ref_fn fn, void *cb_data);
 484
 485/*
 486 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 487 * Normally this will be used with a files ref_store, since that's
 488 * where all reference backends will presumably store their
 489 * per-worktree refs.
 490 */
 491#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 492
 493struct ref_store;
 494
 495/* refs backends */
 496
 497/* ref_store_init flags */
 498#define REF_STORE_READ          (1 << 0)
 499#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 500#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 501#define REF_STORE_MAIN          (1 << 3)
 502#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 503                                 REF_STORE_WRITE | \
 504                                 REF_STORE_ODB | \
 505                                 REF_STORE_MAIN)
 506
 507/*
 508 * Initialize the ref_store for the specified gitdir. These functions
 509 * should call base_ref_store_init() to initialize the shared part of
 510 * the ref_store and to record the ref_store for later lookup.
 511 */
 512typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 513                                            unsigned int flags);
 514
 515typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 516
 517typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 518                                       struct ref_transaction *transaction,
 519                                       struct strbuf *err);
 520
 521typedef int ref_transaction_finish_fn(struct ref_store *refs,
 522                                      struct ref_transaction *transaction,
 523                                      struct strbuf *err);
 524
 525typedef int ref_transaction_abort_fn(struct ref_store *refs,
 526                                     struct ref_transaction *transaction,
 527                                     struct strbuf *err);
 528
 529typedef int ref_transaction_commit_fn(struct ref_store *refs,
 530                                      struct ref_transaction *transaction,
 531                                      struct strbuf *err);
 532
 533typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 534typedef int create_symref_fn(struct ref_store *ref_store,
 535                             const char *ref_target,
 536                             const char *refs_heads_master,
 537                             const char *logmsg);
 538typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 539                           struct string_list *refnames, unsigned int flags);
 540typedef int rename_ref_fn(struct ref_store *ref_store,
 541                          const char *oldref, const char *newref,
 542                          const char *logmsg);
 543typedef int copy_ref_fn(struct ref_store *ref_store,
 544                          const char *oldref, const char *newref,
 545                          const char *logmsg);
 546
 547/*
 548 * Iterate over the references in `ref_store` whose names start with
 549 * `prefix`. `prefix` is matched as a literal string, without regard
 550 * for path separators. If prefix is NULL or the empty string, iterate
 551 * over all references in `ref_store`. The output is ordered by
 552 * refname.
 553 */
 554typedef struct ref_iterator *ref_iterator_begin_fn(
 555                struct ref_store *ref_store,
 556                const char *prefix, unsigned int flags);
 557
 558/* reflog functions */
 559
 560/*
 561 * Iterate over the references in the specified ref_store that have a
 562 * reflog. The refs are iterated over in arbitrary order.
 563 */
 564typedef struct ref_iterator *reflog_iterator_begin_fn(
 565                struct ref_store *ref_store);
 566
 567typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 568                                   const char *refname,
 569                                   each_reflog_ent_fn fn,
 570                                   void *cb_data);
 571typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 572                                           const char *refname,
 573                                           each_reflog_ent_fn fn,
 574                                           void *cb_data);
 575typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 576typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 577                             int force_create, struct strbuf *err);
 578typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 579typedef int reflog_expire_fn(struct ref_store *ref_store,
 580                             const char *refname, const struct object_id *oid,
 581                             unsigned int flags,
 582                             reflog_expiry_prepare_fn prepare_fn,
 583                             reflog_expiry_should_prune_fn should_prune_fn,
 584                             reflog_expiry_cleanup_fn cleanup_fn,
 585                             void *policy_cb_data);
 586
 587/*
 588 * Read a reference from the specified reference store, non-recursively.
 589 * Set type to describe the reference, and:
 590 *
 591 * - If refname is the name of a normal reference, fill in oid
 592 *   (leaving referent unchanged).
 593 *
 594 * - If refname is the name of a symbolic reference, write the full
 595 *   name of the reference to which it refers (e.g.
 596 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 597 *   type (leaving oid unchanged). The caller is responsible for
 598 *   validating that referent is a valid reference name.
 599 *
 600 * WARNING: refname might be used as part of a filename, so it is
 601 * important from a security standpoint that it be safe in the sense
 602 * of refname_is_safe(). Moreover, for symrefs this function sets
 603 * referent to whatever the repository says, which might not be a
 604 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 605 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 606 *
 607 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 608 * and return -1. If the ref exists but is neither a symbolic ref nor
 609 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
 610 * EINVAL, and return -1. If there is another error reading the ref,
 611 * set errno appropriately and return -1.
 612 *
 613 * Backend-specific flags might be set in type as well, regardless of
 614 * outcome.
 615 *
 616 * It is OK for refname to point into referent. If so:
 617 *
 618 * - if the function succeeds with REF_ISSYMREF, referent will be
 619 *   overwritten and the memory formerly pointed to by it might be
 620 *   changed or even freed.
 621 *
 622 * - in all other cases, referent will be untouched, and therefore
 623 *   refname will still be valid and unchanged.
 624 */
 625typedef int read_raw_ref_fn(struct ref_store *ref_store,
 626                            const char *refname, struct object_id *oid,
 627                            struct strbuf *referent, unsigned int *type);
 628
 629struct ref_storage_be {
 630        struct ref_storage_be *next;
 631        const char *name;
 632        ref_store_init_fn *init;
 633        ref_init_db_fn *init_db;
 634
 635        ref_transaction_prepare_fn *transaction_prepare;
 636        ref_transaction_finish_fn *transaction_finish;
 637        ref_transaction_abort_fn *transaction_abort;
 638        ref_transaction_commit_fn *initial_transaction_commit;
 639
 640        pack_refs_fn *pack_refs;
 641        create_symref_fn *create_symref;
 642        delete_refs_fn *delete_refs;
 643        rename_ref_fn *rename_ref;
 644        copy_ref_fn *copy_ref;
 645
 646        ref_iterator_begin_fn *iterator_begin;
 647        read_raw_ref_fn *read_raw_ref;
 648
 649        reflog_iterator_begin_fn *reflog_iterator_begin;
 650        for_each_reflog_ent_fn *for_each_reflog_ent;
 651        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 652        reflog_exists_fn *reflog_exists;
 653        create_reflog_fn *create_reflog;
 654        delete_reflog_fn *delete_reflog;
 655        reflog_expire_fn *reflog_expire;
 656};
 657
 658extern struct ref_storage_be refs_be_files;
 659extern struct ref_storage_be refs_be_packed;
 660
 661/*
 662 * A representation of the reference store for the main repository or
 663 * a submodule. The ref_store instances for submodules are kept in a
 664 * linked list.
 665 */
 666struct ref_store {
 667        /* The backend describing this ref_store's storage scheme: */
 668        const struct ref_storage_be *be;
 669};
 670
 671/*
 672 * Fill in the generic part of refs and add it to our collection of
 673 * reference stores.
 674 */
 675void base_ref_store_init(struct ref_store *refs,
 676                         const struct ref_storage_be *be);
 677
 678#endif /* REFS_REFS_INTERNAL_H */