notes.con commit config: don't include config.h by default (b2141fc)
   1#include "cache.h"
   2#include "config.h"
   3#include "notes.h"
   4#include "blob.h"
   5#include "tree.h"
   6#include "utf8.h"
   7#include "strbuf.h"
   8#include "tree-walk.h"
   9#include "string-list.h"
  10#include "refs.h"
  11
  12/*
  13 * Use a non-balancing simple 16-tree structure with struct int_node as
  14 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  15 * 16-array of pointers to its children.
  16 * The bottom 2 bits of each pointer is used to identify the pointer type
  17 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  18 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  19 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  20 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  21 *
  22 * The root node is a statically allocated struct int_node.
  23 */
  24struct int_node {
  25        void *a[16];
  26};
  27
  28/*
  29 * Leaf nodes come in two variants, note entries and subtree entries,
  30 * distinguished by the LSb of the leaf node pointer (see above).
  31 * As a note entry, the key is the SHA1 of the referenced object, and the
  32 * value is the SHA1 of the note object.
  33 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  34 * referenced object, using the last byte of the key to store the length of
  35 * the prefix. The value is the SHA1 of the tree object containing the notes
  36 * subtree.
  37 */
  38struct leaf_node {
  39        unsigned char key_sha1[20];
  40        unsigned char val_sha1[20];
  41};
  42
  43/*
  44 * A notes tree may contain entries that are not notes, and that do not follow
  45 * the naming conventions of notes. There are typically none/few of these, but
  46 * we still need to keep track of them. Keep a simple linked list sorted alpha-
  47 * betically on the non-note path. The list is populated when parsing tree
  48 * objects in load_subtree(), and the non-notes are correctly written back into
  49 * the tree objects produced by write_notes_tree().
  50 */
  51struct non_note {
  52        struct non_note *next; /* grounded (last->next == NULL) */
  53        char *path;
  54        unsigned int mode;
  55        unsigned char sha1[20];
  56};
  57
  58#define PTR_TYPE_NULL     0
  59#define PTR_TYPE_INTERNAL 1
  60#define PTR_TYPE_NOTE     2
  61#define PTR_TYPE_SUBTREE  3
  62
  63#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  64#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  65#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  66
  67#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
  68
  69#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  70        (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
  71
  72struct notes_tree default_notes_tree;
  73
  74static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
  75static struct notes_tree **display_notes_trees;
  76
  77static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
  78                struct int_node *node, unsigned int n);
  79
  80/*
  81 * Search the tree until the appropriate location for the given key is found:
  82 * 1. Start at the root node, with n = 0
  83 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  84 *    subtree entry and remove it; restart search at the current level.
  85 * 3. Use the nth nibble of the key as an index into a:
  86 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  87 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  88 *      restart search at the current level.
  89 *    - Otherwise, we have found one of the following:
  90 *      - a subtree entry which does not match the key
  91 *      - a note entry which may or may not match the key
  92 *      - an unused leaf node (NULL)
  93 *      In any case, set *tree and *n, and return pointer to the tree location.
  94 */
  95static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
  96                unsigned char *n, const unsigned char *key_sha1)
  97{
  98        struct leaf_node *l;
  99        unsigned char i;
 100        void *p = (*tree)->a[0];
 101
 102        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
 103                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 104                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 105                        /* unpack tree and resume search */
 106                        (*tree)->a[0] = NULL;
 107                        load_subtree(t, l, *tree, *n);
 108                        free(l);
 109                        return note_tree_search(t, tree, n, key_sha1);
 110                }
 111        }
 112
 113        i = GET_NIBBLE(*n, key_sha1);
 114        p = (*tree)->a[i];
 115        switch (GET_PTR_TYPE(p)) {
 116        case PTR_TYPE_INTERNAL:
 117                *tree = CLR_PTR_TYPE(p);
 118                (*n)++;
 119                return note_tree_search(t, tree, n, key_sha1);
 120        case PTR_TYPE_SUBTREE:
 121                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 122                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 123                        /* unpack tree and resume search */
 124                        (*tree)->a[i] = NULL;
 125                        load_subtree(t, l, *tree, *n);
 126                        free(l);
 127                        return note_tree_search(t, tree, n, key_sha1);
 128                }
 129                /* fall through */
 130        default:
 131                return &((*tree)->a[i]);
 132        }
 133}
 134
 135/*
 136 * To find a leaf_node:
 137 * Search to the tree location appropriate for the given key:
 138 * If a note entry with matching key, return the note entry, else return NULL.
 139 */
 140static struct leaf_node *note_tree_find(struct notes_tree *t,
 141                struct int_node *tree, unsigned char n,
 142                const unsigned char *key_sha1)
 143{
 144        void **p = note_tree_search(t, &tree, &n, key_sha1);
 145        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 146                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 147                if (!hashcmp(key_sha1, l->key_sha1))
 148                        return l;
 149        }
 150        return NULL;
 151}
 152
 153/*
 154 * How to consolidate an int_node:
 155 * If there are > 1 non-NULL entries, give up and return non-zero.
 156 * Otherwise replace the int_node at the given index in the given parent node
 157 * with the only NOTE entry (or a NULL entry if no entries) from the given
 158 * tree, and return 0.
 159 */
 160static int note_tree_consolidate(struct int_node *tree,
 161        struct int_node *parent, unsigned char index)
 162{
 163        unsigned int i;
 164        void *p = NULL;
 165
 166        assert(tree && parent);
 167        assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 168
 169        for (i = 0; i < 16; i++) {
 170                if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 171                        if (p) /* more than one entry */
 172                                return -2;
 173                        p = tree->a[i];
 174                }
 175        }
 176
 177        if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
 178                return -2;
 179        /* replace tree with p in parent[index] */
 180        parent->a[index] = p;
 181        free(tree);
 182        return 0;
 183}
 184
 185/*
 186 * To remove a leaf_node:
 187 * Search to the tree location appropriate for the given leaf_node's key:
 188 * - If location does not hold a matching entry, abort and do nothing.
 189 * - Copy the matching entry's value into the given entry.
 190 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 191 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 192 */
 193static void note_tree_remove(struct notes_tree *t,
 194                struct int_node *tree, unsigned char n,
 195                struct leaf_node *entry)
 196{
 197        struct leaf_node *l;
 198        struct int_node *parent_stack[20];
 199        unsigned char i, j;
 200        void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 201
 202        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 203        if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 204                return; /* type mismatch, nothing to remove */
 205        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 206        if (hashcmp(l->key_sha1, entry->key_sha1))
 207                return; /* key mismatch, nothing to remove */
 208
 209        /* we have found a matching entry */
 210        hashcpy(entry->val_sha1, l->val_sha1);
 211        free(l);
 212        *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 213
 214        /* consolidate this tree level, and parent levels, if possible */
 215        if (!n)
 216                return; /* cannot consolidate top level */
 217        /* first, build stack of ancestors between root and current node */
 218        parent_stack[0] = t->root;
 219        for (i = 0; i < n; i++) {
 220                j = GET_NIBBLE(i, entry->key_sha1);
 221                parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 222        }
 223        assert(i == n && parent_stack[i] == tree);
 224        /* next, unwind stack until note_tree_consolidate() is done */
 225        while (i > 0 &&
 226               !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 227                                      GET_NIBBLE(i - 1, entry->key_sha1)))
 228                i--;
 229}
 230
 231/*
 232 * To insert a leaf_node:
 233 * Search to the tree location appropriate for the given leaf_node's key:
 234 * - If location is unused (NULL), store the tweaked pointer directly there
 235 * - If location holds a note entry that matches the note-to-be-inserted, then
 236 *   combine the two notes (by calling the given combine_notes function).
 237 * - If location holds a note entry that matches the subtree-to-be-inserted,
 238 *   then unpack the subtree-to-be-inserted into the location.
 239 * - If location holds a matching subtree entry, unpack the subtree at that
 240 *   location, and restart the insert operation from that level.
 241 * - Else, create a new int_node, holding both the node-at-location and the
 242 *   node-to-be-inserted, and store the new int_node into the location.
 243 */
 244static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
 245                unsigned char n, struct leaf_node *entry, unsigned char type,
 246                combine_notes_fn combine_notes)
 247{
 248        struct int_node *new_node;
 249        struct leaf_node *l;
 250        void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 251        int ret = 0;
 252
 253        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 254        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 255        switch (GET_PTR_TYPE(*p)) {
 256        case PTR_TYPE_NULL:
 257                assert(!*p);
 258                if (is_null_sha1(entry->val_sha1))
 259                        free(entry);
 260                else
 261                        *p = SET_PTR_TYPE(entry, type);
 262                return 0;
 263        case PTR_TYPE_NOTE:
 264                switch (type) {
 265                case PTR_TYPE_NOTE:
 266                        if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 267                                /* skip concatenation if l == entry */
 268                                if (!hashcmp(l->val_sha1, entry->val_sha1))
 269                                        return 0;
 270
 271                                ret = combine_notes(l->val_sha1,
 272                                                    entry->val_sha1);
 273                                if (!ret && is_null_sha1(l->val_sha1))
 274                                        note_tree_remove(t, tree, n, entry);
 275                                free(entry);
 276                                return ret;
 277                        }
 278                        break;
 279                case PTR_TYPE_SUBTREE:
 280                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 281                                                    entry->key_sha1)) {
 282                                /* unpack 'entry' */
 283                                load_subtree(t, entry, tree, n);
 284                                free(entry);
 285                                return 0;
 286                        }
 287                        break;
 288                }
 289                break;
 290        case PTR_TYPE_SUBTREE:
 291                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 292                        /* unpack 'l' and restart insert */
 293                        *p = NULL;
 294                        load_subtree(t, l, tree, n);
 295                        free(l);
 296                        return note_tree_insert(t, tree, n, entry, type,
 297                                                combine_notes);
 298                }
 299                break;
 300        }
 301
 302        /* non-matching leaf_node */
 303        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 304               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 305        if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
 306                free(entry);
 307                return 0;
 308        }
 309        new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
 310        ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
 311                               combine_notes);
 312        if (ret)
 313                return ret;
 314        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 315        return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
 316}
 317
 318/* Free the entire notes data contained in the given tree */
 319static void note_tree_free(struct int_node *tree)
 320{
 321        unsigned int i;
 322        for (i = 0; i < 16; i++) {
 323                void *p = tree->a[i];
 324                switch (GET_PTR_TYPE(p)) {
 325                case PTR_TYPE_INTERNAL:
 326                        note_tree_free(CLR_PTR_TYPE(p));
 327                        /* fall through */
 328                case PTR_TYPE_NOTE:
 329                case PTR_TYPE_SUBTREE:
 330                        free(CLR_PTR_TYPE(p));
 331                }
 332        }
 333}
 334
 335/*
 336 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 337 * - hex      - Partial SHA1 segment in ASCII hex format
 338 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 339 * - sha1     - Partial SHA1 value is written here
 340 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 341 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 342 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 343 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 344 */
 345static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 346                unsigned char *sha1, unsigned int sha1_len)
 347{
 348        unsigned int i, len = hex_len >> 1;
 349        if (hex_len % 2 != 0 || len > sha1_len)
 350                return -1;
 351        for (i = 0; i < len; i++) {
 352                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 353                if (val & ~0xff)
 354                        return -1;
 355                *sha1++ = val;
 356                hex += 2;
 357        }
 358        for (; i < sha1_len; i++)
 359                *sha1++ = 0;
 360        return len;
 361}
 362
 363static int non_note_cmp(const struct non_note *a, const struct non_note *b)
 364{
 365        return strcmp(a->path, b->path);
 366}
 367
 368/* note: takes ownership of path string */
 369static void add_non_note(struct notes_tree *t, char *path,
 370                unsigned int mode, const unsigned char *sha1)
 371{
 372        struct non_note *p = t->prev_non_note, *n;
 373        n = (struct non_note *) xmalloc(sizeof(struct non_note));
 374        n->next = NULL;
 375        n->path = path;
 376        n->mode = mode;
 377        hashcpy(n->sha1, sha1);
 378        t->prev_non_note = n;
 379
 380        if (!t->first_non_note) {
 381                t->first_non_note = n;
 382                return;
 383        }
 384
 385        if (non_note_cmp(p, n) < 0)
 386                ; /* do nothing  */
 387        else if (non_note_cmp(t->first_non_note, n) <= 0)
 388                p = t->first_non_note;
 389        else {
 390                /* n sorts before t->first_non_note */
 391                n->next = t->first_non_note;
 392                t->first_non_note = n;
 393                return;
 394        }
 395
 396        /* n sorts equal or after p */
 397        while (p->next && non_note_cmp(p->next, n) <= 0)
 398                p = p->next;
 399
 400        if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
 401                assert(strcmp(p->path, n->path) == 0);
 402                p->mode = n->mode;
 403                hashcpy(p->sha1, n->sha1);
 404                free(n);
 405                t->prev_non_note = p;
 406                return;
 407        }
 408
 409        /* n sorts between p and p->next */
 410        n->next = p->next;
 411        p->next = n;
 412}
 413
 414static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 415                struct int_node *node, unsigned int n)
 416{
 417        unsigned char object_sha1[20];
 418        unsigned int prefix_len;
 419        void *buf;
 420        struct tree_desc desc;
 421        struct name_entry entry;
 422        int len, path_len;
 423        unsigned char type;
 424        struct leaf_node *l;
 425
 426        buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 427        if (!buf)
 428                die("Could not read %s for notes-index",
 429                     sha1_to_hex(subtree->val_sha1));
 430
 431        prefix_len = subtree->key_sha1[19];
 432        assert(prefix_len * 2 >= n);
 433        memcpy(object_sha1, subtree->key_sha1, prefix_len);
 434        while (tree_entry(&desc, &entry)) {
 435                path_len = strlen(entry.path);
 436                len = get_sha1_hex_segment(entry.path, path_len,
 437                                object_sha1 + prefix_len, 20 - prefix_len);
 438                if (len < 0)
 439                        goto handle_non_note; /* entry.path is not a SHA1 */
 440                len += prefix_len;
 441
 442                /*
 443                 * If object SHA1 is complete (len == 20), assume note object
 444                 * If object SHA1 is incomplete (len < 20), and current
 445                 * component consists of 2 hex chars, assume note subtree
 446                 */
 447                if (len <= 20) {
 448                        type = PTR_TYPE_NOTE;
 449                        l = (struct leaf_node *)
 450                                xcalloc(1, sizeof(struct leaf_node));
 451                        hashcpy(l->key_sha1, object_sha1);
 452                        hashcpy(l->val_sha1, entry.oid->hash);
 453                        if (len < 20) {
 454                                if (!S_ISDIR(entry.mode) || path_len != 2)
 455                                        goto handle_non_note; /* not subtree */
 456                                l->key_sha1[19] = (unsigned char) len;
 457                                type = PTR_TYPE_SUBTREE;
 458                        }
 459                        if (note_tree_insert(t, node, n, l, type,
 460                                             combine_notes_concatenate))
 461                                die("Failed to load %s %s into notes tree "
 462                                    "from %s",
 463                                    type == PTR_TYPE_NOTE ? "note" : "subtree",
 464                                    sha1_to_hex(l->key_sha1), t->ref);
 465                }
 466                continue;
 467
 468handle_non_note:
 469                /*
 470                 * Determine full path for this non-note entry:
 471                 * The filename is already found in entry.path, but the
 472                 * directory part of the path must be deduced from the subtree
 473                 * containing this entry. We assume here that the overall notes
 474                 * tree follows a strict byte-based progressive fanout
 475                 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
 476                 * e.g. 4/36 fanout). This means that if a non-note is found at
 477                 * path "dead/beef", the following code will register it as
 478                 * being found on "de/ad/beef".
 479                 * On the other hand, if you use such non-obvious non-note
 480                 * paths in the middle of a notes tree, you deserve what's
 481                 * coming to you ;). Note that for non-notes that are not
 482                 * SHA1-like at the top level, there will be no problems.
 483                 *
 484                 * To conclude, it is strongly advised to make sure non-notes
 485                 * have at least one non-hex character in the top-level path
 486                 * component.
 487                 */
 488                {
 489                        struct strbuf non_note_path = STRBUF_INIT;
 490                        const char *q = sha1_to_hex(subtree->key_sha1);
 491                        int i;
 492                        for (i = 0; i < prefix_len; i++) {
 493                                strbuf_addch(&non_note_path, *q++);
 494                                strbuf_addch(&non_note_path, *q++);
 495                                strbuf_addch(&non_note_path, '/');
 496                        }
 497                        strbuf_addstr(&non_note_path, entry.path);
 498                        add_non_note(t, strbuf_detach(&non_note_path, NULL),
 499                                     entry.mode, entry.oid->hash);
 500                }
 501        }
 502        free(buf);
 503}
 504
 505/*
 506 * Determine optimal on-disk fanout for this part of the notes tree
 507 *
 508 * Given a (sub)tree and the level in the internal tree structure, determine
 509 * whether or not the given existing fanout should be expanded for this
 510 * (sub)tree.
 511 *
 512 * Values of the 'fanout' variable:
 513 * - 0: No fanout (all notes are stored directly in the root notes tree)
 514 * - 1: 2/38 fanout
 515 * - 2: 2/2/36 fanout
 516 * - 3: 2/2/2/34 fanout
 517 * etc.
 518 */
 519static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 520                unsigned char fanout)
 521{
 522        /*
 523         * The following is a simple heuristic that works well in practice:
 524         * For each even-numbered 16-tree level (remember that each on-disk
 525         * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 526         * entries at that tree level. If all of them are either int_nodes or
 527         * subtree entries, then there are likely plenty of notes below this
 528         * level, so we return an incremented fanout.
 529         */
 530        unsigned int i;
 531        if ((n % 2) || (n > 2 * fanout))
 532                return fanout;
 533        for (i = 0; i < 16; i++) {
 534                switch (GET_PTR_TYPE(tree->a[i])) {
 535                case PTR_TYPE_SUBTREE:
 536                case PTR_TYPE_INTERNAL:
 537                        continue;
 538                default:
 539                        return fanout;
 540                }
 541        }
 542        return fanout + 1;
 543}
 544
 545/* hex SHA1 + 19 * '/' + NUL */
 546#define FANOUT_PATH_MAX 40 + 19 + 1
 547
 548static void construct_path_with_fanout(const unsigned char *sha1,
 549                unsigned char fanout, char *path)
 550{
 551        unsigned int i = 0, j = 0;
 552        const char *hex_sha1 = sha1_to_hex(sha1);
 553        assert(fanout < 20);
 554        while (fanout) {
 555                path[i++] = hex_sha1[j++];
 556                path[i++] = hex_sha1[j++];
 557                path[i++] = '/';
 558                fanout--;
 559        }
 560        xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
 561}
 562
 563static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
 564                unsigned char n, unsigned char fanout, int flags,
 565                each_note_fn fn, void *cb_data)
 566{
 567        unsigned int i;
 568        void *p;
 569        int ret = 0;
 570        struct leaf_node *l;
 571        static char path[FANOUT_PATH_MAX];
 572
 573        fanout = determine_fanout(tree, n, fanout);
 574        for (i = 0; i < 16; i++) {
 575redo:
 576                p = tree->a[i];
 577                switch (GET_PTR_TYPE(p)) {
 578                case PTR_TYPE_INTERNAL:
 579                        /* recurse into int_node */
 580                        ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
 581                                fanout, flags, fn, cb_data);
 582                        break;
 583                case PTR_TYPE_SUBTREE:
 584                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 585                        /*
 586                         * Subtree entries in the note tree represent parts of
 587                         * the note tree that have not yet been explored. There
 588                         * is a direct relationship between subtree entries at
 589                         * level 'n' in the tree, and the 'fanout' variable:
 590                         * Subtree entries at level 'n <= 2 * fanout' should be
 591                         * preserved, since they correspond exactly to a fanout
 592                         * directory in the on-disk structure. However, subtree
 593                         * entries at level 'n > 2 * fanout' should NOT be
 594                         * preserved, but rather consolidated into the above
 595                         * notes tree level. We achieve this by unconditionally
 596                         * unpacking subtree entries that exist below the
 597                         * threshold level at 'n = 2 * fanout'.
 598                         */
 599                        if (n <= 2 * fanout &&
 600                            flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 601                                /* invoke callback with subtree */
 602                                unsigned int path_len =
 603                                        l->key_sha1[19] * 2 + fanout;
 604                                assert(path_len < FANOUT_PATH_MAX - 1);
 605                                construct_path_with_fanout(l->key_sha1, fanout,
 606                                                           path);
 607                                /* Create trailing slash, if needed */
 608                                if (path[path_len - 1] != '/')
 609                                        path[path_len++] = '/';
 610                                path[path_len] = '\0';
 611                                ret = fn(l->key_sha1, l->val_sha1, path,
 612                                         cb_data);
 613                        }
 614                        if (n > fanout * 2 ||
 615                            !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 616                                /* unpack subtree and resume traversal */
 617                                tree->a[i] = NULL;
 618                                load_subtree(t, l, tree, n);
 619                                free(l);
 620                                goto redo;
 621                        }
 622                        break;
 623                case PTR_TYPE_NOTE:
 624                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 625                        construct_path_with_fanout(l->key_sha1, fanout, path);
 626                        ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
 627                        break;
 628                }
 629                if (ret)
 630                        return ret;
 631        }
 632        return 0;
 633}
 634
 635struct tree_write_stack {
 636        struct tree_write_stack *next;
 637        struct strbuf buf;
 638        char path[2]; /* path to subtree in next, if any */
 639};
 640
 641static inline int matches_tree_write_stack(struct tree_write_stack *tws,
 642                const char *full_path)
 643{
 644        return  full_path[0] == tws->path[0] &&
 645                full_path[1] == tws->path[1] &&
 646                full_path[2] == '/';
 647}
 648
 649static void write_tree_entry(struct strbuf *buf, unsigned int mode,
 650                const char *path, unsigned int path_len, const
 651                unsigned char *sha1)
 652{
 653        strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
 654        strbuf_add(buf, sha1, 20);
 655}
 656
 657static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
 658                const char *path)
 659{
 660        struct tree_write_stack *n;
 661        assert(!tws->next);
 662        assert(tws->path[0] == '\0' && tws->path[1] == '\0');
 663        n = (struct tree_write_stack *)
 664                xmalloc(sizeof(struct tree_write_stack));
 665        n->next = NULL;
 666        strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
 667        n->path[0] = n->path[1] = '\0';
 668        tws->next = n;
 669        tws->path[0] = path[0];
 670        tws->path[1] = path[1];
 671}
 672
 673static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
 674{
 675        int ret;
 676        struct tree_write_stack *n = tws->next;
 677        unsigned char s[20];
 678        if (n) {
 679                ret = tree_write_stack_finish_subtree(n);
 680                if (ret)
 681                        return ret;
 682                ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
 683                if (ret)
 684                        return ret;
 685                strbuf_release(&n->buf);
 686                free(n);
 687                tws->next = NULL;
 688                write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
 689                tws->path[0] = tws->path[1] = '\0';
 690        }
 691        return 0;
 692}
 693
 694static int write_each_note_helper(struct tree_write_stack *tws,
 695                const char *path, unsigned int mode,
 696                const unsigned char *sha1)
 697{
 698        size_t path_len = strlen(path);
 699        unsigned int n = 0;
 700        int ret;
 701
 702        /* Determine common part of tree write stack */
 703        while (tws && 3 * n < path_len &&
 704               matches_tree_write_stack(tws, path + 3 * n)) {
 705                n++;
 706                tws = tws->next;
 707        }
 708
 709        /* tws point to last matching tree_write_stack entry */
 710        ret = tree_write_stack_finish_subtree(tws);
 711        if (ret)
 712                return ret;
 713
 714        /* Start subtrees needed to satisfy path */
 715        while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
 716                tree_write_stack_init_subtree(tws, path + 3 * n);
 717                n++;
 718                tws = tws->next;
 719        }
 720
 721        /* There should be no more directory components in the given path */
 722        assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 723
 724        /* Finally add given entry to the current tree object */
 725        write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
 726                         sha1);
 727
 728        return 0;
 729}
 730
 731struct write_each_note_data {
 732        struct tree_write_stack *root;
 733        struct non_note *next_non_note;
 734};
 735
 736static int write_each_non_note_until(const char *note_path,
 737                struct write_each_note_data *d)
 738{
 739        struct non_note *n = d->next_non_note;
 740        int cmp = 0, ret;
 741        while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
 742                if (note_path && cmp == 0)
 743                        ; /* do nothing, prefer note to non-note */
 744                else {
 745                        ret = write_each_note_helper(d->root, n->path, n->mode,
 746                                                     n->sha1);
 747                        if (ret)
 748                                return ret;
 749                }
 750                n = n->next;
 751        }
 752        d->next_non_note = n;
 753        return 0;
 754}
 755
 756static int write_each_note(const unsigned char *object_sha1,
 757                const unsigned char *note_sha1, char *note_path,
 758                void *cb_data)
 759{
 760        struct write_each_note_data *d =
 761                (struct write_each_note_data *) cb_data;
 762        size_t note_path_len = strlen(note_path);
 763        unsigned int mode = 0100644;
 764
 765        if (note_path[note_path_len - 1] == '/') {
 766                /* subtree entry */
 767                note_path_len--;
 768                note_path[note_path_len] = '\0';
 769                mode = 040000;
 770        }
 771        assert(note_path_len <= 40 + 19);
 772
 773        /* Weave non-note entries into note entries */
 774        return  write_each_non_note_until(note_path, d) ||
 775                write_each_note_helper(d->root, note_path, mode, note_sha1);
 776}
 777
 778struct note_delete_list {
 779        struct note_delete_list *next;
 780        const unsigned char *sha1;
 781};
 782
 783static int prune_notes_helper(const unsigned char *object_sha1,
 784                const unsigned char *note_sha1, char *note_path,
 785                void *cb_data)
 786{
 787        struct note_delete_list **l = (struct note_delete_list **) cb_data;
 788        struct note_delete_list *n;
 789
 790        if (has_sha1_file(object_sha1))
 791                return 0; /* nothing to do for this note */
 792
 793        /* failed to find object => prune this note */
 794        n = (struct note_delete_list *) xmalloc(sizeof(*n));
 795        n->next = *l;
 796        n->sha1 = object_sha1;
 797        *l = n;
 798        return 0;
 799}
 800
 801int combine_notes_concatenate(unsigned char *cur_sha1,
 802                const unsigned char *new_sha1)
 803{
 804        char *cur_msg = NULL, *new_msg = NULL, *buf;
 805        unsigned long cur_len, new_len, buf_len;
 806        enum object_type cur_type, new_type;
 807        int ret;
 808
 809        /* read in both note blob objects */
 810        if (!is_null_sha1(new_sha1))
 811                new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 812        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 813                free(new_msg);
 814                return 0;
 815        }
 816        if (!is_null_sha1(cur_sha1))
 817                cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 818        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 819                free(cur_msg);
 820                free(new_msg);
 821                hashcpy(cur_sha1, new_sha1);
 822                return 0;
 823        }
 824
 825        /* we will separate the notes by two newlines anyway */
 826        if (cur_msg[cur_len - 1] == '\n')
 827                cur_len--;
 828
 829        /* concatenate cur_msg and new_msg into buf */
 830        buf_len = cur_len + 2 + new_len;
 831        buf = (char *) xmalloc(buf_len);
 832        memcpy(buf, cur_msg, cur_len);
 833        buf[cur_len] = '\n';
 834        buf[cur_len + 1] = '\n';
 835        memcpy(buf + cur_len + 2, new_msg, new_len);
 836        free(cur_msg);
 837        free(new_msg);
 838
 839        /* create a new blob object from buf */
 840        ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
 841        free(buf);
 842        return ret;
 843}
 844
 845int combine_notes_overwrite(unsigned char *cur_sha1,
 846                const unsigned char *new_sha1)
 847{
 848        hashcpy(cur_sha1, new_sha1);
 849        return 0;
 850}
 851
 852int combine_notes_ignore(unsigned char *cur_sha1,
 853                const unsigned char *new_sha1)
 854{
 855        return 0;
 856}
 857
 858/*
 859 * Add the lines from the named object to list, with trailing
 860 * newlines removed.
 861 */
 862static int string_list_add_note_lines(struct string_list *list,
 863                                      const unsigned char *sha1)
 864{
 865        char *data;
 866        unsigned long len;
 867        enum object_type t;
 868
 869        if (is_null_sha1(sha1))
 870                return 0;
 871
 872        /* read_sha1_file NUL-terminates */
 873        data = read_sha1_file(sha1, &t, &len);
 874        if (t != OBJ_BLOB || !data || !len) {
 875                free(data);
 876                return t != OBJ_BLOB || !data;
 877        }
 878
 879        /*
 880         * If the last line of the file is EOL-terminated, this will
 881         * add an empty string to the list.  But it will be removed
 882         * later, along with any empty strings that came from empty
 883         * lines within the file.
 884         */
 885        string_list_split(list, data, '\n', -1);
 886        free(data);
 887        return 0;
 888}
 889
 890static int string_list_join_lines_helper(struct string_list_item *item,
 891                                         void *cb_data)
 892{
 893        struct strbuf *buf = cb_data;
 894        strbuf_addstr(buf, item->string);
 895        strbuf_addch(buf, '\n');
 896        return 0;
 897}
 898
 899int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
 900                const unsigned char *new_sha1)
 901{
 902        struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
 903        struct strbuf buf = STRBUF_INIT;
 904        int ret = 1;
 905
 906        /* read both note blob objects into unique_lines */
 907        if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
 908                goto out;
 909        if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
 910                goto out;
 911        string_list_remove_empty_items(&sort_uniq_list, 0);
 912        string_list_sort(&sort_uniq_list);
 913        string_list_remove_duplicates(&sort_uniq_list, 0);
 914
 915        /* create a new blob object from sort_uniq_list */
 916        if (for_each_string_list(&sort_uniq_list,
 917                                 string_list_join_lines_helper, &buf))
 918                goto out;
 919
 920        ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
 921
 922out:
 923        strbuf_release(&buf);
 924        string_list_clear(&sort_uniq_list, 0);
 925        return ret;
 926}
 927
 928static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
 929                                   int flag, void *cb)
 930{
 931        struct string_list *refs = cb;
 932        if (!unsorted_string_list_has_string(refs, refname))
 933                string_list_append(refs, refname);
 934        return 0;
 935}
 936
 937/*
 938 * The list argument must have strdup_strings set on it.
 939 */
 940void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
 941{
 942        assert(list->strdup_strings);
 943        if (has_glob_specials(glob)) {
 944                for_each_glob_ref(string_list_add_one_ref, glob, list);
 945        } else {
 946                unsigned char sha1[20];
 947                if (get_sha1(glob, sha1))
 948                        warning("notes ref %s is invalid", glob);
 949                if (!unsorted_string_list_has_string(list, glob))
 950                        string_list_append(list, glob);
 951        }
 952}
 953
 954void string_list_add_refs_from_colon_sep(struct string_list *list,
 955                                         const char *globs)
 956{
 957        struct string_list split = STRING_LIST_INIT_NODUP;
 958        char *globs_copy = xstrdup(globs);
 959        int i;
 960
 961        string_list_split_in_place(&split, globs_copy, ':', -1);
 962        string_list_remove_empty_items(&split, 0);
 963
 964        for (i = 0; i < split.nr; i++)
 965                string_list_add_refs_by_glob(list, split.items[i].string);
 966
 967        string_list_clear(&split, 0);
 968        free(globs_copy);
 969}
 970
 971static int notes_display_config(const char *k, const char *v, void *cb)
 972{
 973        int *load_refs = cb;
 974
 975        if (*load_refs && !strcmp(k, "notes.displayref")) {
 976                if (!v)
 977                        config_error_nonbool(k);
 978                string_list_add_refs_by_glob(&display_notes_refs, v);
 979        }
 980
 981        return 0;
 982}
 983
 984const char *default_notes_ref(void)
 985{
 986        const char *notes_ref = NULL;
 987        if (!notes_ref)
 988                notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 989        if (!notes_ref)
 990                notes_ref = notes_ref_name; /* value of core.notesRef config */
 991        if (!notes_ref)
 992                notes_ref = GIT_NOTES_DEFAULT_REF;
 993        return notes_ref;
 994}
 995
 996void init_notes(struct notes_tree *t, const char *notes_ref,
 997                combine_notes_fn combine_notes, int flags)
 998{
 999        struct object_id oid, object_oid;
1000        unsigned mode;
1001        struct leaf_node root_tree;
1002
1003        if (!t)
1004                t = &default_notes_tree;
1005        assert(!t->initialized);
1006
1007        if (!notes_ref)
1008                notes_ref = default_notes_ref();
1009
1010        if (!combine_notes)
1011                combine_notes = combine_notes_concatenate;
1012
1013        t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1014        t->first_non_note = NULL;
1015        t->prev_non_note = NULL;
1016        t->ref = xstrdup_or_null(notes_ref);
1017        t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1018        t->combine_notes = combine_notes;
1019        t->initialized = 1;
1020        t->dirty = 0;
1021
1022        if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1023            get_sha1_treeish(notes_ref, object_oid.hash))
1024                return;
1025        if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1026                die("Cannot use notes ref %s", notes_ref);
1027        if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1028                die("Failed to read notes tree referenced by %s (%s)",
1029                    notes_ref, oid_to_hex(&object_oid));
1030
1031        hashclr(root_tree.key_sha1);
1032        hashcpy(root_tree.val_sha1, oid.hash);
1033        load_subtree(t, &root_tree, t->root, 0);
1034}
1035
1036struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1037{
1038        struct string_list_item *item;
1039        int counter = 0;
1040        struct notes_tree **trees;
1041        ALLOC_ARRAY(trees, refs->nr + 1);
1042        for_each_string_list_item(item, refs) {
1043                struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1044                init_notes(t, item->string, combine_notes_ignore, flags);
1045                trees[counter++] = t;
1046        }
1047        trees[counter] = NULL;
1048        return trees;
1049}
1050
1051void init_display_notes(struct display_notes_opt *opt)
1052{
1053        char *display_ref_env;
1054        int load_config_refs = 0;
1055        display_notes_refs.strdup_strings = 1;
1056
1057        assert(!display_notes_trees);
1058
1059        if (!opt || opt->use_default_notes > 0 ||
1060            (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1061                string_list_append(&display_notes_refs, default_notes_ref());
1062                display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1063                if (display_ref_env) {
1064                        string_list_add_refs_from_colon_sep(&display_notes_refs,
1065                                                            display_ref_env);
1066                        load_config_refs = 0;
1067                } else
1068                        load_config_refs = 1;
1069        }
1070
1071        git_config(notes_display_config, &load_config_refs);
1072
1073        if (opt) {
1074                struct string_list_item *item;
1075                for_each_string_list_item(item, &opt->extra_notes_refs)
1076                        string_list_add_refs_by_glob(&display_notes_refs,
1077                                                     item->string);
1078        }
1079
1080        display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1081        string_list_clear(&display_notes_refs, 0);
1082}
1083
1084int add_note(struct notes_tree *t, const unsigned char *object_sha1,
1085                const unsigned char *note_sha1, combine_notes_fn combine_notes)
1086{
1087        struct leaf_node *l;
1088
1089        if (!t)
1090                t = &default_notes_tree;
1091        assert(t->initialized);
1092        t->dirty = 1;
1093        if (!combine_notes)
1094                combine_notes = t->combine_notes;
1095        l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1096        hashcpy(l->key_sha1, object_sha1);
1097        hashcpy(l->val_sha1, note_sha1);
1098        return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1099}
1100
1101int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1102{
1103        struct leaf_node l;
1104
1105        if (!t)
1106                t = &default_notes_tree;
1107        assert(t->initialized);
1108        hashcpy(l.key_sha1, object_sha1);
1109        hashclr(l.val_sha1);
1110        note_tree_remove(t, t->root, 0, &l);
1111        if (is_null_sha1(l.val_sha1)) /* no note was removed */
1112                return 1;
1113        t->dirty = 1;
1114        return 0;
1115}
1116
1117const unsigned char *get_note(struct notes_tree *t,
1118                const unsigned char *object_sha1)
1119{
1120        struct leaf_node *found;
1121
1122        if (!t)
1123                t = &default_notes_tree;
1124        assert(t->initialized);
1125        found = note_tree_find(t, t->root, 0, object_sha1);
1126        return found ? found->val_sha1 : NULL;
1127}
1128
1129int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1130                void *cb_data)
1131{
1132        if (!t)
1133                t = &default_notes_tree;
1134        assert(t->initialized);
1135        return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1136}
1137
1138int write_notes_tree(struct notes_tree *t, unsigned char *result)
1139{
1140        struct tree_write_stack root;
1141        struct write_each_note_data cb_data;
1142        int ret;
1143
1144        if (!t)
1145                t = &default_notes_tree;
1146        assert(t->initialized);
1147
1148        /* Prepare for traversal of current notes tree */
1149        root.next = NULL; /* last forward entry in list is grounded */
1150        strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1151        root.path[0] = root.path[1] = '\0';
1152        cb_data.root = &root;
1153        cb_data.next_non_note = t->first_non_note;
1154
1155        /* Write tree objects representing current notes tree */
1156        ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1157                                FOR_EACH_NOTE_YIELD_SUBTREES,
1158                        write_each_note, &cb_data) ||
1159                write_each_non_note_until(NULL, &cb_data) ||
1160                tree_write_stack_finish_subtree(&root) ||
1161                write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1162        strbuf_release(&root.buf);
1163        return ret;
1164}
1165
1166void prune_notes(struct notes_tree *t, int flags)
1167{
1168        struct note_delete_list *l = NULL;
1169
1170        if (!t)
1171                t = &default_notes_tree;
1172        assert(t->initialized);
1173
1174        for_each_note(t, 0, prune_notes_helper, &l);
1175
1176        while (l) {
1177                if (flags & NOTES_PRUNE_VERBOSE)
1178                        printf("%s\n", sha1_to_hex(l->sha1));
1179                if (!(flags & NOTES_PRUNE_DRYRUN))
1180                        remove_note(t, l->sha1);
1181                l = l->next;
1182        }
1183}
1184
1185void free_notes(struct notes_tree *t)
1186{
1187        if (!t)
1188                t = &default_notes_tree;
1189        if (t->root)
1190                note_tree_free(t->root);
1191        free(t->root);
1192        while (t->first_non_note) {
1193                t->prev_non_note = t->first_non_note->next;
1194                free(t->first_non_note->path);
1195                free(t->first_non_note);
1196                t->first_non_note = t->prev_non_note;
1197        }
1198        free(t->ref);
1199        memset(t, 0, sizeof(struct notes_tree));
1200}
1201
1202/*
1203 * Fill the given strbuf with the notes associated with the given object.
1204 *
1205 * If the given notes_tree structure is not initialized, it will be auto-
1206 * initialized to the default value (see documentation for init_notes() above).
1207 * If the given notes_tree is NULL, the internal/default notes_tree will be
1208 * used instead.
1209 *
1210 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1211 * for human consumption.
1212 */
1213static void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1214                        struct strbuf *sb, const char *output_encoding, int raw)
1215{
1216        static const char utf8[] = "utf-8";
1217        const unsigned char *sha1;
1218        char *msg, *msg_p;
1219        unsigned long linelen, msglen;
1220        enum object_type type;
1221
1222        if (!t)
1223                t = &default_notes_tree;
1224        if (!t->initialized)
1225                init_notes(t, NULL, NULL, 0);
1226
1227        sha1 = get_note(t, object_sha1);
1228        if (!sha1)
1229                return;
1230
1231        if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) {
1232                free(msg);
1233                return;
1234        }
1235
1236        if (output_encoding && *output_encoding &&
1237            !is_encoding_utf8(output_encoding)) {
1238                char *reencoded = reencode_string(msg, output_encoding, utf8);
1239                if (reencoded) {
1240                        free(msg);
1241                        msg = reencoded;
1242                        msglen = strlen(msg);
1243                }
1244        }
1245
1246        /* we will end the annotation by a newline anyway */
1247        if (msglen && msg[msglen - 1] == '\n')
1248                msglen--;
1249
1250        if (!raw) {
1251                const char *ref = t->ref;
1252                if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1253                        strbuf_addstr(sb, "\nNotes:\n");
1254                } else {
1255                        if (starts_with(ref, "refs/"))
1256                                ref += 5;
1257                        if (starts_with(ref, "notes/"))
1258                                ref += 6;
1259                        strbuf_addf(sb, "\nNotes (%s):\n", ref);
1260                }
1261        }
1262
1263        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1264                linelen = strchrnul(msg_p, '\n') - msg_p;
1265
1266                if (!raw)
1267                        strbuf_addstr(sb, "    ");
1268                strbuf_add(sb, msg_p, linelen);
1269                strbuf_addch(sb, '\n');
1270        }
1271
1272        free(msg);
1273}
1274
1275void format_display_notes(const unsigned char *object_sha1,
1276                          struct strbuf *sb, const char *output_encoding, int raw)
1277{
1278        int i;
1279        assert(display_notes_trees);
1280        for (i = 0; display_notes_trees[i]; i++)
1281                format_note(display_notes_trees[i], object_sha1, sb,
1282                            output_encoding, raw);
1283}
1284
1285int copy_note(struct notes_tree *t,
1286              const unsigned char *from_obj, const unsigned char *to_obj,
1287              int force, combine_notes_fn combine_notes)
1288{
1289        const unsigned char *note = get_note(t, from_obj);
1290        const unsigned char *existing_note = get_note(t, to_obj);
1291
1292        if (!force && existing_note)
1293                return 1;
1294
1295        if (note)
1296                return add_note(t, to_obj, note, combine_notes);
1297        else if (existing_note)
1298                return add_note(t, to_obj, null_sha1, combine_notes);
1299
1300        return 0;
1301}
1302
1303void expand_notes_ref(struct strbuf *sb)
1304{
1305        if (starts_with(sb->buf, "refs/notes/"))
1306                return; /* we're happy */
1307        else if (starts_with(sb->buf, "notes/"))
1308                strbuf_insert(sb, 0, "refs/", 5);
1309        else
1310                strbuf_insert(sb, 0, "refs/notes/", 11);
1311}
1312
1313void expand_loose_notes_ref(struct strbuf *sb)
1314{
1315        unsigned char object[20];
1316
1317        if (get_sha1(sb->buf, object)) {
1318                /* fallback to expand_notes_ref */
1319                expand_notes_ref(sb);
1320        }
1321}