1#include "cache.h"
2#include "config.h"
3#include "notes.h"
4#include "blob.h"
5#include "tree.h"
6#include "utf8.h"
7#include "strbuf.h"
8#include "tree-walk.h"
9#include "string-list.h"
10#include "refs.h"
11
12/*
13 * Use a non-balancing simple 16-tree structure with struct int_node as
14 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
15 * 16-array of pointers to its children.
16 * The bottom 2 bits of each pointer is used to identify the pointer type
17 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
18 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
19 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
20 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
21 *
22 * The root node is a statically allocated struct int_node.
23 */
24struct int_node {
25 void *a[16];
26};
27
28/*
29 * Leaf nodes come in two variants, note entries and subtree entries,
30 * distinguished by the LSb of the leaf node pointer (see above).
31 * As a note entry, the key is the SHA1 of the referenced object, and the
32 * value is the SHA1 of the note object.
33 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
34 * referenced object, using the last byte of the key to store the length of
35 * the prefix. The value is the SHA1 of the tree object containing the notes
36 * subtree.
37 */
38struct leaf_node {
39 unsigned char key_sha1[20];
40 unsigned char val_sha1[20];
41};
42
43/*
44 * A notes tree may contain entries that are not notes, and that do not follow
45 * the naming conventions of notes. There are typically none/few of these, but
46 * we still need to keep track of them. Keep a simple linked list sorted alpha-
47 * betically on the non-note path. The list is populated when parsing tree
48 * objects in load_subtree(), and the non-notes are correctly written back into
49 * the tree objects produced by write_notes_tree().
50 */
51struct non_note {
52 struct non_note *next; /* grounded (last->next == NULL) */
53 char *path;
54 unsigned int mode;
55 unsigned char sha1[20];
56};
57
58#define PTR_TYPE_NULL 0
59#define PTR_TYPE_INTERNAL 1
60#define PTR_TYPE_NOTE 2
61#define PTR_TYPE_SUBTREE 3
62
63#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
64#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
65#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
66
67#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
68
69#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
70 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
71
72struct notes_tree default_notes_tree;
73
74static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
75static struct notes_tree **display_notes_trees;
76
77static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
78 struct int_node *node, unsigned int n);
79
80/*
81 * Search the tree until the appropriate location for the given key is found:
82 * 1. Start at the root node, with n = 0
83 * 2. If a[0] at the current level is a matching subtree entry, unpack that
84 * subtree entry and remove it; restart search at the current level.
85 * 3. Use the nth nibble of the key as an index into a:
86 * - If a[n] is an int_node, recurse from #2 into that node and increment n
87 * - If a matching subtree entry, unpack that subtree entry (and remove it);
88 * restart search at the current level.
89 * - Otherwise, we have found one of the following:
90 * - a subtree entry which does not match the key
91 * - a note entry which may or may not match the key
92 * - an unused leaf node (NULL)
93 * In any case, set *tree and *n, and return pointer to the tree location.
94 */
95static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
96 unsigned char *n, const unsigned char *key_sha1)
97{
98 struct leaf_node *l;
99 unsigned char i;
100 void *p = (*tree)->a[0];
101
102 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
103 l = (struct leaf_node *) CLR_PTR_TYPE(p);
104 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
105 /* unpack tree and resume search */
106 (*tree)->a[0] = NULL;
107 load_subtree(t, l, *tree, *n);
108 free(l);
109 return note_tree_search(t, tree, n, key_sha1);
110 }
111 }
112
113 i = GET_NIBBLE(*n, key_sha1);
114 p = (*tree)->a[i];
115 switch (GET_PTR_TYPE(p)) {
116 case PTR_TYPE_INTERNAL:
117 *tree = CLR_PTR_TYPE(p);
118 (*n)++;
119 return note_tree_search(t, tree, n, key_sha1);
120 case PTR_TYPE_SUBTREE:
121 l = (struct leaf_node *) CLR_PTR_TYPE(p);
122 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
123 /* unpack tree and resume search */
124 (*tree)->a[i] = NULL;
125 load_subtree(t, l, *tree, *n);
126 free(l);
127 return note_tree_search(t, tree, n, key_sha1);
128 }
129 /* fall through */
130 default:
131 return &((*tree)->a[i]);
132 }
133}
134
135/*
136 * To find a leaf_node:
137 * Search to the tree location appropriate for the given key:
138 * If a note entry with matching key, return the note entry, else return NULL.
139 */
140static struct leaf_node *note_tree_find(struct notes_tree *t,
141 struct int_node *tree, unsigned char n,
142 const unsigned char *key_sha1)
143{
144 void **p = note_tree_search(t, &tree, &n, key_sha1);
145 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
146 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
147 if (!hashcmp(key_sha1, l->key_sha1))
148 return l;
149 }
150 return NULL;
151}
152
153/*
154 * How to consolidate an int_node:
155 * If there are > 1 non-NULL entries, give up and return non-zero.
156 * Otherwise replace the int_node at the given index in the given parent node
157 * with the only NOTE entry (or a NULL entry if no entries) from the given
158 * tree, and return 0.
159 */
160static int note_tree_consolidate(struct int_node *tree,
161 struct int_node *parent, unsigned char index)
162{
163 unsigned int i;
164 void *p = NULL;
165
166 assert(tree && parent);
167 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
168
169 for (i = 0; i < 16; i++) {
170 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
171 if (p) /* more than one entry */
172 return -2;
173 p = tree->a[i];
174 }
175 }
176
177 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
178 return -2;
179 /* replace tree with p in parent[index] */
180 parent->a[index] = p;
181 free(tree);
182 return 0;
183}
184
185/*
186 * To remove a leaf_node:
187 * Search to the tree location appropriate for the given leaf_node's key:
188 * - If location does not hold a matching entry, abort and do nothing.
189 * - Copy the matching entry's value into the given entry.
190 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
191 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
192 */
193static void note_tree_remove(struct notes_tree *t,
194 struct int_node *tree, unsigned char n,
195 struct leaf_node *entry)
196{
197 struct leaf_node *l;
198 struct int_node *parent_stack[20];
199 unsigned char i, j;
200 void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
201
202 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
203 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
204 return; /* type mismatch, nothing to remove */
205 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
206 if (hashcmp(l->key_sha1, entry->key_sha1))
207 return; /* key mismatch, nothing to remove */
208
209 /* we have found a matching entry */
210 hashcpy(entry->val_sha1, l->val_sha1);
211 free(l);
212 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
213
214 /* consolidate this tree level, and parent levels, if possible */
215 if (!n)
216 return; /* cannot consolidate top level */
217 /* first, build stack of ancestors between root and current node */
218 parent_stack[0] = t->root;
219 for (i = 0; i < n; i++) {
220 j = GET_NIBBLE(i, entry->key_sha1);
221 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
222 }
223 assert(i == n && parent_stack[i] == tree);
224 /* next, unwind stack until note_tree_consolidate() is done */
225 while (i > 0 &&
226 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
227 GET_NIBBLE(i - 1, entry->key_sha1)))
228 i--;
229}
230
231/*
232 * To insert a leaf_node:
233 * Search to the tree location appropriate for the given leaf_node's key:
234 * - If location is unused (NULL), store the tweaked pointer directly there
235 * - If location holds a note entry that matches the note-to-be-inserted, then
236 * combine the two notes (by calling the given combine_notes function).
237 * - If location holds a note entry that matches the subtree-to-be-inserted,
238 * then unpack the subtree-to-be-inserted into the location.
239 * - If location holds a matching subtree entry, unpack the subtree at that
240 * location, and restart the insert operation from that level.
241 * - Else, create a new int_node, holding both the node-at-location and the
242 * node-to-be-inserted, and store the new int_node into the location.
243 */
244static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
245 unsigned char n, struct leaf_node *entry, unsigned char type,
246 combine_notes_fn combine_notes)
247{
248 struct int_node *new_node;
249 struct leaf_node *l;
250 void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
251 int ret = 0;
252
253 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
254 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
255 switch (GET_PTR_TYPE(*p)) {
256 case PTR_TYPE_NULL:
257 assert(!*p);
258 if (is_null_sha1(entry->val_sha1))
259 free(entry);
260 else
261 *p = SET_PTR_TYPE(entry, type);
262 return 0;
263 case PTR_TYPE_NOTE:
264 switch (type) {
265 case PTR_TYPE_NOTE:
266 if (!hashcmp(l->key_sha1, entry->key_sha1)) {
267 /* skip concatenation if l == entry */
268 if (!hashcmp(l->val_sha1, entry->val_sha1))
269 return 0;
270
271 ret = combine_notes(l->val_sha1,
272 entry->val_sha1);
273 if (!ret && is_null_sha1(l->val_sha1))
274 note_tree_remove(t, tree, n, entry);
275 free(entry);
276 return ret;
277 }
278 break;
279 case PTR_TYPE_SUBTREE:
280 if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
281 entry->key_sha1)) {
282 /* unpack 'entry' */
283 load_subtree(t, entry, tree, n);
284 free(entry);
285 return 0;
286 }
287 break;
288 }
289 break;
290 case PTR_TYPE_SUBTREE:
291 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
292 /* unpack 'l' and restart insert */
293 *p = NULL;
294 load_subtree(t, l, tree, n);
295 free(l);
296 return note_tree_insert(t, tree, n, entry, type,
297 combine_notes);
298 }
299 break;
300 }
301
302 /* non-matching leaf_node */
303 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
304 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
305 if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
306 free(entry);
307 return 0;
308 }
309 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
310 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
311 combine_notes);
312 if (ret)
313 return ret;
314 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
315 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
316}
317
318/* Free the entire notes data contained in the given tree */
319static void note_tree_free(struct int_node *tree)
320{
321 unsigned int i;
322 for (i = 0; i < 16; i++) {
323 void *p = tree->a[i];
324 switch (GET_PTR_TYPE(p)) {
325 case PTR_TYPE_INTERNAL:
326 note_tree_free(CLR_PTR_TYPE(p));
327 /* fall through */
328 case PTR_TYPE_NOTE:
329 case PTR_TYPE_SUBTREE:
330 free(CLR_PTR_TYPE(p));
331 }
332 }
333}
334
335/*
336 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
337 * - hex - Partial SHA1 segment in ASCII hex format
338 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
339 * - sha1 - Partial SHA1 value is written here
340 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
341 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
342 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
343 * Pads sha1 with NULs up to sha1_len (not included in returned length).
344 */
345static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
346 unsigned char *sha1, unsigned int sha1_len)
347{
348 unsigned int i, len = hex_len >> 1;
349 if (hex_len % 2 != 0 || len > sha1_len)
350 return -1;
351 for (i = 0; i < len; i++) {
352 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
353 if (val & ~0xff)
354 return -1;
355 *sha1++ = val;
356 hex += 2;
357 }
358 for (; i < sha1_len; i++)
359 *sha1++ = 0;
360 return len;
361}
362
363static int non_note_cmp(const struct non_note *a, const struct non_note *b)
364{
365 return strcmp(a->path, b->path);
366}
367
368/* note: takes ownership of path string */
369static void add_non_note(struct notes_tree *t, char *path,
370 unsigned int mode, const unsigned char *sha1)
371{
372 struct non_note *p = t->prev_non_note, *n;
373 n = (struct non_note *) xmalloc(sizeof(struct non_note));
374 n->next = NULL;
375 n->path = path;
376 n->mode = mode;
377 hashcpy(n->sha1, sha1);
378 t->prev_non_note = n;
379
380 if (!t->first_non_note) {
381 t->first_non_note = n;
382 return;
383 }
384
385 if (non_note_cmp(p, n) < 0)
386 ; /* do nothing */
387 else if (non_note_cmp(t->first_non_note, n) <= 0)
388 p = t->first_non_note;
389 else {
390 /* n sorts before t->first_non_note */
391 n->next = t->first_non_note;
392 t->first_non_note = n;
393 return;
394 }
395
396 /* n sorts equal or after p */
397 while (p->next && non_note_cmp(p->next, n) <= 0)
398 p = p->next;
399
400 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
401 assert(strcmp(p->path, n->path) == 0);
402 p->mode = n->mode;
403 hashcpy(p->sha1, n->sha1);
404 free(n);
405 t->prev_non_note = p;
406 return;
407 }
408
409 /* n sorts between p and p->next */
410 n->next = p->next;
411 p->next = n;
412}
413
414static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
415 struct int_node *node, unsigned int n)
416{
417 unsigned char object_sha1[20];
418 unsigned int prefix_len;
419 void *buf;
420 struct tree_desc desc;
421 struct name_entry entry;
422 int len, path_len;
423 unsigned char type;
424 struct leaf_node *l;
425
426 buf = fill_tree_descriptor(&desc, subtree->val_sha1);
427 if (!buf)
428 die("Could not read %s for notes-index",
429 sha1_to_hex(subtree->val_sha1));
430
431 prefix_len = subtree->key_sha1[19];
432 assert(prefix_len * 2 >= n);
433 memcpy(object_sha1, subtree->key_sha1, prefix_len);
434 while (tree_entry(&desc, &entry)) {
435 path_len = strlen(entry.path);
436 len = get_sha1_hex_segment(entry.path, path_len,
437 object_sha1 + prefix_len, 20 - prefix_len);
438 if (len < 0)
439 goto handle_non_note; /* entry.path is not a SHA1 */
440 len += prefix_len;
441
442 /*
443 * If object SHA1 is complete (len == 20), assume note object
444 * If object SHA1 is incomplete (len < 20), and current
445 * component consists of 2 hex chars, assume note subtree
446 */
447 if (len <= 20) {
448 type = PTR_TYPE_NOTE;
449 l = (struct leaf_node *)
450 xcalloc(1, sizeof(struct leaf_node));
451 hashcpy(l->key_sha1, object_sha1);
452 hashcpy(l->val_sha1, entry.oid->hash);
453 if (len < 20) {
454 if (!S_ISDIR(entry.mode) || path_len != 2)
455 goto handle_non_note; /* not subtree */
456 l->key_sha1[19] = (unsigned char) len;
457 type = PTR_TYPE_SUBTREE;
458 }
459 if (note_tree_insert(t, node, n, l, type,
460 combine_notes_concatenate))
461 die("Failed to load %s %s into notes tree "
462 "from %s",
463 type == PTR_TYPE_NOTE ? "note" : "subtree",
464 sha1_to_hex(l->key_sha1), t->ref);
465 }
466 continue;
467
468handle_non_note:
469 /*
470 * Determine full path for this non-note entry:
471 * The filename is already found in entry.path, but the
472 * directory part of the path must be deduced from the subtree
473 * containing this entry. We assume here that the overall notes
474 * tree follows a strict byte-based progressive fanout
475 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
476 * e.g. 4/36 fanout). This means that if a non-note is found at
477 * path "dead/beef", the following code will register it as
478 * being found on "de/ad/beef".
479 * On the other hand, if you use such non-obvious non-note
480 * paths in the middle of a notes tree, you deserve what's
481 * coming to you ;). Note that for non-notes that are not
482 * SHA1-like at the top level, there will be no problems.
483 *
484 * To conclude, it is strongly advised to make sure non-notes
485 * have at least one non-hex character in the top-level path
486 * component.
487 */
488 {
489 struct strbuf non_note_path = STRBUF_INIT;
490 const char *q = sha1_to_hex(subtree->key_sha1);
491 int i;
492 for (i = 0; i < prefix_len; i++) {
493 strbuf_addch(&non_note_path, *q++);
494 strbuf_addch(&non_note_path, *q++);
495 strbuf_addch(&non_note_path, '/');
496 }
497 strbuf_addstr(&non_note_path, entry.path);
498 add_non_note(t, strbuf_detach(&non_note_path, NULL),
499 entry.mode, entry.oid->hash);
500 }
501 }
502 free(buf);
503}
504
505/*
506 * Determine optimal on-disk fanout for this part of the notes tree
507 *
508 * Given a (sub)tree and the level in the internal tree structure, determine
509 * whether or not the given existing fanout should be expanded for this
510 * (sub)tree.
511 *
512 * Values of the 'fanout' variable:
513 * - 0: No fanout (all notes are stored directly in the root notes tree)
514 * - 1: 2/38 fanout
515 * - 2: 2/2/36 fanout
516 * - 3: 2/2/2/34 fanout
517 * etc.
518 */
519static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
520 unsigned char fanout)
521{
522 /*
523 * The following is a simple heuristic that works well in practice:
524 * For each even-numbered 16-tree level (remember that each on-disk
525 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
526 * entries at that tree level. If all of them are either int_nodes or
527 * subtree entries, then there are likely plenty of notes below this
528 * level, so we return an incremented fanout.
529 */
530 unsigned int i;
531 if ((n % 2) || (n > 2 * fanout))
532 return fanout;
533 for (i = 0; i < 16; i++) {
534 switch (GET_PTR_TYPE(tree->a[i])) {
535 case PTR_TYPE_SUBTREE:
536 case PTR_TYPE_INTERNAL:
537 continue;
538 default:
539 return fanout;
540 }
541 }
542 return fanout + 1;
543}
544
545/* hex SHA1 + 19 * '/' + NUL */
546#define FANOUT_PATH_MAX 40 + 19 + 1
547
548static void construct_path_with_fanout(const unsigned char *sha1,
549 unsigned char fanout, char *path)
550{
551 unsigned int i = 0, j = 0;
552 const char *hex_sha1 = sha1_to_hex(sha1);
553 assert(fanout < 20);
554 while (fanout) {
555 path[i++] = hex_sha1[j++];
556 path[i++] = hex_sha1[j++];
557 path[i++] = '/';
558 fanout--;
559 }
560 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
561}
562
563static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
564 unsigned char n, unsigned char fanout, int flags,
565 each_note_fn fn, void *cb_data)
566{
567 unsigned int i;
568 void *p;
569 int ret = 0;
570 struct leaf_node *l;
571 static char path[FANOUT_PATH_MAX];
572
573 fanout = determine_fanout(tree, n, fanout);
574 for (i = 0; i < 16; i++) {
575redo:
576 p = tree->a[i];
577 switch (GET_PTR_TYPE(p)) {
578 case PTR_TYPE_INTERNAL:
579 /* recurse into int_node */
580 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
581 fanout, flags, fn, cb_data);
582 break;
583 case PTR_TYPE_SUBTREE:
584 l = (struct leaf_node *) CLR_PTR_TYPE(p);
585 /*
586 * Subtree entries in the note tree represent parts of
587 * the note tree that have not yet been explored. There
588 * is a direct relationship between subtree entries at
589 * level 'n' in the tree, and the 'fanout' variable:
590 * Subtree entries at level 'n <= 2 * fanout' should be
591 * preserved, since they correspond exactly to a fanout
592 * directory in the on-disk structure. However, subtree
593 * entries at level 'n > 2 * fanout' should NOT be
594 * preserved, but rather consolidated into the above
595 * notes tree level. We achieve this by unconditionally
596 * unpacking subtree entries that exist below the
597 * threshold level at 'n = 2 * fanout'.
598 */
599 if (n <= 2 * fanout &&
600 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
601 /* invoke callback with subtree */
602 unsigned int path_len =
603 l->key_sha1[19] * 2 + fanout;
604 assert(path_len < FANOUT_PATH_MAX - 1);
605 construct_path_with_fanout(l->key_sha1, fanout,
606 path);
607 /* Create trailing slash, if needed */
608 if (path[path_len - 1] != '/')
609 path[path_len++] = '/';
610 path[path_len] = '\0';
611 ret = fn(l->key_sha1, l->val_sha1, path,
612 cb_data);
613 }
614 if (n > fanout * 2 ||
615 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
616 /* unpack subtree and resume traversal */
617 tree->a[i] = NULL;
618 load_subtree(t, l, tree, n);
619 free(l);
620 goto redo;
621 }
622 break;
623 case PTR_TYPE_NOTE:
624 l = (struct leaf_node *) CLR_PTR_TYPE(p);
625 construct_path_with_fanout(l->key_sha1, fanout, path);
626 ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
627 break;
628 }
629 if (ret)
630 return ret;
631 }
632 return 0;
633}
634
635struct tree_write_stack {
636 struct tree_write_stack *next;
637 struct strbuf buf;
638 char path[2]; /* path to subtree in next, if any */
639};
640
641static inline int matches_tree_write_stack(struct tree_write_stack *tws,
642 const char *full_path)
643{
644 return full_path[0] == tws->path[0] &&
645 full_path[1] == tws->path[1] &&
646 full_path[2] == '/';
647}
648
649static void write_tree_entry(struct strbuf *buf, unsigned int mode,
650 const char *path, unsigned int path_len, const
651 unsigned char *sha1)
652{
653 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
654 strbuf_add(buf, sha1, 20);
655}
656
657static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
658 const char *path)
659{
660 struct tree_write_stack *n;
661 assert(!tws->next);
662 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
663 n = (struct tree_write_stack *)
664 xmalloc(sizeof(struct tree_write_stack));
665 n->next = NULL;
666 strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
667 n->path[0] = n->path[1] = '\0';
668 tws->next = n;
669 tws->path[0] = path[0];
670 tws->path[1] = path[1];
671}
672
673static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
674{
675 int ret;
676 struct tree_write_stack *n = tws->next;
677 unsigned char s[20];
678 if (n) {
679 ret = tree_write_stack_finish_subtree(n);
680 if (ret)
681 return ret;
682 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
683 if (ret)
684 return ret;
685 strbuf_release(&n->buf);
686 free(n);
687 tws->next = NULL;
688 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
689 tws->path[0] = tws->path[1] = '\0';
690 }
691 return 0;
692}
693
694static int write_each_note_helper(struct tree_write_stack *tws,
695 const char *path, unsigned int mode,
696 const unsigned char *sha1)
697{
698 size_t path_len = strlen(path);
699 unsigned int n = 0;
700 int ret;
701
702 /* Determine common part of tree write stack */
703 while (tws && 3 * n < path_len &&
704 matches_tree_write_stack(tws, path + 3 * n)) {
705 n++;
706 tws = tws->next;
707 }
708
709 /* tws point to last matching tree_write_stack entry */
710 ret = tree_write_stack_finish_subtree(tws);
711 if (ret)
712 return ret;
713
714 /* Start subtrees needed to satisfy path */
715 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
716 tree_write_stack_init_subtree(tws, path + 3 * n);
717 n++;
718 tws = tws->next;
719 }
720
721 /* There should be no more directory components in the given path */
722 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
723
724 /* Finally add given entry to the current tree object */
725 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
726 sha1);
727
728 return 0;
729}
730
731struct write_each_note_data {
732 struct tree_write_stack *root;
733 struct non_note *next_non_note;
734};
735
736static int write_each_non_note_until(const char *note_path,
737 struct write_each_note_data *d)
738{
739 struct non_note *n = d->next_non_note;
740 int cmp = 0, ret;
741 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
742 if (note_path && cmp == 0)
743 ; /* do nothing, prefer note to non-note */
744 else {
745 ret = write_each_note_helper(d->root, n->path, n->mode,
746 n->sha1);
747 if (ret)
748 return ret;
749 }
750 n = n->next;
751 }
752 d->next_non_note = n;
753 return 0;
754}
755
756static int write_each_note(const unsigned char *object_sha1,
757 const unsigned char *note_sha1, char *note_path,
758 void *cb_data)
759{
760 struct write_each_note_data *d =
761 (struct write_each_note_data *) cb_data;
762 size_t note_path_len = strlen(note_path);
763 unsigned int mode = 0100644;
764
765 if (note_path[note_path_len - 1] == '/') {
766 /* subtree entry */
767 note_path_len--;
768 note_path[note_path_len] = '\0';
769 mode = 040000;
770 }
771 assert(note_path_len <= 40 + 19);
772
773 /* Weave non-note entries into note entries */
774 return write_each_non_note_until(note_path, d) ||
775 write_each_note_helper(d->root, note_path, mode, note_sha1);
776}
777
778struct note_delete_list {
779 struct note_delete_list *next;
780 const unsigned char *sha1;
781};
782
783static int prune_notes_helper(const unsigned char *object_sha1,
784 const unsigned char *note_sha1, char *note_path,
785 void *cb_data)
786{
787 struct note_delete_list **l = (struct note_delete_list **) cb_data;
788 struct note_delete_list *n;
789
790 if (has_sha1_file(object_sha1))
791 return 0; /* nothing to do for this note */
792
793 /* failed to find object => prune this note */
794 n = (struct note_delete_list *) xmalloc(sizeof(*n));
795 n->next = *l;
796 n->sha1 = object_sha1;
797 *l = n;
798 return 0;
799}
800
801int combine_notes_concatenate(unsigned char *cur_sha1,
802 const unsigned char *new_sha1)
803{
804 char *cur_msg = NULL, *new_msg = NULL, *buf;
805 unsigned long cur_len, new_len, buf_len;
806 enum object_type cur_type, new_type;
807 int ret;
808
809 /* read in both note blob objects */
810 if (!is_null_sha1(new_sha1))
811 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
812 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
813 free(new_msg);
814 return 0;
815 }
816 if (!is_null_sha1(cur_sha1))
817 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
818 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
819 free(cur_msg);
820 free(new_msg);
821 hashcpy(cur_sha1, new_sha1);
822 return 0;
823 }
824
825 /* we will separate the notes by two newlines anyway */
826 if (cur_msg[cur_len - 1] == '\n')
827 cur_len--;
828
829 /* concatenate cur_msg and new_msg into buf */
830 buf_len = cur_len + 2 + new_len;
831 buf = (char *) xmalloc(buf_len);
832 memcpy(buf, cur_msg, cur_len);
833 buf[cur_len] = '\n';
834 buf[cur_len + 1] = '\n';
835 memcpy(buf + cur_len + 2, new_msg, new_len);
836 free(cur_msg);
837 free(new_msg);
838
839 /* create a new blob object from buf */
840 ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
841 free(buf);
842 return ret;
843}
844
845int combine_notes_overwrite(unsigned char *cur_sha1,
846 const unsigned char *new_sha1)
847{
848 hashcpy(cur_sha1, new_sha1);
849 return 0;
850}
851
852int combine_notes_ignore(unsigned char *cur_sha1,
853 const unsigned char *new_sha1)
854{
855 return 0;
856}
857
858/*
859 * Add the lines from the named object to list, with trailing
860 * newlines removed.
861 */
862static int string_list_add_note_lines(struct string_list *list,
863 const unsigned char *sha1)
864{
865 char *data;
866 unsigned long len;
867 enum object_type t;
868
869 if (is_null_sha1(sha1))
870 return 0;
871
872 /* read_sha1_file NUL-terminates */
873 data = read_sha1_file(sha1, &t, &len);
874 if (t != OBJ_BLOB || !data || !len) {
875 free(data);
876 return t != OBJ_BLOB || !data;
877 }
878
879 /*
880 * If the last line of the file is EOL-terminated, this will
881 * add an empty string to the list. But it will be removed
882 * later, along with any empty strings that came from empty
883 * lines within the file.
884 */
885 string_list_split(list, data, '\n', -1);
886 free(data);
887 return 0;
888}
889
890static int string_list_join_lines_helper(struct string_list_item *item,
891 void *cb_data)
892{
893 struct strbuf *buf = cb_data;
894 strbuf_addstr(buf, item->string);
895 strbuf_addch(buf, '\n');
896 return 0;
897}
898
899int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
900 const unsigned char *new_sha1)
901{
902 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
903 struct strbuf buf = STRBUF_INIT;
904 int ret = 1;
905
906 /* read both note blob objects into unique_lines */
907 if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
908 goto out;
909 if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
910 goto out;
911 string_list_remove_empty_items(&sort_uniq_list, 0);
912 string_list_sort(&sort_uniq_list);
913 string_list_remove_duplicates(&sort_uniq_list, 0);
914
915 /* create a new blob object from sort_uniq_list */
916 if (for_each_string_list(&sort_uniq_list,
917 string_list_join_lines_helper, &buf))
918 goto out;
919
920 ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
921
922out:
923 strbuf_release(&buf);
924 string_list_clear(&sort_uniq_list, 0);
925 return ret;
926}
927
928static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
929 int flag, void *cb)
930{
931 struct string_list *refs = cb;
932 if (!unsorted_string_list_has_string(refs, refname))
933 string_list_append(refs, refname);
934 return 0;
935}
936
937/*
938 * The list argument must have strdup_strings set on it.
939 */
940void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
941{
942 assert(list->strdup_strings);
943 if (has_glob_specials(glob)) {
944 for_each_glob_ref(string_list_add_one_ref, glob, list);
945 } else {
946 unsigned char sha1[20];
947 if (get_sha1(glob, sha1))
948 warning("notes ref %s is invalid", glob);
949 if (!unsorted_string_list_has_string(list, glob))
950 string_list_append(list, glob);
951 }
952}
953
954void string_list_add_refs_from_colon_sep(struct string_list *list,
955 const char *globs)
956{
957 struct string_list split = STRING_LIST_INIT_NODUP;
958 char *globs_copy = xstrdup(globs);
959 int i;
960
961 string_list_split_in_place(&split, globs_copy, ':', -1);
962 string_list_remove_empty_items(&split, 0);
963
964 for (i = 0; i < split.nr; i++)
965 string_list_add_refs_by_glob(list, split.items[i].string);
966
967 string_list_clear(&split, 0);
968 free(globs_copy);
969}
970
971static int notes_display_config(const char *k, const char *v, void *cb)
972{
973 int *load_refs = cb;
974
975 if (*load_refs && !strcmp(k, "notes.displayref")) {
976 if (!v)
977 config_error_nonbool(k);
978 string_list_add_refs_by_glob(&display_notes_refs, v);
979 }
980
981 return 0;
982}
983
984const char *default_notes_ref(void)
985{
986 const char *notes_ref = NULL;
987 if (!notes_ref)
988 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
989 if (!notes_ref)
990 notes_ref = notes_ref_name; /* value of core.notesRef config */
991 if (!notes_ref)
992 notes_ref = GIT_NOTES_DEFAULT_REF;
993 return notes_ref;
994}
995
996void init_notes(struct notes_tree *t, const char *notes_ref,
997 combine_notes_fn combine_notes, int flags)
998{
999 struct object_id oid, object_oid;
1000 unsigned mode;
1001 struct leaf_node root_tree;
1002
1003 if (!t)
1004 t = &default_notes_tree;
1005 assert(!t->initialized);
1006
1007 if (!notes_ref)
1008 notes_ref = default_notes_ref();
1009
1010 if (!combine_notes)
1011 combine_notes = combine_notes_concatenate;
1012
1013 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1014 t->first_non_note = NULL;
1015 t->prev_non_note = NULL;
1016 t->ref = xstrdup_or_null(notes_ref);
1017 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1018 t->combine_notes = combine_notes;
1019 t->initialized = 1;
1020 t->dirty = 0;
1021
1022 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1023 get_sha1_treeish(notes_ref, object_oid.hash))
1024 return;
1025 if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1026 die("Cannot use notes ref %s", notes_ref);
1027 if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1028 die("Failed to read notes tree referenced by %s (%s)",
1029 notes_ref, oid_to_hex(&object_oid));
1030
1031 hashclr(root_tree.key_sha1);
1032 hashcpy(root_tree.val_sha1, oid.hash);
1033 load_subtree(t, &root_tree, t->root, 0);
1034}
1035
1036struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1037{
1038 struct string_list_item *item;
1039 int counter = 0;
1040 struct notes_tree **trees;
1041 ALLOC_ARRAY(trees, refs->nr + 1);
1042 for_each_string_list_item(item, refs) {
1043 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1044 init_notes(t, item->string, combine_notes_ignore, flags);
1045 trees[counter++] = t;
1046 }
1047 trees[counter] = NULL;
1048 return trees;
1049}
1050
1051void init_display_notes(struct display_notes_opt *opt)
1052{
1053 char *display_ref_env;
1054 int load_config_refs = 0;
1055 display_notes_refs.strdup_strings = 1;
1056
1057 assert(!display_notes_trees);
1058
1059 if (!opt || opt->use_default_notes > 0 ||
1060 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1061 string_list_append(&display_notes_refs, default_notes_ref());
1062 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1063 if (display_ref_env) {
1064 string_list_add_refs_from_colon_sep(&display_notes_refs,
1065 display_ref_env);
1066 load_config_refs = 0;
1067 } else
1068 load_config_refs = 1;
1069 }
1070
1071 git_config(notes_display_config, &load_config_refs);
1072
1073 if (opt) {
1074 struct string_list_item *item;
1075 for_each_string_list_item(item, &opt->extra_notes_refs)
1076 string_list_add_refs_by_glob(&display_notes_refs,
1077 item->string);
1078 }
1079
1080 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1081 string_list_clear(&display_notes_refs, 0);
1082}
1083
1084int add_note(struct notes_tree *t, const unsigned char *object_sha1,
1085 const unsigned char *note_sha1, combine_notes_fn combine_notes)
1086{
1087 struct leaf_node *l;
1088
1089 if (!t)
1090 t = &default_notes_tree;
1091 assert(t->initialized);
1092 t->dirty = 1;
1093 if (!combine_notes)
1094 combine_notes = t->combine_notes;
1095 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1096 hashcpy(l->key_sha1, object_sha1);
1097 hashcpy(l->val_sha1, note_sha1);
1098 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1099}
1100
1101int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1102{
1103 struct leaf_node l;
1104
1105 if (!t)
1106 t = &default_notes_tree;
1107 assert(t->initialized);
1108 hashcpy(l.key_sha1, object_sha1);
1109 hashclr(l.val_sha1);
1110 note_tree_remove(t, t->root, 0, &l);
1111 if (is_null_sha1(l.val_sha1)) /* no note was removed */
1112 return 1;
1113 t->dirty = 1;
1114 return 0;
1115}
1116
1117const unsigned char *get_note(struct notes_tree *t,
1118 const unsigned char *object_sha1)
1119{
1120 struct leaf_node *found;
1121
1122 if (!t)
1123 t = &default_notes_tree;
1124 assert(t->initialized);
1125 found = note_tree_find(t, t->root, 0, object_sha1);
1126 return found ? found->val_sha1 : NULL;
1127}
1128
1129int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1130 void *cb_data)
1131{
1132 if (!t)
1133 t = &default_notes_tree;
1134 assert(t->initialized);
1135 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1136}
1137
1138int write_notes_tree(struct notes_tree *t, unsigned char *result)
1139{
1140 struct tree_write_stack root;
1141 struct write_each_note_data cb_data;
1142 int ret;
1143
1144 if (!t)
1145 t = &default_notes_tree;
1146 assert(t->initialized);
1147
1148 /* Prepare for traversal of current notes tree */
1149 root.next = NULL; /* last forward entry in list is grounded */
1150 strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1151 root.path[0] = root.path[1] = '\0';
1152 cb_data.root = &root;
1153 cb_data.next_non_note = t->first_non_note;
1154
1155 /* Write tree objects representing current notes tree */
1156 ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1157 FOR_EACH_NOTE_YIELD_SUBTREES,
1158 write_each_note, &cb_data) ||
1159 write_each_non_note_until(NULL, &cb_data) ||
1160 tree_write_stack_finish_subtree(&root) ||
1161 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1162 strbuf_release(&root.buf);
1163 return ret;
1164}
1165
1166void prune_notes(struct notes_tree *t, int flags)
1167{
1168 struct note_delete_list *l = NULL;
1169
1170 if (!t)
1171 t = &default_notes_tree;
1172 assert(t->initialized);
1173
1174 for_each_note(t, 0, prune_notes_helper, &l);
1175
1176 while (l) {
1177 if (flags & NOTES_PRUNE_VERBOSE)
1178 printf("%s\n", sha1_to_hex(l->sha1));
1179 if (!(flags & NOTES_PRUNE_DRYRUN))
1180 remove_note(t, l->sha1);
1181 l = l->next;
1182 }
1183}
1184
1185void free_notes(struct notes_tree *t)
1186{
1187 if (!t)
1188 t = &default_notes_tree;
1189 if (t->root)
1190 note_tree_free(t->root);
1191 free(t->root);
1192 while (t->first_non_note) {
1193 t->prev_non_note = t->first_non_note->next;
1194 free(t->first_non_note->path);
1195 free(t->first_non_note);
1196 t->first_non_note = t->prev_non_note;
1197 }
1198 free(t->ref);
1199 memset(t, 0, sizeof(struct notes_tree));
1200}
1201
1202/*
1203 * Fill the given strbuf with the notes associated with the given object.
1204 *
1205 * If the given notes_tree structure is not initialized, it will be auto-
1206 * initialized to the default value (see documentation for init_notes() above).
1207 * If the given notes_tree is NULL, the internal/default notes_tree will be
1208 * used instead.
1209 *
1210 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1211 * for human consumption.
1212 */
1213static void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1214 struct strbuf *sb, const char *output_encoding, int raw)
1215{
1216 static const char utf8[] = "utf-8";
1217 const unsigned char *sha1;
1218 char *msg, *msg_p;
1219 unsigned long linelen, msglen;
1220 enum object_type type;
1221
1222 if (!t)
1223 t = &default_notes_tree;
1224 if (!t->initialized)
1225 init_notes(t, NULL, NULL, 0);
1226
1227 sha1 = get_note(t, object_sha1);
1228 if (!sha1)
1229 return;
1230
1231 if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) {
1232 free(msg);
1233 return;
1234 }
1235
1236 if (output_encoding && *output_encoding &&
1237 !is_encoding_utf8(output_encoding)) {
1238 char *reencoded = reencode_string(msg, output_encoding, utf8);
1239 if (reencoded) {
1240 free(msg);
1241 msg = reencoded;
1242 msglen = strlen(msg);
1243 }
1244 }
1245
1246 /* we will end the annotation by a newline anyway */
1247 if (msglen && msg[msglen - 1] == '\n')
1248 msglen--;
1249
1250 if (!raw) {
1251 const char *ref = t->ref;
1252 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1253 strbuf_addstr(sb, "\nNotes:\n");
1254 } else {
1255 if (starts_with(ref, "refs/"))
1256 ref += 5;
1257 if (starts_with(ref, "notes/"))
1258 ref += 6;
1259 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1260 }
1261 }
1262
1263 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1264 linelen = strchrnul(msg_p, '\n') - msg_p;
1265
1266 if (!raw)
1267 strbuf_addstr(sb, " ");
1268 strbuf_add(sb, msg_p, linelen);
1269 strbuf_addch(sb, '\n');
1270 }
1271
1272 free(msg);
1273}
1274
1275void format_display_notes(const unsigned char *object_sha1,
1276 struct strbuf *sb, const char *output_encoding, int raw)
1277{
1278 int i;
1279 assert(display_notes_trees);
1280 for (i = 0; display_notes_trees[i]; i++)
1281 format_note(display_notes_trees[i], object_sha1, sb,
1282 output_encoding, raw);
1283}
1284
1285int copy_note(struct notes_tree *t,
1286 const unsigned char *from_obj, const unsigned char *to_obj,
1287 int force, combine_notes_fn combine_notes)
1288{
1289 const unsigned char *note = get_note(t, from_obj);
1290 const unsigned char *existing_note = get_note(t, to_obj);
1291
1292 if (!force && existing_note)
1293 return 1;
1294
1295 if (note)
1296 return add_note(t, to_obj, note, combine_notes);
1297 else if (existing_note)
1298 return add_note(t, to_obj, null_sha1, combine_notes);
1299
1300 return 0;
1301}
1302
1303void expand_notes_ref(struct strbuf *sb)
1304{
1305 if (starts_with(sb->buf, "refs/notes/"))
1306 return; /* we're happy */
1307 else if (starts_with(sb->buf, "notes/"))
1308 strbuf_insert(sb, 0, "refs/", 5);
1309 else
1310 strbuf_insert(sb, 0, "refs/notes/", 11);
1311}
1312
1313void expand_loose_notes_ref(struct strbuf *sb)
1314{
1315 unsigned char object[20];
1316
1317 if (get_sha1(sb->buf, object)) {
1318 /* fallback to expand_notes_ref */
1319 expand_notes_ref(sb);
1320 }
1321}