notes.con commit Notes API: get_commit_notes() -> format_note() + remove the commit restriction (a7e7eff)
   1#include "cache.h"
   2#include "notes.h"
   3#include "utf8.h"
   4#include "strbuf.h"
   5#include "tree-walk.h"
   6
   7/*
   8 * Use a non-balancing simple 16-tree structure with struct int_node as
   9 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  10 * 16-array of pointers to its children.
  11 * The bottom 2 bits of each pointer is used to identify the pointer type
  12 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  13 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  14 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  15 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  16 *
  17 * The root node is a statically allocated struct int_node.
  18 */
  19struct int_node {
  20        void *a[16];
  21};
  22
  23/*
  24 * Leaf nodes come in two variants, note entries and subtree entries,
  25 * distinguished by the LSb of the leaf node pointer (see above).
  26 * As a note entry, the key is the SHA1 of the referenced object, and the
  27 * value is the SHA1 of the note object.
  28 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  29 * referenced object, using the last byte of the key to store the length of
  30 * the prefix. The value is the SHA1 of the tree object containing the notes
  31 * subtree.
  32 */
  33struct leaf_node {
  34        unsigned char key_sha1[20];
  35        unsigned char val_sha1[20];
  36};
  37
  38#define PTR_TYPE_NULL     0
  39#define PTR_TYPE_INTERNAL 1
  40#define PTR_TYPE_NOTE     2
  41#define PTR_TYPE_SUBTREE  3
  42
  43#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  44#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  45#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  46
  47#define GET_NIBBLE(n, sha1) (((sha1[n >> 1]) >> ((~n & 0x01) << 2)) & 0x0f)
  48
  49#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  50        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  51
  52static struct int_node root_node;
  53
  54static int initialized;
  55
  56static void load_subtree(struct leaf_node *subtree, struct int_node *node,
  57                unsigned int n);
  58
  59/*
  60 * Search the tree until the appropriate location for the given key is found:
  61 * 1. Start at the root node, with n = 0
  62 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  63 *    subtree entry and remove it; restart search at the current level.
  64 * 3. Use the nth nibble of the key as an index into a:
  65 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  66 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  67 *      restart search at the current level.
  68 *    - Otherwise, we have found one of the following:
  69 *      - a subtree entry which does not match the key
  70 *      - a note entry which may or may not match the key
  71 *      - an unused leaf node (NULL)
  72 *      In any case, set *tree and *n, and return pointer to the tree location.
  73 */
  74static void **note_tree_search(struct int_node **tree,
  75                unsigned char *n, const unsigned char *key_sha1)
  76{
  77        struct leaf_node *l;
  78        unsigned char i;
  79        void *p = (*tree)->a[0];
  80
  81        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
  82                l = (struct leaf_node *) CLR_PTR_TYPE(p);
  83                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
  84                        /* unpack tree and resume search */
  85                        (*tree)->a[0] = NULL;
  86                        load_subtree(l, *tree, *n);
  87                        free(l);
  88                        return note_tree_search(tree, n, key_sha1);
  89                }
  90        }
  91
  92        i = GET_NIBBLE(*n, key_sha1);
  93        p = (*tree)->a[i];
  94        switch (GET_PTR_TYPE(p)) {
  95        case PTR_TYPE_INTERNAL:
  96                *tree = CLR_PTR_TYPE(p);
  97                (*n)++;
  98                return note_tree_search(tree, n, key_sha1);
  99        case PTR_TYPE_SUBTREE:
 100                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 101                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 102                        /* unpack tree and resume search */
 103                        (*tree)->a[i] = NULL;
 104                        load_subtree(l, *tree, *n);
 105                        free(l);
 106                        return note_tree_search(tree, n, key_sha1);
 107                }
 108                /* fall through */
 109        default:
 110                return &((*tree)->a[i]);
 111        }
 112}
 113
 114/*
 115 * To find a leaf_node:
 116 * Search to the tree location appropriate for the given key:
 117 * If a note entry with matching key, return the note entry, else return NULL.
 118 */
 119static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
 120                const unsigned char *key_sha1)
 121{
 122        void **p = note_tree_search(&tree, &n, key_sha1);
 123        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 124                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 125                if (!hashcmp(key_sha1, l->key_sha1))
 126                        return l;
 127        }
 128        return NULL;
 129}
 130
 131/* Create a new blob object by concatenating the two given blob objects */
 132static int concatenate_notes(unsigned char *cur_sha1,
 133                const unsigned char *new_sha1)
 134{
 135        char *cur_msg, *new_msg, *buf;
 136        unsigned long cur_len, new_len, buf_len;
 137        enum object_type cur_type, new_type;
 138        int ret;
 139
 140        /* read in both note blob objects */
 141        new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 142        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 143                free(new_msg);
 144                return 0;
 145        }
 146        cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 147        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 148                free(cur_msg);
 149                free(new_msg);
 150                hashcpy(cur_sha1, new_sha1);
 151                return 0;
 152        }
 153
 154        /* we will separate the notes by a newline anyway */
 155        if (cur_msg[cur_len - 1] == '\n')
 156                cur_len--;
 157
 158        /* concatenate cur_msg and new_msg into buf */
 159        buf_len = cur_len + 1 + new_len;
 160        buf = (char *) xmalloc(buf_len);
 161        memcpy(buf, cur_msg, cur_len);
 162        buf[cur_len] = '\n';
 163        memcpy(buf + cur_len + 1, new_msg, new_len);
 164
 165        free(cur_msg);
 166        free(new_msg);
 167
 168        /* create a new blob object from buf */
 169        ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
 170        free(buf);
 171        return ret;
 172}
 173
 174/*
 175 * To insert a leaf_node:
 176 * Search to the tree location appropriate for the given leaf_node's key:
 177 * - If location is unused (NULL), store the tweaked pointer directly there
 178 * - If location holds a note entry that matches the note-to-be-inserted, then
 179 *   concatenate the two notes.
 180 * - If location holds a note entry that matches the subtree-to-be-inserted,
 181 *   then unpack the subtree-to-be-inserted into the location.
 182 * - If location holds a matching subtree entry, unpack the subtree at that
 183 *   location, and restart the insert operation from that level.
 184 * - Else, create a new int_node, holding both the node-at-location and the
 185 *   node-to-be-inserted, and store the new int_node into the location.
 186 */
 187static void note_tree_insert(struct int_node *tree, unsigned char n,
 188                struct leaf_node *entry, unsigned char type)
 189{
 190        struct int_node *new_node;
 191        struct leaf_node *l;
 192        void **p = note_tree_search(&tree, &n, entry->key_sha1);
 193
 194        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 195        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 196        switch (GET_PTR_TYPE(*p)) {
 197        case PTR_TYPE_NULL:
 198                assert(!*p);
 199                *p = SET_PTR_TYPE(entry, type);
 200                return;
 201        case PTR_TYPE_NOTE:
 202                switch (type) {
 203                case PTR_TYPE_NOTE:
 204                        if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 205                                /* skip concatenation if l == entry */
 206                                if (!hashcmp(l->val_sha1, entry->val_sha1))
 207                                        return;
 208
 209                                if (concatenate_notes(l->val_sha1,
 210                                                entry->val_sha1))
 211                                        die("failed to concatenate note %s "
 212                                            "into note %s for object %s",
 213                                            sha1_to_hex(entry->val_sha1),
 214                                            sha1_to_hex(l->val_sha1),
 215                                            sha1_to_hex(l->key_sha1));
 216                                free(entry);
 217                                return;
 218                        }
 219                        break;
 220                case PTR_TYPE_SUBTREE:
 221                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 222                                                    entry->key_sha1)) {
 223                                /* unpack 'entry' */
 224                                load_subtree(entry, tree, n);
 225                                free(entry);
 226                                return;
 227                        }
 228                        break;
 229                }
 230                break;
 231        case PTR_TYPE_SUBTREE:
 232                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 233                        /* unpack 'l' and restart insert */
 234                        *p = NULL;
 235                        load_subtree(l, tree, n);
 236                        free(l);
 237                        note_tree_insert(tree, n, entry, type);
 238                        return;
 239                }
 240                break;
 241        }
 242
 243        /* non-matching leaf_node */
 244        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 245               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 246        new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
 247        note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
 248        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 249        note_tree_insert(new_node, n + 1, entry, type);
 250}
 251
 252/* Free the entire notes data contained in the given tree */
 253static void note_tree_free(struct int_node *tree)
 254{
 255        unsigned int i;
 256        for (i = 0; i < 16; i++) {
 257                void *p = tree->a[i];
 258                switch (GET_PTR_TYPE(p)) {
 259                case PTR_TYPE_INTERNAL:
 260                        note_tree_free(CLR_PTR_TYPE(p));
 261                        /* fall through */
 262                case PTR_TYPE_NOTE:
 263                case PTR_TYPE_SUBTREE:
 264                        free(CLR_PTR_TYPE(p));
 265                }
 266        }
 267}
 268
 269/*
 270 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 271 * - hex      - Partial SHA1 segment in ASCII hex format
 272 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 273 * - sha1     - Partial SHA1 value is written here
 274 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 275 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 276 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 277 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 278 */
 279static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 280                unsigned char *sha1, unsigned int sha1_len)
 281{
 282        unsigned int i, len = hex_len >> 1;
 283        if (hex_len % 2 != 0 || len > sha1_len)
 284                return -1;
 285        for (i = 0; i < len; i++) {
 286                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 287                if (val & ~0xff)
 288                        return -1;
 289                *sha1++ = val;
 290                hex += 2;
 291        }
 292        for (; i < sha1_len; i++)
 293                *sha1++ = 0;
 294        return len;
 295}
 296
 297static void load_subtree(struct leaf_node *subtree, struct int_node *node,
 298                unsigned int n)
 299{
 300        unsigned char object_sha1[20];
 301        unsigned int prefix_len;
 302        void *buf;
 303        struct tree_desc desc;
 304        struct name_entry entry;
 305
 306        buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 307        if (!buf)
 308                die("Could not read %s for notes-index",
 309                     sha1_to_hex(subtree->val_sha1));
 310
 311        prefix_len = subtree->key_sha1[19];
 312        assert(prefix_len * 2 >= n);
 313        memcpy(object_sha1, subtree->key_sha1, prefix_len);
 314        while (tree_entry(&desc, &entry)) {
 315                int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
 316                                object_sha1 + prefix_len, 20 - prefix_len);
 317                if (len < 0)
 318                        continue; /* entry.path is not a SHA1 sum. Skip */
 319                len += prefix_len;
 320
 321                /*
 322                 * If object SHA1 is complete (len == 20), assume note object
 323                 * If object SHA1 is incomplete (len < 20), assume note subtree
 324                 */
 325                if (len <= 20) {
 326                        unsigned char type = PTR_TYPE_NOTE;
 327                        struct leaf_node *l = (struct leaf_node *)
 328                                xcalloc(sizeof(struct leaf_node), 1);
 329                        hashcpy(l->key_sha1, object_sha1);
 330                        hashcpy(l->val_sha1, entry.sha1);
 331                        if (len < 20) {
 332                                if (!S_ISDIR(entry.mode))
 333                                        continue; /* entry cannot be subtree */
 334                                l->key_sha1[19] = (unsigned char) len;
 335                                type = PTR_TYPE_SUBTREE;
 336                        }
 337                        note_tree_insert(node, n, l, type);
 338                }
 339        }
 340        free(buf);
 341}
 342
 343static void initialize_notes(const char *notes_ref_name)
 344{
 345        unsigned char sha1[20], object_sha1[20];
 346        unsigned mode;
 347        struct leaf_node root_tree;
 348
 349        if (!notes_ref_name || read_ref(notes_ref_name, object_sha1) ||
 350            get_tree_entry(object_sha1, "", sha1, &mode))
 351                return;
 352
 353        hashclr(root_tree.key_sha1);
 354        hashcpy(root_tree.val_sha1, sha1);
 355        load_subtree(&root_tree, &root_node, 0);
 356}
 357
 358static unsigned char *lookup_notes(const unsigned char *object_sha1)
 359{
 360        struct leaf_node *found = note_tree_find(&root_node, 0, object_sha1);
 361        if (found)
 362                return found->val_sha1;
 363        return NULL;
 364}
 365
 366void free_notes(void)
 367{
 368        note_tree_free(&root_node);
 369        memset(&root_node, 0, sizeof(struct int_node));
 370        initialized = 0;
 371}
 372
 373void format_note(const unsigned char *object_sha1, struct strbuf *sb,
 374                const char *output_encoding, int flags)
 375{
 376        static const char utf8[] = "utf-8";
 377        unsigned char *sha1;
 378        char *msg, *msg_p;
 379        unsigned long linelen, msglen;
 380        enum object_type type;
 381
 382        if (!initialized) {
 383                const char *env = getenv(GIT_NOTES_REF_ENVIRONMENT);
 384                if (env)
 385                        notes_ref_name = getenv(GIT_NOTES_REF_ENVIRONMENT);
 386                else if (!notes_ref_name)
 387                        notes_ref_name = GIT_NOTES_DEFAULT_REF;
 388                initialize_notes(notes_ref_name);
 389                initialized = 1;
 390        }
 391
 392        sha1 = lookup_notes(object_sha1);
 393        if (!sha1)
 394                return;
 395
 396        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
 397                        type != OBJ_BLOB) {
 398                free(msg);
 399                return;
 400        }
 401
 402        if (output_encoding && *output_encoding &&
 403                        strcmp(utf8, output_encoding)) {
 404                char *reencoded = reencode_string(msg, output_encoding, utf8);
 405                if (reencoded) {
 406                        free(msg);
 407                        msg = reencoded;
 408                        msglen = strlen(msg);
 409                }
 410        }
 411
 412        /* we will end the annotation by a newline anyway */
 413        if (msglen && msg[msglen - 1] == '\n')
 414                msglen--;
 415
 416        if (flags & NOTES_SHOW_HEADER)
 417                strbuf_addstr(sb, "\nNotes:\n");
 418
 419        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
 420                linelen = strchrnul(msg_p, '\n') - msg_p;
 421
 422                if (flags & NOTES_INDENT)
 423                        strbuf_addstr(sb, "    ");
 424                strbuf_add(sb, msg_p, linelen);
 425                strbuf_addch(sb, '\n');
 426        }
 427
 428        free(msg);
 429}