1#include "../cache.h"
2#include "../refs.h"
3#include "refs-internal.h"
4#include "ref-cache.h"
5#include "../iterator.h"
6
7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
8{
9 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
10 dir->entries[dir->nr++] = entry;
11 /* optimize for the case that entries are added in order */
12 if (dir->nr == 1 ||
13 (dir->nr == dir->sorted + 1 &&
14 strcmp(dir->entries[dir->nr - 2]->name,
15 dir->entries[dir->nr - 1]->name) < 0))
16 dir->sorted = dir->nr;
17}
18
19struct ref_dir *get_ref_dir(struct ref_entry *entry)
20{
21 struct ref_dir *dir;
22 assert(entry->flag & REF_DIR);
23 dir = &entry->u.subdir;
24 if (entry->flag & REF_INCOMPLETE) {
25 if (!dir->cache->fill_ref_dir)
26 die("BUG: incomplete ref_store without fill_ref_dir function");
27
28 dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
29 entry->flag &= ~REF_INCOMPLETE;
30 }
31 return dir;
32}
33
34struct ref_entry *create_ref_entry(const char *refname,
35 const struct object_id *oid, int flag,
36 int check_name)
37{
38 struct ref_entry *ref;
39
40 if (check_name &&
41 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
42 die("Reference has invalid format: '%s'", refname);
43 FLEX_ALLOC_STR(ref, name, refname);
44 oidcpy(&ref->u.value.oid, oid);
45 oidclr(&ref->u.value.peeled);
46 ref->flag = flag;
47 return ref;
48}
49
50struct ref_cache *create_ref_cache(struct ref_store *refs,
51 fill_ref_dir_fn *fill_ref_dir)
52{
53 struct ref_cache *ret = xcalloc(1, sizeof(*ret));
54
55 ret->ref_store = refs;
56 ret->fill_ref_dir = fill_ref_dir;
57 ret->root = create_dir_entry(ret, "", 0, 1);
58 return ret;
59}
60
61static void clear_ref_dir(struct ref_dir *dir);
62
63static void free_ref_entry(struct ref_entry *entry)
64{
65 if (entry->flag & REF_DIR) {
66 /*
67 * Do not use get_ref_dir() here, as that might
68 * trigger the reading of loose refs.
69 */
70 clear_ref_dir(&entry->u.subdir);
71 }
72 free(entry);
73}
74
75void free_ref_cache(struct ref_cache *cache)
76{
77 free_ref_entry(cache->root);
78 free(cache);
79}
80
81/*
82 * Clear and free all entries in dir, recursively.
83 */
84static void clear_ref_dir(struct ref_dir *dir)
85{
86 int i;
87 for (i = 0; i < dir->nr; i++)
88 free_ref_entry(dir->entries[i]);
89 free(dir->entries);
90 dir->sorted = dir->nr = dir->alloc = 0;
91 dir->entries = NULL;
92}
93
94struct ref_entry *create_dir_entry(struct ref_cache *cache,
95 const char *dirname, size_t len,
96 int incomplete)
97{
98 struct ref_entry *direntry;
99
100 FLEX_ALLOC_MEM(direntry, name, dirname, len);
101 direntry->u.subdir.cache = cache;
102 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
103 return direntry;
104}
105
106static int ref_entry_cmp(const void *a, const void *b)
107{
108 struct ref_entry *one = *(struct ref_entry **)a;
109 struct ref_entry *two = *(struct ref_entry **)b;
110 return strcmp(one->name, two->name);
111}
112
113static void sort_ref_dir(struct ref_dir *dir);
114
115struct string_slice {
116 size_t len;
117 const char *str;
118};
119
120static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
121{
122 const struct string_slice *key = key_;
123 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
124 int cmp = strncmp(key->str, ent->name, key->len);
125 if (cmp)
126 return cmp;
127 return '\0' - (unsigned char)ent->name[key->len];
128}
129
130int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
131{
132 struct ref_entry **r;
133 struct string_slice key;
134
135 if (refname == NULL || !dir->nr)
136 return -1;
137
138 sort_ref_dir(dir);
139 key.len = len;
140 key.str = refname;
141 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
142 ref_entry_cmp_sslice);
143
144 if (r == NULL)
145 return -1;
146
147 return r - dir->entries;
148}
149
150/*
151 * Search for a directory entry directly within dir (without
152 * recursing). Sort dir if necessary. subdirname must be a directory
153 * name (i.e., end in '/'). If mkdir is set, then create the
154 * directory if it is missing; otherwise, return NULL if the desired
155 * directory cannot be found. dir must already be complete.
156 */
157static struct ref_dir *search_for_subdir(struct ref_dir *dir,
158 const char *subdirname, size_t len,
159 int mkdir)
160{
161 int entry_index = search_ref_dir(dir, subdirname, len);
162 struct ref_entry *entry;
163 if (entry_index == -1) {
164 if (!mkdir)
165 return NULL;
166 /*
167 * Since dir is complete, the absence of a subdir
168 * means that the subdir really doesn't exist;
169 * therefore, create an empty record for it but mark
170 * the record complete.
171 */
172 entry = create_dir_entry(dir->cache, subdirname, len, 0);
173 add_entry_to_dir(dir, entry);
174 } else {
175 entry = dir->entries[entry_index];
176 }
177 return get_ref_dir(entry);
178}
179
180/*
181 * If refname is a reference name, find the ref_dir within the dir
182 * tree that should hold refname. If refname is a directory name
183 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
184 * represent the top-level directory and must already be complete.
185 * Sort ref_dirs and recurse into subdirectories as necessary. If
186 * mkdir is set, then create any missing directories; otherwise,
187 * return NULL if the desired directory cannot be found.
188 */
189static struct ref_dir *find_containing_dir(struct ref_dir *dir,
190 const char *refname, int mkdir)
191{
192 const char *slash;
193 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
194 size_t dirnamelen = slash - refname + 1;
195 struct ref_dir *subdir;
196 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
197 if (!subdir) {
198 dir = NULL;
199 break;
200 }
201 dir = subdir;
202 }
203
204 return dir;
205}
206
207struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
208{
209 int entry_index;
210 struct ref_entry *entry;
211 dir = find_containing_dir(dir, refname, 0);
212 if (!dir)
213 return NULL;
214 entry_index = search_ref_dir(dir, refname, strlen(refname));
215 if (entry_index == -1)
216 return NULL;
217 entry = dir->entries[entry_index];
218 return (entry->flag & REF_DIR) ? NULL : entry;
219}
220
221int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
222{
223 int refname_len = strlen(refname);
224 int entry_index;
225 struct ref_entry *entry;
226 int is_dir = refname[refname_len - 1] == '/';
227 if (is_dir) {
228 /*
229 * refname represents a reference directory. Remove
230 * the trailing slash; otherwise we will get the
231 * directory *representing* refname rather than the
232 * one *containing* it.
233 */
234 char *dirname = xmemdupz(refname, refname_len - 1);
235 dir = find_containing_dir(dir, dirname, 0);
236 free(dirname);
237 } else {
238 dir = find_containing_dir(dir, refname, 0);
239 }
240 if (!dir)
241 return -1;
242 entry_index = search_ref_dir(dir, refname, refname_len);
243 if (entry_index == -1)
244 return -1;
245 entry = dir->entries[entry_index];
246
247 memmove(&dir->entries[entry_index],
248 &dir->entries[entry_index + 1],
249 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
250 );
251 dir->nr--;
252 if (dir->sorted > entry_index)
253 dir->sorted--;
254 free_ref_entry(entry);
255 return dir->nr;
256}
257
258int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
259{
260 dir = find_containing_dir(dir, ref->name, 1);
261 if (!dir)
262 return -1;
263 add_entry_to_dir(dir, ref);
264 return 0;
265}
266
267/*
268 * Emit a warning and return true iff ref1 and ref2 have the same name
269 * and the same sha1. Die if they have the same name but different
270 * sha1s.
271 */
272static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
273{
274 if (strcmp(ref1->name, ref2->name))
275 return 0;
276
277 /* Duplicate name; make sure that they don't conflict: */
278
279 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
280 /* This is impossible by construction */
281 die("Reference directory conflict: %s", ref1->name);
282
283 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
284 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
285
286 warning("Duplicated ref: %s", ref1->name);
287 return 1;
288}
289
290/*
291 * Sort the entries in dir non-recursively (if they are not already
292 * sorted) and remove any duplicate entries.
293 */
294static void sort_ref_dir(struct ref_dir *dir)
295{
296 int i, j;
297 struct ref_entry *last = NULL;
298
299 /*
300 * This check also prevents passing a zero-length array to qsort(),
301 * which is a problem on some platforms.
302 */
303 if (dir->sorted == dir->nr)
304 return;
305
306 QSORT(dir->entries, dir->nr, ref_entry_cmp);
307
308 /* Remove any duplicates: */
309 for (i = 0, j = 0; j < dir->nr; j++) {
310 struct ref_entry *entry = dir->entries[j];
311 if (last && is_dup_ref(last, entry))
312 free_ref_entry(entry);
313 else
314 last = dir->entries[i++] = entry;
315 }
316 dir->sorted = dir->nr = i;
317}
318
319/*
320 * Load all of the refs from `dir` (recursively) into our in-memory
321 * cache.
322 */
323static void prime_ref_dir(struct ref_dir *dir)
324{
325 /*
326 * The hard work of loading loose refs is done by get_ref_dir(), so we
327 * just need to recurse through all of the sub-directories. We do not
328 * even need to care about sorting, as traversal order does not matter
329 * to us.
330 */
331 int i;
332 for (i = 0; i < dir->nr; i++) {
333 struct ref_entry *entry = dir->entries[i];
334 if (entry->flag & REF_DIR)
335 prime_ref_dir(get_ref_dir(entry));
336 }
337}
338
339/*
340 * A level in the reference hierarchy that is currently being iterated
341 * through.
342 */
343struct cache_ref_iterator_level {
344 /*
345 * The ref_dir being iterated over at this level. The ref_dir
346 * is sorted before being stored here.
347 */
348 struct ref_dir *dir;
349
350 /*
351 * The index of the current entry within dir (which might
352 * itself be a directory). If index == -1, then the iteration
353 * hasn't yet begun. If index == dir->nr, then the iteration
354 * through this level is over.
355 */
356 int index;
357};
358
359/*
360 * Represent an iteration through a ref_dir in the memory cache. The
361 * iteration recurses through subdirectories.
362 */
363struct cache_ref_iterator {
364 struct ref_iterator base;
365
366 /*
367 * The number of levels currently on the stack. This is always
368 * at least 1, because when it becomes zero the iteration is
369 * ended and this struct is freed.
370 */
371 size_t levels_nr;
372
373 /* The number of levels that have been allocated on the stack */
374 size_t levels_alloc;
375
376 /*
377 * A stack of levels. levels[0] is the uppermost level that is
378 * being iterated over in this iteration. (This is not
379 * necessary the top level in the references hierarchy. If we
380 * are iterating through a subtree, then levels[0] will hold
381 * the ref_dir for that subtree, and subsequent levels will go
382 * on from there.)
383 */
384 struct cache_ref_iterator_level *levels;
385};
386
387static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
388{
389 struct cache_ref_iterator *iter =
390 (struct cache_ref_iterator *)ref_iterator;
391
392 while (1) {
393 struct cache_ref_iterator_level *level =
394 &iter->levels[iter->levels_nr - 1];
395 struct ref_dir *dir = level->dir;
396 struct ref_entry *entry;
397
398 if (level->index == -1)
399 sort_ref_dir(dir);
400
401 if (++level->index == level->dir->nr) {
402 /* This level is exhausted; pop up a level */
403 if (--iter->levels_nr == 0)
404 return ref_iterator_abort(ref_iterator);
405
406 continue;
407 }
408
409 entry = dir->entries[level->index];
410
411 if (entry->flag & REF_DIR) {
412 /* push down a level */
413 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
414 iter->levels_alloc);
415
416 level = &iter->levels[iter->levels_nr++];
417 level->dir = get_ref_dir(entry);
418 level->index = -1;
419 } else {
420 iter->base.refname = entry->name;
421 iter->base.oid = &entry->u.value.oid;
422 iter->base.flags = entry->flag;
423 return ITER_OK;
424 }
425 }
426}
427
428enum peel_status peel_entry(struct ref_entry *entry, int repeel)
429{
430 enum peel_status status;
431
432 if (entry->flag & REF_KNOWS_PEELED) {
433 if (repeel) {
434 entry->flag &= ~REF_KNOWS_PEELED;
435 oidclr(&entry->u.value.peeled);
436 } else {
437 return is_null_oid(&entry->u.value.peeled) ?
438 PEEL_NON_TAG : PEEL_PEELED;
439 }
440 }
441 if (entry->flag & REF_ISBROKEN)
442 return PEEL_BROKEN;
443 if (entry->flag & REF_ISSYMREF)
444 return PEEL_IS_SYMREF;
445
446 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
447 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
448 entry->flag |= REF_KNOWS_PEELED;
449 return status;
450}
451
452static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
453 struct object_id *peeled)
454{
455 struct cache_ref_iterator *iter =
456 (struct cache_ref_iterator *)ref_iterator;
457 struct cache_ref_iterator_level *level;
458 struct ref_entry *entry;
459
460 level = &iter->levels[iter->levels_nr - 1];
461
462 if (level->index == -1)
463 die("BUG: peel called before advance for cache iterator");
464
465 entry = level->dir->entries[level->index];
466
467 if (peel_entry(entry, 0))
468 return -1;
469 oidcpy(peeled, &entry->u.value.peeled);
470 return 0;
471}
472
473static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
474{
475 struct cache_ref_iterator *iter =
476 (struct cache_ref_iterator *)ref_iterator;
477
478 free(iter->levels);
479 base_ref_iterator_free(ref_iterator);
480 return ITER_DONE;
481}
482
483static struct ref_iterator_vtable cache_ref_iterator_vtable = {
484 cache_ref_iterator_advance,
485 cache_ref_iterator_peel,
486 cache_ref_iterator_abort
487};
488
489struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
490 const char *prefix,
491 int prime_dir)
492{
493 struct ref_dir *dir;
494 struct cache_ref_iterator *iter;
495 struct ref_iterator *ref_iterator;
496 struct cache_ref_iterator_level *level;
497
498 dir = get_ref_dir(cache->root);
499 if (prefix && *prefix)
500 dir = find_containing_dir(dir, prefix, 0);
501 if (!dir)
502 /* There's nothing to iterate over. */
503 return empty_ref_iterator_begin();
504
505 if (prime_dir)
506 prime_ref_dir(dir);
507
508 iter = xcalloc(1, sizeof(*iter));
509 ref_iterator = &iter->base;
510 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
511 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
512
513 iter->levels_nr = 1;
514 level = &iter->levels[0];
515 level->index = -1;
516 level->dir = dir;
517
518 if (prefix && *prefix)
519 ref_iterator = prefix_ref_iterator_begin(ref_iterator,
520 prefix, 0);
521
522 return ref_iterator;
523}