b3a35dd82db18590bfad48f557873e7a47a3761d
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec_cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8
   9void child_process_init(struct child_process *child)
  10{
  11        memset(child, 0, sizeof(*child));
  12        argv_array_init(&child->args);
  13        argv_array_init(&child->env_array);
  14}
  15
  16void child_process_clear(struct child_process *child)
  17{
  18        argv_array_clear(&child->args);
  19        argv_array_clear(&child->env_array);
  20}
  21
  22struct child_to_clean {
  23        pid_t pid;
  24        struct child_process *process;
  25        struct child_to_clean *next;
  26};
  27static struct child_to_clean *children_to_clean;
  28static int installed_child_cleanup_handler;
  29
  30static void cleanup_children(int sig, int in_signal)
  31{
  32        struct child_to_clean *children_to_wait_for = NULL;
  33
  34        while (children_to_clean) {
  35                struct child_to_clean *p = children_to_clean;
  36                children_to_clean = p->next;
  37
  38                if (p->process && !in_signal) {
  39                        struct child_process *process = p->process;
  40                        if (process->clean_on_exit_handler) {
  41                                trace_printf(
  42                                        "trace: run_command: running exit handler for pid %"
  43                                        PRIuMAX, (uintmax_t)p->pid
  44                                );
  45                                process->clean_on_exit_handler(process);
  46                        }
  47                }
  48
  49                kill(p->pid, sig);
  50
  51                if (p->process && p->process->wait_after_clean) {
  52                        p->next = children_to_wait_for;
  53                        children_to_wait_for = p;
  54                } else {
  55                        if (!in_signal)
  56                                free(p);
  57                }
  58        }
  59
  60        while (children_to_wait_for) {
  61                struct child_to_clean *p = children_to_wait_for;
  62                children_to_wait_for = p->next;
  63
  64                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  65                        ; /* spin waiting for process exit or error */
  66
  67                if (!in_signal)
  68                        free(p);
  69        }
  70}
  71
  72static void cleanup_children_on_signal(int sig)
  73{
  74        cleanup_children(sig, 1);
  75        sigchain_pop(sig);
  76        raise(sig);
  77}
  78
  79static void cleanup_children_on_exit(void)
  80{
  81        cleanup_children(SIGTERM, 0);
  82}
  83
  84static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  85{
  86        struct child_to_clean *p = xmalloc(sizeof(*p));
  87        p->pid = pid;
  88        p->process = process;
  89        p->next = children_to_clean;
  90        children_to_clean = p;
  91
  92        if (!installed_child_cleanup_handler) {
  93                atexit(cleanup_children_on_exit);
  94                sigchain_push_common(cleanup_children_on_signal);
  95                installed_child_cleanup_handler = 1;
  96        }
  97}
  98
  99static void clear_child_for_cleanup(pid_t pid)
 100{
 101        struct child_to_clean **pp;
 102
 103        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 104                struct child_to_clean *clean_me = *pp;
 105
 106                if (clean_me->pid == pid) {
 107                        *pp = clean_me->next;
 108                        free(clean_me);
 109                        return;
 110                }
 111        }
 112}
 113
 114static inline void close_pair(int fd[2])
 115{
 116        close(fd[0]);
 117        close(fd[1]);
 118}
 119
 120static char *locate_in_PATH(const char *file)
 121{
 122        const char *p = getenv("PATH");
 123        struct strbuf buf = STRBUF_INIT;
 124
 125        if (!p || !*p)
 126                return NULL;
 127
 128        while (1) {
 129                const char *end = strchrnul(p, ':');
 130
 131                strbuf_reset(&buf);
 132
 133                /* POSIX specifies an empty entry as the current directory. */
 134                if (end != p) {
 135                        strbuf_add(&buf, p, end - p);
 136                        strbuf_addch(&buf, '/');
 137                }
 138                strbuf_addstr(&buf, file);
 139
 140                if (!access(buf.buf, F_OK))
 141                        return strbuf_detach(&buf, NULL);
 142
 143                if (!*end)
 144                        break;
 145                p = end + 1;
 146        }
 147
 148        strbuf_release(&buf);
 149        return NULL;
 150}
 151
 152static int exists_in_PATH(const char *file)
 153{
 154        char *r = locate_in_PATH(file);
 155        free(r);
 156        return r != NULL;
 157}
 158
 159int sane_execvp(const char *file, char * const argv[])
 160{
 161        if (!execvp(file, argv))
 162                return 0; /* cannot happen ;-) */
 163
 164        /*
 165         * When a command can't be found because one of the directories
 166         * listed in $PATH is unsearchable, execvp reports EACCES, but
 167         * careful usability testing (read: analysis of occasional bug
 168         * reports) reveals that "No such file or directory" is more
 169         * intuitive.
 170         *
 171         * We avoid commands with "/", because execvp will not do $PATH
 172         * lookups in that case.
 173         *
 174         * The reassignment of EACCES to errno looks like a no-op below,
 175         * but we need to protect against exists_in_PATH overwriting errno.
 176         */
 177        if (errno == EACCES && !strchr(file, '/'))
 178                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 179        else if (errno == ENOTDIR && !strchr(file, '/'))
 180                errno = ENOENT;
 181        return -1;
 182}
 183
 184static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 185{
 186        if (!argv[0])
 187                die("BUG: shell command is empty");
 188
 189        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 190#ifndef GIT_WINDOWS_NATIVE
 191                argv_array_push(out, SHELL_PATH);
 192#else
 193                argv_array_push(out, "sh");
 194#endif
 195                argv_array_push(out, "-c");
 196
 197                /*
 198                 * If we have no extra arguments, we do not even need to
 199                 * bother with the "$@" magic.
 200                 */
 201                if (!argv[1])
 202                        argv_array_push(out, argv[0]);
 203                else
 204                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 205        }
 206
 207        argv_array_pushv(out, argv);
 208        return out->argv;
 209}
 210
 211#ifndef GIT_WINDOWS_NATIVE
 212static int child_notifier = -1;
 213
 214static void notify_parent(void)
 215{
 216        /*
 217         * execvp failed.  If possible, we'd like to let start_command
 218         * know, so failures like ENOENT can be handled right away; but
 219         * otherwise, finish_command will still report the error.
 220         */
 221        xwrite(child_notifier, "", 1);
 222}
 223
 224static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 225{
 226        if (!cmd->argv[0])
 227                die("BUG: command is empty");
 228
 229        /*
 230         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 231         * attempt to interpret the command with 'sh'.
 232         */
 233        argv_array_push(out, SHELL_PATH);
 234
 235        if (cmd->git_cmd) {
 236                argv_array_push(out, "git");
 237                argv_array_pushv(out, cmd->argv);
 238        } else if (cmd->use_shell) {
 239                prepare_shell_cmd(out, cmd->argv);
 240        } else {
 241                argv_array_pushv(out, cmd->argv);
 242        }
 243
 244        /*
 245         * If there are no '/' characters in the command then perform a path
 246         * lookup and use the resolved path as the command to exec.  If there
 247         * are no '/' characters or if the command wasn't found in the path,
 248         * have exec attempt to invoke the command directly.
 249         */
 250        if (!strchr(out->argv[1], '/')) {
 251                char *program = locate_in_PATH(out->argv[1]);
 252                if (program) {
 253                        free((char *)out->argv[1]);
 254                        out->argv[1] = program;
 255                }
 256        }
 257}
 258
 259static char **prep_childenv(const char *const *deltaenv)
 260{
 261        extern char **environ;
 262        char **childenv;
 263        struct string_list env = STRING_LIST_INIT_DUP;
 264        struct strbuf key = STRBUF_INIT;
 265        const char *const *p;
 266        int i;
 267
 268        /* Construct a sorted string list consisting of the current environ */
 269        for (p = (const char *const *) environ; p && *p; p++) {
 270                const char *equals = strchr(*p, '=');
 271
 272                if (equals) {
 273                        strbuf_reset(&key);
 274                        strbuf_add(&key, *p, equals - *p);
 275                        string_list_append(&env, key.buf)->util = (void *) *p;
 276                } else {
 277                        string_list_append(&env, *p)->util = (void *) *p;
 278                }
 279        }
 280        string_list_sort(&env);
 281
 282        /* Merge in 'deltaenv' with the current environ */
 283        for (p = deltaenv; p && *p; p++) {
 284                const char *equals = strchr(*p, '=');
 285
 286                if (equals) {
 287                        /* ('key=value'), insert or replace entry */
 288                        strbuf_reset(&key);
 289                        strbuf_add(&key, *p, equals - *p);
 290                        string_list_insert(&env, key.buf)->util = (void *) *p;
 291                } else {
 292                        /* otherwise ('key') remove existing entry */
 293                        string_list_remove(&env, *p, 0);
 294                }
 295        }
 296
 297        /* Create an array of 'char *' to be used as the childenv */
 298        childenv = xmalloc((env.nr + 1) * sizeof(char *));
 299        for (i = 0; i < env.nr; i++)
 300                childenv[i] = env.items[i].util;
 301        childenv[env.nr] = NULL;
 302
 303        string_list_clear(&env, 0);
 304        strbuf_release(&key);
 305        return childenv;
 306}
 307#endif
 308
 309static inline void set_cloexec(int fd)
 310{
 311        int flags = fcntl(fd, F_GETFD);
 312        if (flags >= 0)
 313                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 314}
 315
 316static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 317{
 318        int status, code = -1;
 319        pid_t waiting;
 320        int failed_errno = 0;
 321
 322        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 323                ;       /* nothing */
 324        if (in_signal)
 325                return 0;
 326
 327        if (waiting < 0) {
 328                failed_errno = errno;
 329                error_errno("waitpid for %s failed", argv0);
 330        } else if (waiting != pid) {
 331                error("waitpid is confused (%s)", argv0);
 332        } else if (WIFSIGNALED(status)) {
 333                code = WTERMSIG(status);
 334                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 335                        error("%s died of signal %d", argv0, code);
 336                /*
 337                 * This return value is chosen so that code & 0xff
 338                 * mimics the exit code that a POSIX shell would report for
 339                 * a program that died from this signal.
 340                 */
 341                code += 128;
 342        } else if (WIFEXITED(status)) {
 343                code = WEXITSTATUS(status);
 344                /*
 345                 * Convert special exit code when execvp failed.
 346                 */
 347                if (code == 127) {
 348                        code = -1;
 349                        failed_errno = ENOENT;
 350                }
 351        } else {
 352                error("waitpid is confused (%s)", argv0);
 353        }
 354
 355        clear_child_for_cleanup(pid);
 356
 357        errno = failed_errno;
 358        return code;
 359}
 360
 361int start_command(struct child_process *cmd)
 362{
 363        int need_in, need_out, need_err;
 364        int fdin[2], fdout[2], fderr[2];
 365        int failed_errno;
 366        char *str;
 367
 368        if (!cmd->argv)
 369                cmd->argv = cmd->args.argv;
 370        if (!cmd->env)
 371                cmd->env = cmd->env_array.argv;
 372
 373        /*
 374         * In case of errors we must keep the promise to close FDs
 375         * that have been passed in via ->in and ->out.
 376         */
 377
 378        need_in = !cmd->no_stdin && cmd->in < 0;
 379        if (need_in) {
 380                if (pipe(fdin) < 0) {
 381                        failed_errno = errno;
 382                        if (cmd->out > 0)
 383                                close(cmd->out);
 384                        str = "standard input";
 385                        goto fail_pipe;
 386                }
 387                cmd->in = fdin[1];
 388        }
 389
 390        need_out = !cmd->no_stdout
 391                && !cmd->stdout_to_stderr
 392                && cmd->out < 0;
 393        if (need_out) {
 394                if (pipe(fdout) < 0) {
 395                        failed_errno = errno;
 396                        if (need_in)
 397                                close_pair(fdin);
 398                        else if (cmd->in)
 399                                close(cmd->in);
 400                        str = "standard output";
 401                        goto fail_pipe;
 402                }
 403                cmd->out = fdout[0];
 404        }
 405
 406        need_err = !cmd->no_stderr && cmd->err < 0;
 407        if (need_err) {
 408                if (pipe(fderr) < 0) {
 409                        failed_errno = errno;
 410                        if (need_in)
 411                                close_pair(fdin);
 412                        else if (cmd->in)
 413                                close(cmd->in);
 414                        if (need_out)
 415                                close_pair(fdout);
 416                        else if (cmd->out)
 417                                close(cmd->out);
 418                        str = "standard error";
 419fail_pipe:
 420                        error("cannot create %s pipe for %s: %s",
 421                                str, cmd->argv[0], strerror(failed_errno));
 422                        child_process_clear(cmd);
 423                        errno = failed_errno;
 424                        return -1;
 425                }
 426                cmd->err = fderr[0];
 427        }
 428
 429        trace_argv_printf(cmd->argv, "trace: run_command:");
 430        fflush(NULL);
 431
 432#ifndef GIT_WINDOWS_NATIVE
 433{
 434        int notify_pipe[2];
 435        int null_fd = -1;
 436        char **childenv;
 437        struct argv_array argv = ARGV_ARRAY_INIT;
 438
 439        if (pipe(notify_pipe))
 440                notify_pipe[0] = notify_pipe[1] = -1;
 441
 442        if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
 443                null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
 444                if (null_fd < 0)
 445                        die_errno(_("open /dev/null failed"));
 446                set_cloexec(null_fd);
 447        }
 448
 449        prepare_cmd(&argv, cmd);
 450        childenv = prep_childenv(cmd->env);
 451
 452        cmd->pid = fork();
 453        failed_errno = errno;
 454        if (!cmd->pid) {
 455                /*
 456                 * Redirect the channel to write syscall error messages to
 457                 * before redirecting the process's stderr so that all die()
 458                 * in subsequent call paths use the parent's stderr.
 459                 */
 460                if (cmd->no_stderr || need_err) {
 461                        int child_err = dup(2);
 462                        set_cloexec(child_err);
 463                        set_error_handle(fdopen(child_err, "w"));
 464                }
 465
 466                close(notify_pipe[0]);
 467                set_cloexec(notify_pipe[1]);
 468                child_notifier = notify_pipe[1];
 469                atexit(notify_parent);
 470
 471                if (cmd->no_stdin)
 472                        dup2(null_fd, 0);
 473                else if (need_in) {
 474                        dup2(fdin[0], 0);
 475                        close_pair(fdin);
 476                } else if (cmd->in) {
 477                        dup2(cmd->in, 0);
 478                        close(cmd->in);
 479                }
 480
 481                if (cmd->no_stderr)
 482                        dup2(null_fd, 2);
 483                else if (need_err) {
 484                        dup2(fderr[1], 2);
 485                        close_pair(fderr);
 486                } else if (cmd->err > 1) {
 487                        dup2(cmd->err, 2);
 488                        close(cmd->err);
 489                }
 490
 491                if (cmd->no_stdout)
 492                        dup2(null_fd, 1);
 493                else if (cmd->stdout_to_stderr)
 494                        dup2(2, 1);
 495                else if (need_out) {
 496                        dup2(fdout[1], 1);
 497                        close_pair(fdout);
 498                } else if (cmd->out > 1) {
 499                        dup2(cmd->out, 1);
 500                        close(cmd->out);
 501                }
 502
 503                if (cmd->dir && chdir(cmd->dir))
 504                        die_errno("exec '%s': cd to '%s' failed", cmd->argv[0],
 505                            cmd->dir);
 506
 507                /*
 508                 * Attempt to exec using the command and arguments starting at
 509                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 510                 * be used in the event exec failed with ENOEXEC at which point
 511                 * we will try to interpret the command using 'sh'.
 512                 */
 513                execve(argv.argv[1], (char *const *) argv.argv + 1,
 514                       (char *const *) childenv);
 515                if (errno == ENOEXEC)
 516                        execve(argv.argv[0], (char *const *) argv.argv,
 517                               (char *const *) childenv);
 518
 519                if (errno == ENOENT) {
 520                        if (!cmd->silent_exec_failure)
 521                                error("cannot run %s: %s", cmd->argv[0],
 522                                        strerror(ENOENT));
 523                        exit(127);
 524                } else {
 525                        die_errno("cannot exec '%s'", cmd->argv[0]);
 526                }
 527        }
 528        if (cmd->pid < 0)
 529                error_errno("cannot fork() for %s", cmd->argv[0]);
 530        else if (cmd->clean_on_exit)
 531                mark_child_for_cleanup(cmd->pid, cmd);
 532
 533        /*
 534         * Wait for child's exec. If the exec succeeds (or if fork()
 535         * failed), EOF is seen immediately by the parent. Otherwise, the
 536         * child process sends a single byte.
 537         * Note that use of this infrastructure is completely advisory,
 538         * therefore, we keep error checks minimal.
 539         */
 540        close(notify_pipe[1]);
 541        if (read(notify_pipe[0], &notify_pipe[1], 1) == 1) {
 542                /*
 543                 * At this point we know that fork() succeeded, but exec()
 544                 * failed. Errors have been reported to our stderr.
 545                 */
 546                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 547                failed_errno = errno;
 548                cmd->pid = -1;
 549        }
 550        close(notify_pipe[0]);
 551
 552        if (null_fd >= 0)
 553                close(null_fd);
 554        argv_array_clear(&argv);
 555        free(childenv);
 556}
 557#else
 558{
 559        int fhin = 0, fhout = 1, fherr = 2;
 560        const char **sargv = cmd->argv;
 561        struct argv_array nargv = ARGV_ARRAY_INIT;
 562
 563        if (cmd->no_stdin)
 564                fhin = open("/dev/null", O_RDWR);
 565        else if (need_in)
 566                fhin = dup(fdin[0]);
 567        else if (cmd->in)
 568                fhin = dup(cmd->in);
 569
 570        if (cmd->no_stderr)
 571                fherr = open("/dev/null", O_RDWR);
 572        else if (need_err)
 573                fherr = dup(fderr[1]);
 574        else if (cmd->err > 2)
 575                fherr = dup(cmd->err);
 576
 577        if (cmd->no_stdout)
 578                fhout = open("/dev/null", O_RDWR);
 579        else if (cmd->stdout_to_stderr)
 580                fhout = dup(fherr);
 581        else if (need_out)
 582                fhout = dup(fdout[1]);
 583        else if (cmd->out > 1)
 584                fhout = dup(cmd->out);
 585
 586        if (cmd->git_cmd)
 587                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 588        else if (cmd->use_shell)
 589                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 590
 591        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 592                        cmd->dir, fhin, fhout, fherr);
 593        failed_errno = errno;
 594        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 595                error_errno("cannot spawn %s", cmd->argv[0]);
 596        if (cmd->clean_on_exit && cmd->pid >= 0)
 597                mark_child_for_cleanup(cmd->pid, cmd);
 598
 599        argv_array_clear(&nargv);
 600        cmd->argv = sargv;
 601        if (fhin != 0)
 602                close(fhin);
 603        if (fhout != 1)
 604                close(fhout);
 605        if (fherr != 2)
 606                close(fherr);
 607}
 608#endif
 609
 610        if (cmd->pid < 0) {
 611                if (need_in)
 612                        close_pair(fdin);
 613                else if (cmd->in)
 614                        close(cmd->in);
 615                if (need_out)
 616                        close_pair(fdout);
 617                else if (cmd->out)
 618                        close(cmd->out);
 619                if (need_err)
 620                        close_pair(fderr);
 621                else if (cmd->err)
 622                        close(cmd->err);
 623                child_process_clear(cmd);
 624                errno = failed_errno;
 625                return -1;
 626        }
 627
 628        if (need_in)
 629                close(fdin[0]);
 630        else if (cmd->in)
 631                close(cmd->in);
 632
 633        if (need_out)
 634                close(fdout[1]);
 635        else if (cmd->out)
 636                close(cmd->out);
 637
 638        if (need_err)
 639                close(fderr[1]);
 640        else if (cmd->err)
 641                close(cmd->err);
 642
 643        return 0;
 644}
 645
 646int finish_command(struct child_process *cmd)
 647{
 648        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 649        child_process_clear(cmd);
 650        return ret;
 651}
 652
 653int finish_command_in_signal(struct child_process *cmd)
 654{
 655        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 656}
 657
 658
 659int run_command(struct child_process *cmd)
 660{
 661        int code;
 662
 663        if (cmd->out < 0 || cmd->err < 0)
 664                die("BUG: run_command with a pipe can cause deadlock");
 665
 666        code = start_command(cmd);
 667        if (code)
 668                return code;
 669        return finish_command(cmd);
 670}
 671
 672int run_command_v_opt(const char **argv, int opt)
 673{
 674        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 675}
 676
 677int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 678{
 679        struct child_process cmd = CHILD_PROCESS_INIT;
 680        cmd.argv = argv;
 681        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
 682        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
 683        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
 684        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
 685        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
 686        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
 687        cmd.dir = dir;
 688        cmd.env = env;
 689        return run_command(&cmd);
 690}
 691
 692#ifndef NO_PTHREADS
 693static pthread_t main_thread;
 694static int main_thread_set;
 695static pthread_key_t async_key;
 696static pthread_key_t async_die_counter;
 697
 698static void *run_thread(void *data)
 699{
 700        struct async *async = data;
 701        intptr_t ret;
 702
 703        if (async->isolate_sigpipe) {
 704                sigset_t mask;
 705                sigemptyset(&mask);
 706                sigaddset(&mask, SIGPIPE);
 707                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
 708                        ret = error("unable to block SIGPIPE in async thread");
 709                        return (void *)ret;
 710                }
 711        }
 712
 713        pthread_setspecific(async_key, async);
 714        ret = async->proc(async->proc_in, async->proc_out, async->data);
 715        return (void *)ret;
 716}
 717
 718static NORETURN void die_async(const char *err, va_list params)
 719{
 720        vreportf("fatal: ", err, params);
 721
 722        if (in_async()) {
 723                struct async *async = pthread_getspecific(async_key);
 724                if (async->proc_in >= 0)
 725                        close(async->proc_in);
 726                if (async->proc_out >= 0)
 727                        close(async->proc_out);
 728                pthread_exit((void *)128);
 729        }
 730
 731        exit(128);
 732}
 733
 734static int async_die_is_recursing(void)
 735{
 736        void *ret = pthread_getspecific(async_die_counter);
 737        pthread_setspecific(async_die_counter, (void *)1);
 738        return ret != NULL;
 739}
 740
 741int in_async(void)
 742{
 743        if (!main_thread_set)
 744                return 0; /* no asyncs started yet */
 745        return !pthread_equal(main_thread, pthread_self());
 746}
 747
 748static void NORETURN async_exit(int code)
 749{
 750        pthread_exit((void *)(intptr_t)code);
 751}
 752
 753#else
 754
 755static struct {
 756        void (**handlers)(void);
 757        size_t nr;
 758        size_t alloc;
 759} git_atexit_hdlrs;
 760
 761static int git_atexit_installed;
 762
 763static void git_atexit_dispatch(void)
 764{
 765        size_t i;
 766
 767        for (i=git_atexit_hdlrs.nr ; i ; i--)
 768                git_atexit_hdlrs.handlers[i-1]();
 769}
 770
 771static void git_atexit_clear(void)
 772{
 773        free(git_atexit_hdlrs.handlers);
 774        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
 775        git_atexit_installed = 0;
 776}
 777
 778#undef atexit
 779int git_atexit(void (*handler)(void))
 780{
 781        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
 782        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
 783        if (!git_atexit_installed) {
 784                if (atexit(&git_atexit_dispatch))
 785                        return -1;
 786                git_atexit_installed = 1;
 787        }
 788        return 0;
 789}
 790#define atexit git_atexit
 791
 792static int process_is_async;
 793int in_async(void)
 794{
 795        return process_is_async;
 796}
 797
 798static void NORETURN async_exit(int code)
 799{
 800        exit(code);
 801}
 802
 803#endif
 804
 805void check_pipe(int err)
 806{
 807        if (err == EPIPE) {
 808                if (in_async())
 809                        async_exit(141);
 810
 811                signal(SIGPIPE, SIG_DFL);
 812                raise(SIGPIPE);
 813                /* Should never happen, but just in case... */
 814                exit(141);
 815        }
 816}
 817
 818int start_async(struct async *async)
 819{
 820        int need_in, need_out;
 821        int fdin[2], fdout[2];
 822        int proc_in, proc_out;
 823
 824        need_in = async->in < 0;
 825        if (need_in) {
 826                if (pipe(fdin) < 0) {
 827                        if (async->out > 0)
 828                                close(async->out);
 829                        return error_errno("cannot create pipe");
 830                }
 831                async->in = fdin[1];
 832        }
 833
 834        need_out = async->out < 0;
 835        if (need_out) {
 836                if (pipe(fdout) < 0) {
 837                        if (need_in)
 838                                close_pair(fdin);
 839                        else if (async->in)
 840                                close(async->in);
 841                        return error_errno("cannot create pipe");
 842                }
 843                async->out = fdout[0];
 844        }
 845
 846        if (need_in)
 847                proc_in = fdin[0];
 848        else if (async->in)
 849                proc_in = async->in;
 850        else
 851                proc_in = -1;
 852
 853        if (need_out)
 854                proc_out = fdout[1];
 855        else if (async->out)
 856                proc_out = async->out;
 857        else
 858                proc_out = -1;
 859
 860#ifdef NO_PTHREADS
 861        /* Flush stdio before fork() to avoid cloning buffers */
 862        fflush(NULL);
 863
 864        async->pid = fork();
 865        if (async->pid < 0) {
 866                error_errno("fork (async) failed");
 867                goto error;
 868        }
 869        if (!async->pid) {
 870                if (need_in)
 871                        close(fdin[1]);
 872                if (need_out)
 873                        close(fdout[0]);
 874                git_atexit_clear();
 875                process_is_async = 1;
 876                exit(!!async->proc(proc_in, proc_out, async->data));
 877        }
 878
 879        mark_child_for_cleanup(async->pid, NULL);
 880
 881        if (need_in)
 882                close(fdin[0]);
 883        else if (async->in)
 884                close(async->in);
 885
 886        if (need_out)
 887                close(fdout[1]);
 888        else if (async->out)
 889                close(async->out);
 890#else
 891        if (!main_thread_set) {
 892                /*
 893                 * We assume that the first time that start_async is called
 894                 * it is from the main thread.
 895                 */
 896                main_thread_set = 1;
 897                main_thread = pthread_self();
 898                pthread_key_create(&async_key, NULL);
 899                pthread_key_create(&async_die_counter, NULL);
 900                set_die_routine(die_async);
 901                set_die_is_recursing_routine(async_die_is_recursing);
 902        }
 903
 904        if (proc_in >= 0)
 905                set_cloexec(proc_in);
 906        if (proc_out >= 0)
 907                set_cloexec(proc_out);
 908        async->proc_in = proc_in;
 909        async->proc_out = proc_out;
 910        {
 911                int err = pthread_create(&async->tid, NULL, run_thread, async);
 912                if (err) {
 913                        error_errno("cannot create thread");
 914                        goto error;
 915                }
 916        }
 917#endif
 918        return 0;
 919
 920error:
 921        if (need_in)
 922                close_pair(fdin);
 923        else if (async->in)
 924                close(async->in);
 925
 926        if (need_out)
 927                close_pair(fdout);
 928        else if (async->out)
 929                close(async->out);
 930        return -1;
 931}
 932
 933int finish_async(struct async *async)
 934{
 935#ifdef NO_PTHREADS
 936        return wait_or_whine(async->pid, "child process", 0);
 937#else
 938        void *ret = (void *)(intptr_t)(-1);
 939
 940        if (pthread_join(async->tid, &ret))
 941                error("pthread_join failed");
 942        return (int)(intptr_t)ret;
 943#endif
 944}
 945
 946const char *find_hook(const char *name)
 947{
 948        static struct strbuf path = STRBUF_INIT;
 949
 950        strbuf_reset(&path);
 951        strbuf_git_path(&path, "hooks/%s", name);
 952        if (access(path.buf, X_OK) < 0) {
 953#ifdef STRIP_EXTENSION
 954                strbuf_addstr(&path, STRIP_EXTENSION);
 955                if (access(path.buf, X_OK) >= 0)
 956                        return path.buf;
 957#endif
 958                return NULL;
 959        }
 960        return path.buf;
 961}
 962
 963int run_hook_ve(const char *const *env, const char *name, va_list args)
 964{
 965        struct child_process hook = CHILD_PROCESS_INIT;
 966        const char *p;
 967
 968        p = find_hook(name);
 969        if (!p)
 970                return 0;
 971
 972        argv_array_push(&hook.args, p);
 973        while ((p = va_arg(args, const char *)))
 974                argv_array_push(&hook.args, p);
 975        hook.env = env;
 976        hook.no_stdin = 1;
 977        hook.stdout_to_stderr = 1;
 978
 979        return run_command(&hook);
 980}
 981
 982int run_hook_le(const char *const *env, const char *name, ...)
 983{
 984        va_list args;
 985        int ret;
 986
 987        va_start(args, name);
 988        ret = run_hook_ve(env, name, args);
 989        va_end(args);
 990
 991        return ret;
 992}
 993
 994struct io_pump {
 995        /* initialized by caller */
 996        int fd;
 997        int type; /* POLLOUT or POLLIN */
 998        union {
 999                struct {
1000                        const char *buf;
1001                        size_t len;
1002                } out;
1003                struct {
1004                        struct strbuf *buf;
1005                        size_t hint;
1006                } in;
1007        } u;
1008
1009        /* returned by pump_io */
1010        int error; /* 0 for success, otherwise errno */
1011
1012        /* internal use */
1013        struct pollfd *pfd;
1014};
1015
1016static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1017{
1018        int pollsize = 0;
1019        int i;
1020
1021        for (i = 0; i < nr; i++) {
1022                struct io_pump *io = &slots[i];
1023                if (io->fd < 0)
1024                        continue;
1025                pfd[pollsize].fd = io->fd;
1026                pfd[pollsize].events = io->type;
1027                io->pfd = &pfd[pollsize++];
1028        }
1029
1030        if (!pollsize)
1031                return 0;
1032
1033        if (poll(pfd, pollsize, -1) < 0) {
1034                if (errno == EINTR)
1035                        return 1;
1036                die_errno("poll failed");
1037        }
1038
1039        for (i = 0; i < nr; i++) {
1040                struct io_pump *io = &slots[i];
1041
1042                if (io->fd < 0)
1043                        continue;
1044
1045                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1046                        continue;
1047
1048                if (io->type == POLLOUT) {
1049                        ssize_t len = xwrite(io->fd,
1050                                             io->u.out.buf, io->u.out.len);
1051                        if (len < 0) {
1052                                io->error = errno;
1053                                close(io->fd);
1054                                io->fd = -1;
1055                        } else {
1056                                io->u.out.buf += len;
1057                                io->u.out.len -= len;
1058                                if (!io->u.out.len) {
1059                                        close(io->fd);
1060                                        io->fd = -1;
1061                                }
1062                        }
1063                }
1064
1065                if (io->type == POLLIN) {
1066                        ssize_t len = strbuf_read_once(io->u.in.buf,
1067                                                       io->fd, io->u.in.hint);
1068                        if (len < 0)
1069                                io->error = errno;
1070                        if (len <= 0) {
1071                                close(io->fd);
1072                                io->fd = -1;
1073                        }
1074                }
1075        }
1076
1077        return 1;
1078}
1079
1080static int pump_io(struct io_pump *slots, int nr)
1081{
1082        struct pollfd *pfd;
1083        int i;
1084
1085        for (i = 0; i < nr; i++)
1086                slots[i].error = 0;
1087
1088        ALLOC_ARRAY(pfd, nr);
1089        while (pump_io_round(slots, nr, pfd))
1090                ; /* nothing */
1091        free(pfd);
1092
1093        /* There may be multiple errno values, so just pick the first. */
1094        for (i = 0; i < nr; i++) {
1095                if (slots[i].error) {
1096                        errno = slots[i].error;
1097                        return -1;
1098                }
1099        }
1100        return 0;
1101}
1102
1103
1104int pipe_command(struct child_process *cmd,
1105                 const char *in, size_t in_len,
1106                 struct strbuf *out, size_t out_hint,
1107                 struct strbuf *err, size_t err_hint)
1108{
1109        struct io_pump io[3];
1110        int nr = 0;
1111
1112        if (in)
1113                cmd->in = -1;
1114        if (out)
1115                cmd->out = -1;
1116        if (err)
1117                cmd->err = -1;
1118
1119        if (start_command(cmd) < 0)
1120                return -1;
1121
1122        if (in) {
1123                io[nr].fd = cmd->in;
1124                io[nr].type = POLLOUT;
1125                io[nr].u.out.buf = in;
1126                io[nr].u.out.len = in_len;
1127                nr++;
1128        }
1129        if (out) {
1130                io[nr].fd = cmd->out;
1131                io[nr].type = POLLIN;
1132                io[nr].u.in.buf = out;
1133                io[nr].u.in.hint = out_hint;
1134                nr++;
1135        }
1136        if (err) {
1137                io[nr].fd = cmd->err;
1138                io[nr].type = POLLIN;
1139                io[nr].u.in.buf = err;
1140                io[nr].u.in.hint = err_hint;
1141                nr++;
1142        }
1143
1144        if (pump_io(io, nr) < 0) {
1145                finish_command(cmd); /* throw away exit code */
1146                return -1;
1147        }
1148
1149        return finish_command(cmd);
1150}
1151
1152enum child_state {
1153        GIT_CP_FREE,
1154        GIT_CP_WORKING,
1155        GIT_CP_WAIT_CLEANUP,
1156};
1157
1158struct parallel_processes {
1159        void *data;
1160
1161        int max_processes;
1162        int nr_processes;
1163
1164        get_next_task_fn get_next_task;
1165        start_failure_fn start_failure;
1166        task_finished_fn task_finished;
1167
1168        struct {
1169                enum child_state state;
1170                struct child_process process;
1171                struct strbuf err;
1172                void *data;
1173        } *children;
1174        /*
1175         * The struct pollfd is logically part of *children,
1176         * but the system call expects it as its own array.
1177         */
1178        struct pollfd *pfd;
1179
1180        unsigned shutdown : 1;
1181
1182        int output_owner;
1183        struct strbuf buffered_output; /* of finished children */
1184};
1185
1186static int default_start_failure(struct strbuf *out,
1187                                 void *pp_cb,
1188                                 void *pp_task_cb)
1189{
1190        return 0;
1191}
1192
1193static int default_task_finished(int result,
1194                                 struct strbuf *out,
1195                                 void *pp_cb,
1196                                 void *pp_task_cb)
1197{
1198        return 0;
1199}
1200
1201static void kill_children(struct parallel_processes *pp, int signo)
1202{
1203        int i, n = pp->max_processes;
1204
1205        for (i = 0; i < n; i++)
1206                if (pp->children[i].state == GIT_CP_WORKING)
1207                        kill(pp->children[i].process.pid, signo);
1208}
1209
1210static struct parallel_processes *pp_for_signal;
1211
1212static void handle_children_on_signal(int signo)
1213{
1214        kill_children(pp_for_signal, signo);
1215        sigchain_pop(signo);
1216        raise(signo);
1217}
1218
1219static void pp_init(struct parallel_processes *pp,
1220                    int n,
1221                    get_next_task_fn get_next_task,
1222                    start_failure_fn start_failure,
1223                    task_finished_fn task_finished,
1224                    void *data)
1225{
1226        int i;
1227
1228        if (n < 1)
1229                n = online_cpus();
1230
1231        pp->max_processes = n;
1232
1233        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1234
1235        pp->data = data;
1236        if (!get_next_task)
1237                die("BUG: you need to specify a get_next_task function");
1238        pp->get_next_task = get_next_task;
1239
1240        pp->start_failure = start_failure ? start_failure : default_start_failure;
1241        pp->task_finished = task_finished ? task_finished : default_task_finished;
1242
1243        pp->nr_processes = 0;
1244        pp->output_owner = 0;
1245        pp->shutdown = 0;
1246        pp->children = xcalloc(n, sizeof(*pp->children));
1247        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1248        strbuf_init(&pp->buffered_output, 0);
1249
1250        for (i = 0; i < n; i++) {
1251                strbuf_init(&pp->children[i].err, 0);
1252                child_process_init(&pp->children[i].process);
1253                pp->pfd[i].events = POLLIN | POLLHUP;
1254                pp->pfd[i].fd = -1;
1255        }
1256
1257        pp_for_signal = pp;
1258        sigchain_push_common(handle_children_on_signal);
1259}
1260
1261static void pp_cleanup(struct parallel_processes *pp)
1262{
1263        int i;
1264
1265        trace_printf("run_processes_parallel: done");
1266        for (i = 0; i < pp->max_processes; i++) {
1267                strbuf_release(&pp->children[i].err);
1268                child_process_clear(&pp->children[i].process);
1269        }
1270
1271        free(pp->children);
1272        free(pp->pfd);
1273
1274        /*
1275         * When get_next_task added messages to the buffer in its last
1276         * iteration, the buffered output is non empty.
1277         */
1278        strbuf_write(&pp->buffered_output, stderr);
1279        strbuf_release(&pp->buffered_output);
1280
1281        sigchain_pop_common();
1282}
1283
1284/* returns
1285 *  0 if a new task was started.
1286 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1287 *    problem with starting a new command)
1288 * <0 no new job was started, user wishes to shutdown early. Use negative code
1289 *    to signal the children.
1290 */
1291static int pp_start_one(struct parallel_processes *pp)
1292{
1293        int i, code;
1294
1295        for (i = 0; i < pp->max_processes; i++)
1296                if (pp->children[i].state == GIT_CP_FREE)
1297                        break;
1298        if (i == pp->max_processes)
1299                die("BUG: bookkeeping is hard");
1300
1301        code = pp->get_next_task(&pp->children[i].process,
1302                                 &pp->children[i].err,
1303                                 pp->data,
1304                                 &pp->children[i].data);
1305        if (!code) {
1306                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1307                strbuf_reset(&pp->children[i].err);
1308                return 1;
1309        }
1310        pp->children[i].process.err = -1;
1311        pp->children[i].process.stdout_to_stderr = 1;
1312        pp->children[i].process.no_stdin = 1;
1313
1314        if (start_command(&pp->children[i].process)) {
1315                code = pp->start_failure(&pp->children[i].err,
1316                                         pp->data,
1317                                         &pp->children[i].data);
1318                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1319                strbuf_reset(&pp->children[i].err);
1320                if (code)
1321                        pp->shutdown = 1;
1322                return code;
1323        }
1324
1325        pp->nr_processes++;
1326        pp->children[i].state = GIT_CP_WORKING;
1327        pp->pfd[i].fd = pp->children[i].process.err;
1328        return 0;
1329}
1330
1331static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1332{
1333        int i;
1334
1335        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1336                if (errno == EINTR)
1337                        continue;
1338                pp_cleanup(pp);
1339                die_errno("poll");
1340        }
1341
1342        /* Buffer output from all pipes. */
1343        for (i = 0; i < pp->max_processes; i++) {
1344                if (pp->children[i].state == GIT_CP_WORKING &&
1345                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1346                        int n = strbuf_read_once(&pp->children[i].err,
1347                                                 pp->children[i].process.err, 0);
1348                        if (n == 0) {
1349                                close(pp->children[i].process.err);
1350                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1351                        } else if (n < 0)
1352                                if (errno != EAGAIN)
1353                                        die_errno("read");
1354                }
1355        }
1356}
1357
1358static void pp_output(struct parallel_processes *pp)
1359{
1360        int i = pp->output_owner;
1361        if (pp->children[i].state == GIT_CP_WORKING &&
1362            pp->children[i].err.len) {
1363                strbuf_write(&pp->children[i].err, stderr);
1364                strbuf_reset(&pp->children[i].err);
1365        }
1366}
1367
1368static int pp_collect_finished(struct parallel_processes *pp)
1369{
1370        int i, code;
1371        int n = pp->max_processes;
1372        int result = 0;
1373
1374        while (pp->nr_processes > 0) {
1375                for (i = 0; i < pp->max_processes; i++)
1376                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1377                                break;
1378                if (i == pp->max_processes)
1379                        break;
1380
1381                code = finish_command(&pp->children[i].process);
1382
1383                code = pp->task_finished(code,
1384                                         &pp->children[i].err, pp->data,
1385                                         &pp->children[i].data);
1386
1387                if (code)
1388                        result = code;
1389                if (code < 0)
1390                        break;
1391
1392                pp->nr_processes--;
1393                pp->children[i].state = GIT_CP_FREE;
1394                pp->pfd[i].fd = -1;
1395                child_process_init(&pp->children[i].process);
1396
1397                if (i != pp->output_owner) {
1398                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1399                        strbuf_reset(&pp->children[i].err);
1400                } else {
1401                        strbuf_write(&pp->children[i].err, stderr);
1402                        strbuf_reset(&pp->children[i].err);
1403
1404                        /* Output all other finished child processes */
1405                        strbuf_write(&pp->buffered_output, stderr);
1406                        strbuf_reset(&pp->buffered_output);
1407
1408                        /*
1409                         * Pick next process to output live.
1410                         * NEEDSWORK:
1411                         * For now we pick it randomly by doing a round
1412                         * robin. Later we may want to pick the one with
1413                         * the most output or the longest or shortest
1414                         * running process time.
1415                         */
1416                        for (i = 0; i < n; i++)
1417                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1418                                        break;
1419                        pp->output_owner = (pp->output_owner + i) % n;
1420                }
1421        }
1422        return result;
1423}
1424
1425int run_processes_parallel(int n,
1426                           get_next_task_fn get_next_task,
1427                           start_failure_fn start_failure,
1428                           task_finished_fn task_finished,
1429                           void *pp_cb)
1430{
1431        int i, code;
1432        int output_timeout = 100;
1433        int spawn_cap = 4;
1434        struct parallel_processes pp;
1435
1436        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1437        while (1) {
1438                for (i = 0;
1439                    i < spawn_cap && !pp.shutdown &&
1440                    pp.nr_processes < pp.max_processes;
1441                    i++) {
1442                        code = pp_start_one(&pp);
1443                        if (!code)
1444                                continue;
1445                        if (code < 0) {
1446                                pp.shutdown = 1;
1447                                kill_children(&pp, -code);
1448                        }
1449                        break;
1450                }
1451                if (!pp.nr_processes)
1452                        break;
1453                pp_buffer_stderr(&pp, output_timeout);
1454                pp_output(&pp);
1455                code = pp_collect_finished(&pp);
1456                if (code) {
1457                        pp.shutdown = 1;
1458                        if (code < 0)
1459                                kill_children(&pp, -code);
1460                }
1461        }
1462
1463        pp_cleanup(&pp);
1464        return 0;
1465}