xdiff / xpatience.con commit merge: remove drop_save() in favor of remove_merge_branch_state() (b643355)
   1/*
   2 *  LibXDiff by Davide Libenzi ( File Differential Library )
   3 *  Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
   4 *
   5 *  This library is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU Lesser General Public
   7 *  License as published by the Free Software Foundation; either
   8 *  version 2.1 of the License, or (at your option) any later version.
   9 *
  10 *  This library is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 *  Lesser General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU Lesser General Public
  16 *  License along with this library; if not, see
  17 *  <http://www.gnu.org/licenses/>.
  18 *
  19 *  Davide Libenzi <davidel@xmailserver.org>
  20 *
  21 */
  22#include "xinclude.h"
  23#include "xtypes.h"
  24#include "xdiff.h"
  25
  26/*
  27 * The basic idea of patience diff is to find lines that are unique in
  28 * both files.  These are intuitively the ones that we want to see as
  29 * common lines.
  30 *
  31 * The maximal ordered sequence of such line pairs (where ordered means
  32 * that the order in the sequence agrees with the order of the lines in
  33 * both files) naturally defines an initial set of common lines.
  34 *
  35 * Now, the algorithm tries to extend the set of common lines by growing
  36 * the line ranges where the files have identical lines.
  37 *
  38 * Between those common lines, the patience diff algorithm is applied
  39 * recursively, until no unique line pairs can be found; these line ranges
  40 * are handled by the well-known Myers algorithm.
  41 */
  42
  43#define NON_UNIQUE ULONG_MAX
  44
  45/*
  46 * This is a hash mapping from line hash to line numbers in the first and
  47 * second file.
  48 */
  49struct hashmap {
  50        int nr, alloc;
  51        struct entry {
  52                unsigned long hash;
  53                /*
  54                 * 0 = unused entry, 1 = first line, 2 = second, etc.
  55                 * line2 is NON_UNIQUE if the line is not unique
  56                 * in either the first or the second file.
  57                 */
  58                unsigned long line1, line2;
  59                /*
  60                 * "next" & "previous" are used for the longest common
  61                 * sequence;
  62                 * initially, "next" reflects only the order in file1.
  63                 */
  64                struct entry *next, *previous;
  65
  66                /*
  67                 * If 1, this entry can serve as an anchor. See
  68                 * Documentation/diff-options.txt for more information.
  69                 */
  70                unsigned anchor : 1;
  71        } *entries, *first, *last;
  72        /* were common records found? */
  73        unsigned long has_matches;
  74        mmfile_t *file1, *file2;
  75        xdfenv_t *env;
  76        xpparam_t const *xpp;
  77};
  78
  79static int is_anchor(xpparam_t const *xpp, const char *line)
  80{
  81        int i;
  82        for (i = 0; i < xpp->anchors_nr; i++) {
  83                if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
  84                        return 1;
  85        }
  86        return 0;
  87}
  88
  89/* The argument "pass" is 1 for the first file, 2 for the second. */
  90static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
  91                          int pass)
  92{
  93        xrecord_t **records = pass == 1 ?
  94                map->env->xdf1.recs : map->env->xdf2.recs;
  95        xrecord_t *record = records[line - 1], *other;
  96        /*
  97         * After xdl_prepare_env() (or more precisely, due to
  98         * xdl_classify_record()), the "ha" member of the records (AKA lines)
  99         * is _not_ the hash anymore, but a linearized version of it.  In
 100         * other words, the "ha" member is guaranteed to start with 0 and
 101         * the second record's ha can only be 0 or 1, etc.
 102         *
 103         * So we multiply ha by 2 in the hope that the hashing was
 104         * "unique enough".
 105         */
 106        int index = (int)((record->ha << 1) % map->alloc);
 107
 108        while (map->entries[index].line1) {
 109                other = map->env->xdf1.recs[map->entries[index].line1 - 1];
 110                if (map->entries[index].hash != record->ha ||
 111                                !xdl_recmatch(record->ptr, record->size,
 112                                        other->ptr, other->size,
 113                                        map->xpp->flags)) {
 114                        if (++index >= map->alloc)
 115                                index = 0;
 116                        continue;
 117                }
 118                if (pass == 2)
 119                        map->has_matches = 1;
 120                if (pass == 1 || map->entries[index].line2)
 121                        map->entries[index].line2 = NON_UNIQUE;
 122                else
 123                        map->entries[index].line2 = line;
 124                return;
 125        }
 126        if (pass == 2)
 127                return;
 128        map->entries[index].line1 = line;
 129        map->entries[index].hash = record->ha;
 130        map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
 131        if (!map->first)
 132                map->first = map->entries + index;
 133        if (map->last) {
 134                map->last->next = map->entries + index;
 135                map->entries[index].previous = map->last;
 136        }
 137        map->last = map->entries + index;
 138        map->nr++;
 139}
 140
 141/*
 142 * This function has to be called for each recursion into the inter-hunk
 143 * parts, as previously non-unique lines can become unique when being
 144 * restricted to a smaller part of the files.
 145 *
 146 * It is assumed that env has been prepared using xdl_prepare().
 147 */
 148static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
 149                xpparam_t const *xpp, xdfenv_t *env,
 150                struct hashmap *result,
 151                int line1, int count1, int line2, int count2)
 152{
 153        result->file1 = file1;
 154        result->file2 = file2;
 155        result->xpp = xpp;
 156        result->env = env;
 157
 158        /* We know exactly how large we want the hash map */
 159        result->alloc = count1 * 2;
 160        result->entries = (struct entry *)
 161                xdl_malloc(result->alloc * sizeof(struct entry));
 162        if (!result->entries)
 163                return -1;
 164        memset(result->entries, 0, result->alloc * sizeof(struct entry));
 165
 166        /* First, fill with entries from the first file */
 167        while (count1--)
 168                insert_record(xpp, line1++, result, 1);
 169
 170        /* Then search for matches in the second file */
 171        while (count2--)
 172                insert_record(xpp, line2++, result, 2);
 173
 174        return 0;
 175}
 176
 177/*
 178 * Find the longest sequence with a smaller last element (meaning a smaller
 179 * line2, as we construct the sequence with entries ordered by line1).
 180 */
 181static int binary_search(struct entry **sequence, int longest,
 182                struct entry *entry)
 183{
 184        int left = -1, right = longest;
 185
 186        while (left + 1 < right) {
 187                int middle = left + (right - left) / 2;
 188                /* by construction, no two entries can be equal */
 189                if (sequence[middle]->line2 > entry->line2)
 190                        right = middle;
 191                else
 192                        left = middle;
 193        }
 194        /* return the index in "sequence", _not_ the sequence length */
 195        return left;
 196}
 197
 198/*
 199 * The idea is to start with the list of common unique lines sorted by
 200 * the order in file1.  For each of these pairs, the longest (partial)
 201 * sequence whose last element's line2 is smaller is determined.
 202 *
 203 * For efficiency, the sequences are kept in a list containing exactly one
 204 * item per sequence length: the sequence with the smallest last
 205 * element (in terms of line2).
 206 */
 207static struct entry *find_longest_common_sequence(struct hashmap *map)
 208{
 209        struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
 210        int longest = 0, i;
 211        struct entry *entry;
 212
 213        /*
 214         * If not -1, this entry in sequence must never be overridden.
 215         * Therefore, overriding entries before this has no effect, so
 216         * do not do that either.
 217         */
 218        int anchor_i = -1;
 219
 220        for (entry = map->first; entry; entry = entry->next) {
 221                if (!entry->line2 || entry->line2 == NON_UNIQUE)
 222                        continue;
 223                i = binary_search(sequence, longest, entry);
 224                entry->previous = i < 0 ? NULL : sequence[i];
 225                ++i;
 226                if (i <= anchor_i)
 227                        continue;
 228                sequence[i] = entry;
 229                if (entry->anchor) {
 230                        anchor_i = i;
 231                        longest = anchor_i + 1;
 232                } else if (i == longest) {
 233                        longest++;
 234                }
 235        }
 236
 237        /* No common unique lines were found */
 238        if (!longest) {
 239                xdl_free(sequence);
 240                return NULL;
 241        }
 242
 243        /* Iterate starting at the last element, adjusting the "next" members */
 244        entry = sequence[longest - 1];
 245        entry->next = NULL;
 246        while (entry->previous) {
 247                entry->previous->next = entry;
 248                entry = entry->previous;
 249        }
 250        xdl_free(sequence);
 251        return entry;
 252}
 253
 254static int match(struct hashmap *map, int line1, int line2)
 255{
 256        xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
 257        xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
 258        return xdl_recmatch(record1->ptr, record1->size,
 259                record2->ptr, record2->size, map->xpp->flags);
 260}
 261
 262static int patience_diff(mmfile_t *file1, mmfile_t *file2,
 263                xpparam_t const *xpp, xdfenv_t *env,
 264                int line1, int count1, int line2, int count2);
 265
 266static int walk_common_sequence(struct hashmap *map, struct entry *first,
 267                int line1, int count1, int line2, int count2)
 268{
 269        int end1 = line1 + count1, end2 = line2 + count2;
 270        int next1, next2;
 271
 272        for (;;) {
 273                /* Try to grow the line ranges of common lines */
 274                if (first) {
 275                        next1 = first->line1;
 276                        next2 = first->line2;
 277                        while (next1 > line1 && next2 > line2 &&
 278                                        match(map, next1 - 1, next2 - 1)) {
 279                                next1--;
 280                                next2--;
 281                        }
 282                } else {
 283                        next1 = end1;
 284                        next2 = end2;
 285                }
 286                while (line1 < next1 && line2 < next2 &&
 287                                match(map, line1, line2)) {
 288                        line1++;
 289                        line2++;
 290                }
 291
 292                /* Recurse */
 293                if (next1 > line1 || next2 > line2) {
 294                        struct hashmap submap;
 295
 296                        memset(&submap, 0, sizeof(submap));
 297                        if (patience_diff(map->file1, map->file2,
 298                                        map->xpp, map->env,
 299                                        line1, next1 - line1,
 300                                        line2, next2 - line2))
 301                                return -1;
 302                }
 303
 304                if (!first)
 305                        return 0;
 306
 307                while (first->next &&
 308                                first->next->line1 == first->line1 + 1 &&
 309                                first->next->line2 == first->line2 + 1)
 310                        first = first->next;
 311
 312                line1 = first->line1 + 1;
 313                line2 = first->line2 + 1;
 314
 315                first = first->next;
 316        }
 317}
 318
 319static int fall_back_to_classic_diff(struct hashmap *map,
 320                int line1, int count1, int line2, int count2)
 321{
 322        xpparam_t xpp;
 323        xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
 324
 325        return xdl_fall_back_diff(map->env, &xpp,
 326                                  line1, count1, line2, count2);
 327}
 328
 329/*
 330 * Recursively find the longest common sequence of unique lines,
 331 * and if none was found, ask xdl_do_diff() to do the job.
 332 *
 333 * This function assumes that env was prepared with xdl_prepare_env().
 334 */
 335static int patience_diff(mmfile_t *file1, mmfile_t *file2,
 336                xpparam_t const *xpp, xdfenv_t *env,
 337                int line1, int count1, int line2, int count2)
 338{
 339        struct hashmap map;
 340        struct entry *first;
 341        int result = 0;
 342
 343        /* trivial case: one side is empty */
 344        if (!count1) {
 345                while(count2--)
 346                        env->xdf2.rchg[line2++ - 1] = 1;
 347                return 0;
 348        } else if (!count2) {
 349                while(count1--)
 350                        env->xdf1.rchg[line1++ - 1] = 1;
 351                return 0;
 352        }
 353
 354        memset(&map, 0, sizeof(map));
 355        if (fill_hashmap(file1, file2, xpp, env, &map,
 356                        line1, count1, line2, count2))
 357                return -1;
 358
 359        /* are there any matching lines at all? */
 360        if (!map.has_matches) {
 361                while(count1--)
 362                        env->xdf1.rchg[line1++ - 1] = 1;
 363                while(count2--)
 364                        env->xdf2.rchg[line2++ - 1] = 1;
 365                xdl_free(map.entries);
 366                return 0;
 367        }
 368
 369        first = find_longest_common_sequence(&map);
 370        if (first)
 371                result = walk_common_sequence(&map, first,
 372                        line1, count1, line2, count2);
 373        else
 374                result = fall_back_to_classic_diff(&map,
 375                        line1, count1, line2, count2);
 376
 377        xdl_free(map.entries);
 378        return result;
 379}
 380
 381int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
 382                xpparam_t const *xpp, xdfenv_t *env)
 383{
 384        if (xdl_prepare_env(file1, file2, xpp, env) < 0)
 385                return -1;
 386
 387        /* environment is cleaned up in xdl_diff() */
 388        return patience_diff(file1, file2, xpp, env,
 389                        1, env->xdf1.nrec, 1, env->xdf2.nrec);
 390}