name-hash.con commit travis-ci: check that all build artifacts are .gitignore-d (b92cb86)
   1/*
   2 * name-hash.c
   3 *
   4 * Hashing names in the index state
   5 *
   6 * Copyright (C) 2008 Linus Torvalds
   7 */
   8#define NO_THE_INDEX_COMPATIBILITY_MACROS
   9#include "cache.h"
  10
  11struct dir_entry {
  12        struct hashmap_entry ent;
  13        struct dir_entry *parent;
  14        int nr;
  15        unsigned int namelen;
  16        char name[FLEX_ARRAY];
  17};
  18
  19static int dir_entry_cmp(const void *unused_cmp_data,
  20                         const struct dir_entry *e1,
  21                         const struct dir_entry *e2,
  22                         const char *name)
  23{
  24        return e1->namelen != e2->namelen || strncasecmp(e1->name,
  25                        name ? name : e2->name, e1->namelen);
  26}
  27
  28static struct dir_entry *find_dir_entry__hash(struct index_state *istate,
  29                const char *name, unsigned int namelen, unsigned int hash)
  30{
  31        struct dir_entry key;
  32        hashmap_entry_init(&key, hash);
  33        key.namelen = namelen;
  34        return hashmap_get(&istate->dir_hash, &key, name);
  35}
  36
  37static struct dir_entry *find_dir_entry(struct index_state *istate,
  38                const char *name, unsigned int namelen)
  39{
  40        return find_dir_entry__hash(istate, name, namelen, memihash(name, namelen));
  41}
  42
  43static struct dir_entry *hash_dir_entry(struct index_state *istate,
  44                struct cache_entry *ce, int namelen)
  45{
  46        /*
  47         * Throw each directory component in the hash for quick lookup
  48         * during a git status. Directory components are stored without their
  49         * closing slash.  Despite submodules being a directory, they never
  50         * reach this point, because they are stored
  51         * in index_state.name_hash (as ordinary cache_entries).
  52         */
  53        struct dir_entry *dir;
  54
  55        /* get length of parent directory */
  56        while (namelen > 0 && !is_dir_sep(ce->name[namelen - 1]))
  57                namelen--;
  58        if (namelen <= 0)
  59                return NULL;
  60        namelen--;
  61
  62        /* lookup existing entry for that directory */
  63        dir = find_dir_entry(istate, ce->name, namelen);
  64        if (!dir) {
  65                /* not found, create it and add to hash table */
  66                FLEX_ALLOC_MEM(dir, name, ce->name, namelen);
  67                hashmap_entry_init(dir, memihash(ce->name, namelen));
  68                dir->namelen = namelen;
  69                hashmap_add(&istate->dir_hash, dir);
  70
  71                /* recursively add missing parent directories */
  72                dir->parent = hash_dir_entry(istate, ce, namelen);
  73        }
  74        return dir;
  75}
  76
  77static void add_dir_entry(struct index_state *istate, struct cache_entry *ce)
  78{
  79        /* Add reference to the directory entry (and parents if 0). */
  80        struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce));
  81        while (dir && !(dir->nr++))
  82                dir = dir->parent;
  83}
  84
  85static void remove_dir_entry(struct index_state *istate, struct cache_entry *ce)
  86{
  87        /*
  88         * Release reference to the directory entry. If 0, remove and continue
  89         * with parent directory.
  90         */
  91        struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce));
  92        while (dir && !(--dir->nr)) {
  93                struct dir_entry *parent = dir->parent;
  94                hashmap_remove(&istate->dir_hash, dir, NULL);
  95                free(dir);
  96                dir = parent;
  97        }
  98}
  99
 100static void hash_index_entry(struct index_state *istate, struct cache_entry *ce)
 101{
 102        if (ce->ce_flags & CE_HASHED)
 103                return;
 104        ce->ce_flags |= CE_HASHED;
 105        hashmap_entry_init(ce, memihash(ce->name, ce_namelen(ce)));
 106        hashmap_add(&istate->name_hash, ce);
 107
 108        if (ignore_case)
 109                add_dir_entry(istate, ce);
 110}
 111
 112static int cache_entry_cmp(const void *unused_cmp_data,
 113                           const struct cache_entry *ce1,
 114                           const struct cache_entry *ce2,
 115                           const void *remove)
 116{
 117        /*
 118         * For remove_name_hash, find the exact entry (pointer equality); for
 119         * index_file_exists, find all entries with matching hash code and
 120         * decide whether the entry matches in same_name.
 121         */
 122        return remove ? !(ce1 == ce2) : 0;
 123}
 124
 125static int lazy_try_threaded = 1;
 126static int lazy_nr_dir_threads;
 127
 128#ifdef NO_PTHREADS
 129
 130static inline int lookup_lazy_params(struct index_state *istate)
 131{
 132        return 0;
 133}
 134
 135static inline void threaded_lazy_init_name_hash(
 136        struct index_state *istate)
 137{
 138}
 139
 140#else
 141
 142#include "thread-utils.h"
 143
 144/*
 145 * Set a minimum number of cache_entries that we will handle per
 146 * thread and use that to decide how many threads to run (upto
 147 * the number on the system).
 148 *
 149 * For guidance setting the lower per-thread bound, see:
 150 *     t/helper/test-lazy-init-name-hash --analyze
 151 */
 152#define LAZY_THREAD_COST (2000)
 153
 154/*
 155 * We use n mutexes to guard n partitions of the "istate->dir_hash"
 156 * hashtable.  Since "find" and "insert" operations will hash to a
 157 * particular bucket and modify/search a single chain, we can say
 158 * that "all chains mod n" are guarded by the same mutex -- rather
 159 * than having a single mutex to guard the entire table.  (This does
 160 * require that we disable "rehashing" on the hashtable.)
 161 *
 162 * So, a larger value here decreases the probability of a collision
 163 * and the time that each thread must wait for the mutex.
 164 */
 165#define LAZY_MAX_MUTEX   (32)
 166
 167static pthread_mutex_t *lazy_dir_mutex_array;
 168
 169/*
 170 * An array of lazy_entry items is used by the n threads in
 171 * the directory parse (first) phase to (lock-free) store the
 172 * intermediate results.  These values are then referenced by
 173 * the 2 threads in the second phase.
 174 */
 175struct lazy_entry {
 176        struct dir_entry *dir;
 177        unsigned int hash_dir;
 178        unsigned int hash_name;
 179};
 180
 181/*
 182 * Decide if we want to use threads (if available) to load
 183 * the hash tables.  We set "lazy_nr_dir_threads" to zero when
 184 * it is not worth it.
 185 */
 186static int lookup_lazy_params(struct index_state *istate)
 187{
 188        int nr_cpus;
 189
 190        lazy_nr_dir_threads = 0;
 191
 192        if (!lazy_try_threaded)
 193                return 0;
 194
 195        /*
 196         * If we are respecting case, just use the original
 197         * code to build the "istate->name_hash".  We don't
 198         * need the complexity here.
 199         */
 200        if (!ignore_case)
 201                return 0;
 202
 203        nr_cpus = online_cpus();
 204        if (nr_cpus < 2)
 205                return 0;
 206
 207        if (istate->cache_nr < 2 * LAZY_THREAD_COST)
 208                return 0;
 209
 210        if (istate->cache_nr < nr_cpus * LAZY_THREAD_COST)
 211                nr_cpus = istate->cache_nr / LAZY_THREAD_COST;
 212        lazy_nr_dir_threads = nr_cpus;
 213        return lazy_nr_dir_threads;
 214}
 215
 216/*
 217 * Initialize n mutexes for use when searching and inserting
 218 * into "istate->dir_hash".  All "dir" threads are trying
 219 * to insert partial pathnames into the hash as they iterate
 220 * over their portions of the index, so lock contention is
 221 * high.
 222 *
 223 * However, the hashmap is going to put items into bucket
 224 * chains based on their hash values.  Use that to create n
 225 * mutexes and lock on mutex[bucket(hash) % n].  This will
 226 * decrease the collision rate by (hopefully) by a factor of n.
 227 */
 228static void init_dir_mutex(void)
 229{
 230        int j;
 231
 232        lazy_dir_mutex_array = xcalloc(LAZY_MAX_MUTEX, sizeof(pthread_mutex_t));
 233
 234        for (j = 0; j < LAZY_MAX_MUTEX; j++)
 235                init_recursive_mutex(&lazy_dir_mutex_array[j]);
 236}
 237
 238static void cleanup_dir_mutex(void)
 239{
 240        int j;
 241
 242        for (j = 0; j < LAZY_MAX_MUTEX; j++)
 243                pthread_mutex_destroy(&lazy_dir_mutex_array[j]);
 244
 245        free(lazy_dir_mutex_array);
 246}
 247
 248static void lock_dir_mutex(int j)
 249{
 250        pthread_mutex_lock(&lazy_dir_mutex_array[j]);
 251}
 252
 253static void unlock_dir_mutex(int j)
 254{
 255        pthread_mutex_unlock(&lazy_dir_mutex_array[j]);
 256}
 257
 258static inline int compute_dir_lock_nr(
 259        const struct hashmap *map,
 260        unsigned int hash)
 261{
 262        return hashmap_bucket(map, hash) % LAZY_MAX_MUTEX;
 263}
 264
 265static struct dir_entry *hash_dir_entry_with_parent_and_prefix(
 266        struct index_state *istate,
 267        struct dir_entry *parent,
 268        struct strbuf *prefix)
 269{
 270        struct dir_entry *dir;
 271        unsigned int hash;
 272        int lock_nr;
 273
 274        /*
 275         * Either we have a parent directory and path with slash(es)
 276         * or the directory is an immediate child of the root directory.
 277         */
 278        assert((parent != NULL) ^ (strchr(prefix->buf, '/') == NULL));
 279
 280        if (parent)
 281                hash = memihash_cont(parent->ent.hash,
 282                        prefix->buf + parent->namelen,
 283                        prefix->len - parent->namelen);
 284        else
 285                hash = memihash(prefix->buf, prefix->len);
 286
 287        lock_nr = compute_dir_lock_nr(&istate->dir_hash, hash);
 288        lock_dir_mutex(lock_nr);
 289
 290        dir = find_dir_entry__hash(istate, prefix->buf, prefix->len, hash);
 291        if (!dir) {
 292                FLEX_ALLOC_MEM(dir, name, prefix->buf, prefix->len);
 293                hashmap_entry_init(dir, hash);
 294                dir->namelen = prefix->len;
 295                dir->parent = parent;
 296                hashmap_add(&istate->dir_hash, dir);
 297
 298                if (parent) {
 299                        unlock_dir_mutex(lock_nr);
 300
 301                        /* All I really need here is an InterlockedIncrement(&(parent->nr)) */
 302                        lock_nr = compute_dir_lock_nr(&istate->dir_hash, parent->ent.hash);
 303                        lock_dir_mutex(lock_nr);
 304                        parent->nr++;
 305                }
 306        }
 307
 308        unlock_dir_mutex(lock_nr);
 309
 310        return dir;
 311}
 312
 313/*
 314 * handle_range_1() and handle_range_dir() are derived from
 315 * clear_ce_flags_1() and clear_ce_flags_dir() in unpack-trees.c
 316 * and handle the iteration over the entire array of index entries.
 317 * They use recursion for adjacent entries in the same parent
 318 * directory.
 319 */
 320static int handle_range_1(
 321        struct index_state *istate,
 322        int k_start,
 323        int k_end,
 324        struct dir_entry *parent,
 325        struct strbuf *prefix,
 326        struct lazy_entry *lazy_entries);
 327
 328static int handle_range_dir(
 329        struct index_state *istate,
 330        int k_start,
 331        int k_end,
 332        struct dir_entry *parent,
 333        struct strbuf *prefix,
 334        struct lazy_entry *lazy_entries,
 335        struct dir_entry **dir_new_out)
 336{
 337        int rc, k;
 338        int input_prefix_len = prefix->len;
 339        struct dir_entry *dir_new;
 340
 341        dir_new = hash_dir_entry_with_parent_and_prefix(istate, parent, prefix);
 342
 343        strbuf_addch(prefix, '/');
 344
 345        /*
 346         * Scan forward in the index array for index entries having the same
 347         * path prefix (that are also in this directory).
 348         */
 349        if (k_start + 1 >= k_end)
 350                k = k_end;
 351        else if (strncmp(istate->cache[k_start + 1]->name, prefix->buf, prefix->len) > 0)
 352                k = k_start + 1;
 353        else if (strncmp(istate->cache[k_end - 1]->name, prefix->buf, prefix->len) == 0)
 354                k = k_end;
 355        else {
 356                int begin = k_start;
 357                int end = k_end;
 358                while (begin < end) {
 359                        int mid = (begin + end) >> 1;
 360                        int cmp = strncmp(istate->cache[mid]->name, prefix->buf, prefix->len);
 361                        if (cmp == 0) /* mid has same prefix; look in second part */
 362                                begin = mid + 1;
 363                        else if (cmp > 0) /* mid is past group; look in first part */
 364                                end = mid;
 365                        else
 366                                die("cache entry out of order");
 367                }
 368                k = begin;
 369        }
 370
 371        /*
 372         * Recurse and process what we can of this subset [k_start, k).
 373         */
 374        rc = handle_range_1(istate, k_start, k, dir_new, prefix, lazy_entries);
 375
 376        strbuf_setlen(prefix, input_prefix_len);
 377
 378        *dir_new_out = dir_new;
 379        return rc;
 380}
 381
 382static int handle_range_1(
 383        struct index_state *istate,
 384        int k_start,
 385        int k_end,
 386        struct dir_entry *parent,
 387        struct strbuf *prefix,
 388        struct lazy_entry *lazy_entries)
 389{
 390        int input_prefix_len = prefix->len;
 391        int k = k_start;
 392
 393        while (k < k_end) {
 394                struct cache_entry *ce_k = istate->cache[k];
 395                const char *name, *slash;
 396
 397                if (prefix->len && strncmp(ce_k->name, prefix->buf, prefix->len))
 398                        break;
 399
 400                name = ce_k->name + prefix->len;
 401                slash = strchr(name, '/');
 402
 403                if (slash) {
 404                        int len = slash - name;
 405                        int processed;
 406                        struct dir_entry *dir_new;
 407
 408                        strbuf_add(prefix, name, len);
 409                        processed = handle_range_dir(istate, k, k_end, parent, prefix, lazy_entries, &dir_new);
 410                        if (processed) {
 411                                k += processed;
 412                                strbuf_setlen(prefix, input_prefix_len);
 413                                continue;
 414                        }
 415
 416                        strbuf_addch(prefix, '/');
 417                        processed = handle_range_1(istate, k, k_end, dir_new, prefix, lazy_entries);
 418                        k += processed;
 419                        strbuf_setlen(prefix, input_prefix_len);
 420                        continue;
 421                }
 422
 423                /*
 424                 * It is too expensive to take a lock to insert "ce_k"
 425                 * into "istate->name_hash" and increment the ref-count
 426                 * on the "parent" dir.  So we defer actually updating
 427                 * permanent data structures until phase 2 (where we
 428                 * can change the locking requirements) and simply
 429                 * accumulate our current results into the lazy_entries
 430                 * data array).
 431                 *
 432                 * We do not need to lock the lazy_entries array because
 433                 * we have exclusive access to the cells in the range
 434                 * [k_start,k_end) that this thread was given.
 435                 */
 436                lazy_entries[k].dir = parent;
 437                if (parent) {
 438                        lazy_entries[k].hash_name = memihash_cont(
 439                                parent->ent.hash,
 440                                ce_k->name + parent->namelen,
 441                                ce_namelen(ce_k) - parent->namelen);
 442                        lazy_entries[k].hash_dir = parent->ent.hash;
 443                } else {
 444                        lazy_entries[k].hash_name = memihash(ce_k->name, ce_namelen(ce_k));
 445                }
 446
 447                k++;
 448        }
 449
 450        return k - k_start;
 451}
 452
 453struct lazy_dir_thread_data {
 454        pthread_t pthread;
 455        struct index_state *istate;
 456        struct lazy_entry *lazy_entries;
 457        int k_start;
 458        int k_end;
 459};
 460
 461static void *lazy_dir_thread_proc(void *_data)
 462{
 463        struct lazy_dir_thread_data *d = _data;
 464        struct strbuf prefix = STRBUF_INIT;
 465        handle_range_1(d->istate, d->k_start, d->k_end, NULL, &prefix, d->lazy_entries);
 466        strbuf_release(&prefix);
 467        return NULL;
 468}
 469
 470struct lazy_name_thread_data {
 471        pthread_t pthread;
 472        struct index_state *istate;
 473        struct lazy_entry *lazy_entries;
 474};
 475
 476static void *lazy_name_thread_proc(void *_data)
 477{
 478        struct lazy_name_thread_data *d = _data;
 479        int k;
 480
 481        for (k = 0; k < d->istate->cache_nr; k++) {
 482                struct cache_entry *ce_k = d->istate->cache[k];
 483                ce_k->ce_flags |= CE_HASHED;
 484                hashmap_entry_init(ce_k, d->lazy_entries[k].hash_name);
 485                hashmap_add(&d->istate->name_hash, ce_k);
 486        }
 487
 488        return NULL;
 489}
 490
 491static inline void lazy_update_dir_ref_counts(
 492        struct index_state *istate,
 493        struct lazy_entry *lazy_entries)
 494{
 495        int k;
 496
 497        for (k = 0; k < istate->cache_nr; k++) {
 498                if (lazy_entries[k].dir)
 499                        lazy_entries[k].dir->nr++;
 500        }
 501}
 502
 503static void threaded_lazy_init_name_hash(
 504        struct index_state *istate)
 505{
 506        int nr_each;
 507        int k_start;
 508        int t;
 509        struct lazy_entry *lazy_entries;
 510        struct lazy_dir_thread_data *td_dir;
 511        struct lazy_name_thread_data *td_name;
 512
 513        k_start = 0;
 514        nr_each = DIV_ROUND_UP(istate->cache_nr, lazy_nr_dir_threads);
 515
 516        lazy_entries = xcalloc(istate->cache_nr, sizeof(struct lazy_entry));
 517        td_dir = xcalloc(lazy_nr_dir_threads, sizeof(struct lazy_dir_thread_data));
 518        td_name = xcalloc(1, sizeof(struct lazy_name_thread_data));
 519
 520        init_dir_mutex();
 521
 522        /*
 523         * Phase 1:
 524         * Build "istate->dir_hash" using n "dir" threads (and a read-only index).
 525         */
 526        for (t = 0; t < lazy_nr_dir_threads; t++) {
 527                struct lazy_dir_thread_data *td_dir_t = td_dir + t;
 528                td_dir_t->istate = istate;
 529                td_dir_t->lazy_entries = lazy_entries;
 530                td_dir_t->k_start = k_start;
 531                k_start += nr_each;
 532                if (k_start > istate->cache_nr)
 533                        k_start = istate->cache_nr;
 534                td_dir_t->k_end = k_start;
 535                if (pthread_create(&td_dir_t->pthread, NULL, lazy_dir_thread_proc, td_dir_t))
 536                        die("unable to create lazy_dir_thread");
 537        }
 538        for (t = 0; t < lazy_nr_dir_threads; t++) {
 539                struct lazy_dir_thread_data *td_dir_t = td_dir + t;
 540                if (pthread_join(td_dir_t->pthread, NULL))
 541                        die("unable to join lazy_dir_thread");
 542        }
 543
 544        /*
 545         * Phase 2:
 546         * Iterate over all index entries and add them to the "istate->name_hash"
 547         * using a single "name" background thread.
 548         * (Testing showed it wasn't worth running more than 1 thread for this.)
 549         *
 550         * Meanwhile, finish updating the parent directory ref-counts for each
 551         * index entry using the current thread.  (This step is very fast and
 552         * doesn't need threading.)
 553         */
 554        td_name->istate = istate;
 555        td_name->lazy_entries = lazy_entries;
 556        if (pthread_create(&td_name->pthread, NULL, lazy_name_thread_proc, td_name))
 557                die("unable to create lazy_name_thread");
 558
 559        lazy_update_dir_ref_counts(istate, lazy_entries);
 560
 561        if (pthread_join(td_name->pthread, NULL))
 562                die("unable to join lazy_name_thread");
 563
 564        cleanup_dir_mutex();
 565
 566        free(td_name);
 567        free(td_dir);
 568        free(lazy_entries);
 569}
 570
 571#endif
 572
 573static void lazy_init_name_hash(struct index_state *istate)
 574{
 575        if (istate->name_hash_initialized)
 576                return;
 577        hashmap_init(&istate->name_hash, (hashmap_cmp_fn) cache_entry_cmp,
 578                        NULL, istate->cache_nr);
 579        hashmap_init(&istate->dir_hash, (hashmap_cmp_fn) dir_entry_cmp,
 580                        NULL, istate->cache_nr);
 581
 582        if (lookup_lazy_params(istate)) {
 583                hashmap_disallow_rehash(&istate->dir_hash, 1);
 584                threaded_lazy_init_name_hash(istate);
 585                hashmap_disallow_rehash(&istate->dir_hash, 0);
 586        } else {
 587                int nr;
 588                for (nr = 0; nr < istate->cache_nr; nr++)
 589                        hash_index_entry(istate, istate->cache[nr]);
 590        }
 591
 592        istate->name_hash_initialized = 1;
 593}
 594
 595/*
 596 * A test routine for t/helper/ sources.
 597 *
 598 * Returns the number of threads used or 0 when
 599 * the non-threaded code path was used.
 600 *
 601 * Requesting threading WILL NOT override guards
 602 * in lookup_lazy_params().
 603 */
 604int test_lazy_init_name_hash(struct index_state *istate, int try_threaded)
 605{
 606        lazy_nr_dir_threads = 0;
 607        lazy_try_threaded = try_threaded;
 608
 609        lazy_init_name_hash(istate);
 610
 611        return lazy_nr_dir_threads;
 612}
 613
 614void add_name_hash(struct index_state *istate, struct cache_entry *ce)
 615{
 616        if (istate->name_hash_initialized)
 617                hash_index_entry(istate, ce);
 618}
 619
 620void remove_name_hash(struct index_state *istate, struct cache_entry *ce)
 621{
 622        if (!istate->name_hash_initialized || !(ce->ce_flags & CE_HASHED))
 623                return;
 624        ce->ce_flags &= ~CE_HASHED;
 625        hashmap_remove(&istate->name_hash, ce, ce);
 626
 627        if (ignore_case)
 628                remove_dir_entry(istate, ce);
 629}
 630
 631static int slow_same_name(const char *name1, int len1, const char *name2, int len2)
 632{
 633        if (len1 != len2)
 634                return 0;
 635
 636        while (len1) {
 637                unsigned char c1 = *name1++;
 638                unsigned char c2 = *name2++;
 639                len1--;
 640                if (c1 != c2) {
 641                        c1 = toupper(c1);
 642                        c2 = toupper(c2);
 643                        if (c1 != c2)
 644                                return 0;
 645                }
 646        }
 647        return 1;
 648}
 649
 650static int same_name(const struct cache_entry *ce, const char *name, int namelen, int icase)
 651{
 652        int len = ce_namelen(ce);
 653
 654        /*
 655         * Always do exact compare, even if we want a case-ignoring comparison;
 656         * we do the quick exact one first, because it will be the common case.
 657         */
 658        if (len == namelen && !memcmp(name, ce->name, len))
 659                return 1;
 660
 661        if (!icase)
 662                return 0;
 663
 664        return slow_same_name(name, namelen, ce->name, len);
 665}
 666
 667int index_dir_exists(struct index_state *istate, const char *name, int namelen)
 668{
 669        struct dir_entry *dir;
 670
 671        lazy_init_name_hash(istate);
 672        dir = find_dir_entry(istate, name, namelen);
 673        return dir && dir->nr;
 674}
 675
 676void adjust_dirname_case(struct index_state *istate, char *name)
 677{
 678        const char *startPtr = name;
 679        const char *ptr = startPtr;
 680
 681        lazy_init_name_hash(istate);
 682        while (*ptr) {
 683                while (*ptr && *ptr != '/')
 684                        ptr++;
 685
 686                if (*ptr == '/') {
 687                        struct dir_entry *dir;
 688
 689                        ptr++;
 690                        dir = find_dir_entry(istate, name, ptr - name + 1);
 691                        if (dir) {
 692                                memcpy((void *)startPtr, dir->name + (startPtr - name), ptr - startPtr);
 693                                startPtr = ptr;
 694                        }
 695                }
 696        }
 697}
 698
 699struct cache_entry *index_file_exists(struct index_state *istate, const char *name, int namelen, int icase)
 700{
 701        struct cache_entry *ce;
 702
 703        lazy_init_name_hash(istate);
 704
 705        ce = hashmap_get_from_hash(&istate->name_hash,
 706                                   memihash(name, namelen), NULL);
 707        while (ce) {
 708                if (same_name(ce, name, namelen, icase))
 709                        return ce;
 710                ce = hashmap_get_next(&istate->name_hash, ce);
 711        }
 712        return NULL;
 713}
 714
 715void free_name_hash(struct index_state *istate)
 716{
 717        if (!istate->name_hash_initialized)
 718                return;
 719        istate->name_hash_initialized = 0;
 720
 721        hashmap_free(&istate->name_hash, 0);
 722        hashmap_free(&istate->dir_hash, 1);
 723}