cache-tree.con commit diff/log -G<pattern>: tests (bf1dfc3)
   1#include "cache.h"
   2#include "tree.h"
   3#include "tree-walk.h"
   4#include "cache-tree.h"
   5
   6#ifndef DEBUG
   7#define DEBUG 0
   8#endif
   9
  10struct cache_tree *cache_tree(void)
  11{
  12        struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
  13        it->entry_count = -1;
  14        return it;
  15}
  16
  17void cache_tree_free(struct cache_tree **it_p)
  18{
  19        int i;
  20        struct cache_tree *it = *it_p;
  21
  22        if (!it)
  23                return;
  24        for (i = 0; i < it->subtree_nr; i++)
  25                if (it->down[i])
  26                        cache_tree_free(&it->down[i]->cache_tree);
  27        free(it->down);
  28        free(it);
  29        *it_p = NULL;
  30}
  31
  32static int subtree_name_cmp(const char *one, int onelen,
  33                            const char *two, int twolen)
  34{
  35        if (onelen < twolen)
  36                return -1;
  37        if (twolen < onelen)
  38                return 1;
  39        return memcmp(one, two, onelen);
  40}
  41
  42static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
  43{
  44        struct cache_tree_sub **down = it->down;
  45        int lo, hi;
  46        lo = 0;
  47        hi = it->subtree_nr;
  48        while (lo < hi) {
  49                int mi = (lo + hi) / 2;
  50                struct cache_tree_sub *mdl = down[mi];
  51                int cmp = subtree_name_cmp(path, pathlen,
  52                                           mdl->name, mdl->namelen);
  53                if (!cmp)
  54                        return mi;
  55                if (cmp < 0)
  56                        hi = mi;
  57                else
  58                        lo = mi + 1;
  59        }
  60        return -lo-1;
  61}
  62
  63static struct cache_tree_sub *find_subtree(struct cache_tree *it,
  64                                           const char *path,
  65                                           int pathlen,
  66                                           int create)
  67{
  68        struct cache_tree_sub *down;
  69        int pos = subtree_pos(it, path, pathlen);
  70        if (0 <= pos)
  71                return it->down[pos];
  72        if (!create)
  73                return NULL;
  74
  75        pos = -pos-1;
  76        if (it->subtree_alloc <= it->subtree_nr) {
  77                it->subtree_alloc = alloc_nr(it->subtree_alloc);
  78                it->down = xrealloc(it->down, it->subtree_alloc *
  79                                    sizeof(*it->down));
  80        }
  81        it->subtree_nr++;
  82
  83        down = xmalloc(sizeof(*down) + pathlen + 1);
  84        down->cache_tree = NULL;
  85        down->namelen = pathlen;
  86        memcpy(down->name, path, pathlen);
  87        down->name[pathlen] = 0;
  88
  89        if (pos < it->subtree_nr)
  90                memmove(it->down + pos + 1,
  91                        it->down + pos,
  92                        sizeof(down) * (it->subtree_nr - pos - 1));
  93        it->down[pos] = down;
  94        return down;
  95}
  96
  97struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
  98{
  99        int pathlen = strlen(path);
 100        return find_subtree(it, path, pathlen, 1);
 101}
 102
 103void cache_tree_invalidate_path(struct cache_tree *it, const char *path)
 104{
 105        /* a/b/c
 106         * ==> invalidate self
 107         * ==> find "a", have it invalidate "b/c"
 108         * a
 109         * ==> invalidate self
 110         * ==> if "a" exists as a subtree, remove it.
 111         */
 112        const char *slash;
 113        int namelen;
 114        struct cache_tree_sub *down;
 115
 116#if DEBUG
 117        fprintf(stderr, "cache-tree invalidate <%s>\n", path);
 118#endif
 119
 120        if (!it)
 121                return;
 122        slash = strchr(path, '/');
 123        it->entry_count = -1;
 124        if (!slash) {
 125                int pos;
 126                namelen = strlen(path);
 127                pos = subtree_pos(it, path, namelen);
 128                if (0 <= pos) {
 129                        cache_tree_free(&it->down[pos]->cache_tree);
 130                        free(it->down[pos]);
 131                        /* 0 1 2 3 4 5
 132                         *       ^     ^subtree_nr = 6
 133                         *       pos
 134                         * move 4 and 5 up one place (2 entries)
 135                         * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
 136                         */
 137                        memmove(it->down+pos, it->down+pos+1,
 138                                sizeof(struct cache_tree_sub *) *
 139                                (it->subtree_nr - pos - 1));
 140                        it->subtree_nr--;
 141                }
 142                return;
 143        }
 144        namelen = slash - path;
 145        down = find_subtree(it, path, namelen, 0);
 146        if (down)
 147                cache_tree_invalidate_path(down->cache_tree, slash + 1);
 148}
 149
 150static int verify_cache(struct cache_entry **cache,
 151                        int entries)
 152{
 153        int i, funny;
 154
 155        /* Verify that the tree is merged */
 156        funny = 0;
 157        for (i = 0; i < entries; i++) {
 158                struct cache_entry *ce = cache[i];
 159                if (ce_stage(ce) || (ce->ce_flags & CE_INTENT_TO_ADD)) {
 160                        if (10 < ++funny) {
 161                                fprintf(stderr, "...\n");
 162                                break;
 163                        }
 164                        if (ce_stage(ce))
 165                                fprintf(stderr, "%s: unmerged (%s)\n",
 166                                        ce->name, sha1_to_hex(ce->sha1));
 167                        else
 168                                fprintf(stderr, "%s: not added yet\n",
 169                                        ce->name);
 170                }
 171        }
 172        if (funny)
 173                return -1;
 174
 175        /* Also verify that the cache does not have path and path/file
 176         * at the same time.  At this point we know the cache has only
 177         * stage 0 entries.
 178         */
 179        funny = 0;
 180        for (i = 0; i < entries - 1; i++) {
 181                /* path/file always comes after path because of the way
 182                 * the cache is sorted.  Also path can appear only once,
 183                 * which means conflicting one would immediately follow.
 184                 */
 185                const char *this_name = cache[i]->name;
 186                const char *next_name = cache[i+1]->name;
 187                int this_len = strlen(this_name);
 188                if (this_len < strlen(next_name) &&
 189                    strncmp(this_name, next_name, this_len) == 0 &&
 190                    next_name[this_len] == '/') {
 191                        if (10 < ++funny) {
 192                                fprintf(stderr, "...\n");
 193                                break;
 194                        }
 195                        fprintf(stderr, "You have both %s and %s\n",
 196                                this_name, next_name);
 197                }
 198        }
 199        if (funny)
 200                return -1;
 201        return 0;
 202}
 203
 204static void discard_unused_subtrees(struct cache_tree *it)
 205{
 206        struct cache_tree_sub **down = it->down;
 207        int nr = it->subtree_nr;
 208        int dst, src;
 209        for (dst = src = 0; src < nr; src++) {
 210                struct cache_tree_sub *s = down[src];
 211                if (s->used)
 212                        down[dst++] = s;
 213                else {
 214                        cache_tree_free(&s->cache_tree);
 215                        free(s);
 216                        it->subtree_nr--;
 217                }
 218        }
 219}
 220
 221int cache_tree_fully_valid(struct cache_tree *it)
 222{
 223        int i;
 224        if (!it)
 225                return 0;
 226        if (it->entry_count < 0 || !has_sha1_file(it->sha1))
 227                return 0;
 228        for (i = 0; i < it->subtree_nr; i++) {
 229                if (!cache_tree_fully_valid(it->down[i]->cache_tree))
 230                        return 0;
 231        }
 232        return 1;
 233}
 234
 235static int update_one(struct cache_tree *it,
 236                      struct cache_entry **cache,
 237                      int entries,
 238                      const char *base,
 239                      int baselen,
 240                      int missing_ok,
 241                      int dryrun)
 242{
 243        struct strbuf buffer;
 244        int i;
 245
 246        if (0 <= it->entry_count && has_sha1_file(it->sha1))
 247                return it->entry_count;
 248
 249        /*
 250         * We first scan for subtrees and update them; we start by
 251         * marking existing subtrees -- the ones that are unmarked
 252         * should not be in the result.
 253         */
 254        for (i = 0; i < it->subtree_nr; i++)
 255                it->down[i]->used = 0;
 256
 257        /*
 258         * Find the subtrees and update them.
 259         */
 260        for (i = 0; i < entries; i++) {
 261                struct cache_entry *ce = cache[i];
 262                struct cache_tree_sub *sub;
 263                const char *path, *slash;
 264                int pathlen, sublen, subcnt;
 265
 266                path = ce->name;
 267                pathlen = ce_namelen(ce);
 268                if (pathlen <= baselen || memcmp(base, path, baselen))
 269                        break; /* at the end of this level */
 270
 271                slash = strchr(path + baselen, '/');
 272                if (!slash)
 273                        continue;
 274                /*
 275                 * a/bbb/c (base = a/, slash = /c)
 276                 * ==>
 277                 * path+baselen = bbb/c, sublen = 3
 278                 */
 279                sublen = slash - (path + baselen);
 280                sub = find_subtree(it, path + baselen, sublen, 1);
 281                if (!sub->cache_tree)
 282                        sub->cache_tree = cache_tree();
 283                subcnt = update_one(sub->cache_tree,
 284                                    cache + i, entries - i,
 285                                    path,
 286                                    baselen + sublen + 1,
 287                                    missing_ok,
 288                                    dryrun);
 289                if (subcnt < 0)
 290                        return subcnt;
 291                i += subcnt - 1;
 292                sub->used = 1;
 293        }
 294
 295        discard_unused_subtrees(it);
 296
 297        /*
 298         * Then write out the tree object for this level.
 299         */
 300        strbuf_init(&buffer, 8192);
 301
 302        for (i = 0; i < entries; i++) {
 303                struct cache_entry *ce = cache[i];
 304                struct cache_tree_sub *sub;
 305                const char *path, *slash;
 306                int pathlen, entlen;
 307                const unsigned char *sha1;
 308                unsigned mode;
 309
 310                path = ce->name;
 311                pathlen = ce_namelen(ce);
 312                if (pathlen <= baselen || memcmp(base, path, baselen))
 313                        break; /* at the end of this level */
 314
 315                slash = strchr(path + baselen, '/');
 316                if (slash) {
 317                        entlen = slash - (path + baselen);
 318                        sub = find_subtree(it, path + baselen, entlen, 0);
 319                        if (!sub)
 320                                die("cache-tree.c: '%.*s' in '%s' not found",
 321                                    entlen, path + baselen, path);
 322                        i += sub->cache_tree->entry_count - 1;
 323                        sha1 = sub->cache_tree->sha1;
 324                        mode = S_IFDIR;
 325                }
 326                else {
 327                        sha1 = ce->sha1;
 328                        mode = ce->ce_mode;
 329                        entlen = pathlen - baselen;
 330                }
 331                if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
 332                        strbuf_release(&buffer);
 333                        return error("invalid object %06o %s for '%.*s'",
 334                                mode, sha1_to_hex(sha1), entlen+baselen, path);
 335                }
 336
 337                if (ce->ce_flags & CE_REMOVE)
 338                        continue; /* entry being removed */
 339
 340                strbuf_grow(&buffer, entlen + 100);
 341                strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
 342                strbuf_add(&buffer, sha1, 20);
 343
 344#if DEBUG
 345                fprintf(stderr, "cache-tree update-one %o %.*s\n",
 346                        mode, entlen, path + baselen);
 347#endif
 348        }
 349
 350        if (dryrun)
 351                hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
 352        else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
 353                strbuf_release(&buffer);
 354                return -1;
 355        }
 356
 357        strbuf_release(&buffer);
 358        it->entry_count = i;
 359#if DEBUG
 360        fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
 361                it->entry_count, it->subtree_nr,
 362                sha1_to_hex(it->sha1));
 363#endif
 364        return i;
 365}
 366
 367int cache_tree_update(struct cache_tree *it,
 368                      struct cache_entry **cache,
 369                      int entries,
 370                      int missing_ok,
 371                      int dryrun)
 372{
 373        int i;
 374        i = verify_cache(cache, entries);
 375        if (i)
 376                return i;
 377        i = update_one(it, cache, entries, "", 0, missing_ok, dryrun);
 378        if (i < 0)
 379                return i;
 380        return 0;
 381}
 382
 383static void write_one(struct strbuf *buffer, struct cache_tree *it,
 384                      const char *path, int pathlen)
 385{
 386        int i;
 387
 388        /* One "cache-tree" entry consists of the following:
 389         * path (NUL terminated)
 390         * entry_count, subtree_nr ("%d %d\n")
 391         * tree-sha1 (missing if invalid)
 392         * subtree_nr "cache-tree" entries for subtrees.
 393         */
 394        strbuf_grow(buffer, pathlen + 100);
 395        strbuf_add(buffer, path, pathlen);
 396        strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
 397
 398#if DEBUG
 399        if (0 <= it->entry_count)
 400                fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
 401                        pathlen, path, it->entry_count, it->subtree_nr,
 402                        sha1_to_hex(it->sha1));
 403        else
 404                fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
 405                        pathlen, path, it->subtree_nr);
 406#endif
 407
 408        if (0 <= it->entry_count) {
 409                strbuf_add(buffer, it->sha1, 20);
 410        }
 411        for (i = 0; i < it->subtree_nr; i++) {
 412                struct cache_tree_sub *down = it->down[i];
 413                if (i) {
 414                        struct cache_tree_sub *prev = it->down[i-1];
 415                        if (subtree_name_cmp(down->name, down->namelen,
 416                                             prev->name, prev->namelen) <= 0)
 417                                die("fatal - unsorted cache subtree");
 418                }
 419                write_one(buffer, down->cache_tree, down->name, down->namelen);
 420        }
 421}
 422
 423void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
 424{
 425        write_one(sb, root, "", 0);
 426}
 427
 428static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
 429{
 430        const char *buf = *buffer;
 431        unsigned long size = *size_p;
 432        const char *cp;
 433        char *ep;
 434        struct cache_tree *it;
 435        int i, subtree_nr;
 436
 437        it = NULL;
 438        /* skip name, but make sure name exists */
 439        while (size && *buf) {
 440                size--;
 441                buf++;
 442        }
 443        if (!size)
 444                goto free_return;
 445        buf++; size--;
 446        it = cache_tree();
 447
 448        cp = buf;
 449        it->entry_count = strtol(cp, &ep, 10);
 450        if (cp == ep)
 451                goto free_return;
 452        cp = ep;
 453        subtree_nr = strtol(cp, &ep, 10);
 454        if (cp == ep)
 455                goto free_return;
 456        while (size && *buf && *buf != '\n') {
 457                size--;
 458                buf++;
 459        }
 460        if (!size)
 461                goto free_return;
 462        buf++; size--;
 463        if (0 <= it->entry_count) {
 464                if (size < 20)
 465                        goto free_return;
 466                hashcpy(it->sha1, (const unsigned char*)buf);
 467                buf += 20;
 468                size -= 20;
 469        }
 470
 471#if DEBUG
 472        if (0 <= it->entry_count)
 473                fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
 474                        *buffer, it->entry_count, subtree_nr,
 475                        sha1_to_hex(it->sha1));
 476        else
 477                fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
 478                        *buffer, subtree_nr);
 479#endif
 480
 481        /*
 482         * Just a heuristic -- we do not add directories that often but
 483         * we do not want to have to extend it immediately when we do,
 484         * hence +2.
 485         */
 486        it->subtree_alloc = subtree_nr + 2;
 487        it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
 488        for (i = 0; i < subtree_nr; i++) {
 489                /* read each subtree */
 490                struct cache_tree *sub;
 491                struct cache_tree_sub *subtree;
 492                const char *name = buf;
 493
 494                sub = read_one(&buf, &size);
 495                if (!sub)
 496                        goto free_return;
 497                subtree = cache_tree_sub(it, name);
 498                subtree->cache_tree = sub;
 499        }
 500        if (subtree_nr != it->subtree_nr)
 501                die("cache-tree: internal error");
 502        *buffer = buf;
 503        *size_p = size;
 504        return it;
 505
 506 free_return:
 507        cache_tree_free(&it);
 508        return NULL;
 509}
 510
 511struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
 512{
 513        if (buffer[0])
 514                return NULL; /* not the whole tree */
 515        return read_one(&buffer, &size);
 516}
 517
 518static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
 519{
 520        if (!it)
 521                return NULL;
 522        while (*path) {
 523                const char *slash;
 524                struct cache_tree_sub *sub;
 525
 526                slash = strchr(path, '/');
 527                if (!slash)
 528                        slash = path + strlen(path);
 529                /* between path and slash is the name of the
 530                 * subtree to look for.
 531                 */
 532                sub = find_subtree(it, path, slash - path, 0);
 533                if (!sub)
 534                        return NULL;
 535                it = sub->cache_tree;
 536                if (slash)
 537                        while (*slash && *slash == '/')
 538                                slash++;
 539                if (!slash || !*slash)
 540                        return it; /* prefix ended with slashes */
 541                path = slash;
 542        }
 543        return it;
 544}
 545
 546int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
 547{
 548        int entries, was_valid, newfd;
 549        struct lock_file *lock_file;
 550
 551        /*
 552         * We can't free this memory, it becomes part of a linked list
 553         * parsed atexit()
 554         */
 555        lock_file = xcalloc(1, sizeof(struct lock_file));
 556
 557        newfd = hold_locked_index(lock_file, 1);
 558
 559        entries = read_cache();
 560        if (entries < 0)
 561                return WRITE_TREE_UNREADABLE_INDEX;
 562        if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
 563                cache_tree_free(&(active_cache_tree));
 564
 565        if (!active_cache_tree)
 566                active_cache_tree = cache_tree();
 567
 568        was_valid = cache_tree_fully_valid(active_cache_tree);
 569        if (!was_valid) {
 570                int missing_ok = flags & WRITE_TREE_MISSING_OK;
 571
 572                if (cache_tree_update(active_cache_tree,
 573                                      active_cache, active_nr,
 574                                      missing_ok, 0) < 0)
 575                        return WRITE_TREE_UNMERGED_INDEX;
 576                if (0 <= newfd) {
 577                        if (!write_cache(newfd, active_cache, active_nr) &&
 578                            !commit_lock_file(lock_file))
 579                                newfd = -1;
 580                }
 581                /* Not being able to write is fine -- we are only interested
 582                 * in updating the cache-tree part, and if the next caller
 583                 * ends up using the old index with unupdated cache-tree part
 584                 * it misses the work we did here, but that is just a
 585                 * performance penalty and not a big deal.
 586                 */
 587        }
 588
 589        if (prefix) {
 590                struct cache_tree *subtree =
 591                        cache_tree_find(active_cache_tree, prefix);
 592                if (!subtree)
 593                        return WRITE_TREE_PREFIX_ERROR;
 594                hashcpy(sha1, subtree->sha1);
 595        }
 596        else
 597                hashcpy(sha1, active_cache_tree->sha1);
 598
 599        if (0 <= newfd)
 600                rollback_lock_file(lock_file);
 601
 602        return 0;
 603}
 604
 605static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
 606{
 607        struct tree_desc desc;
 608        struct name_entry entry;
 609        int cnt;
 610
 611        hashcpy(it->sha1, tree->object.sha1);
 612        init_tree_desc(&desc, tree->buffer, tree->size);
 613        cnt = 0;
 614        while (tree_entry(&desc, &entry)) {
 615                if (!S_ISDIR(entry.mode))
 616                        cnt++;
 617                else {
 618                        struct cache_tree_sub *sub;
 619                        struct tree *subtree = lookup_tree(entry.sha1);
 620                        if (!subtree->object.parsed)
 621                                parse_tree(subtree);
 622                        sub = cache_tree_sub(it, entry.path);
 623                        sub->cache_tree = cache_tree();
 624                        prime_cache_tree_rec(sub->cache_tree, subtree);
 625                        cnt += sub->cache_tree->entry_count;
 626                }
 627        }
 628        it->entry_count = cnt;
 629}
 630
 631void prime_cache_tree(struct cache_tree **it, struct tree *tree)
 632{
 633        cache_tree_free(it);
 634        *it = cache_tree();
 635        prime_cache_tree_rec(*it, tree);
 636}
 637
 638/*
 639 * find the cache_tree that corresponds to the current level without
 640 * exploding the full path into textual form.  The root of the
 641 * cache tree is given as "root", and our current level is "info".
 642 * (1) When at root level, info->prev is NULL, so it is "root" itself.
 643 * (2) Otherwise, find the cache_tree that corresponds to one level
 644 *     above us, and find ourselves in there.
 645 */
 646static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
 647                                                         struct traverse_info *info)
 648{
 649        struct cache_tree *our_parent;
 650
 651        if (!info->prev)
 652                return root;
 653        our_parent = find_cache_tree_from_traversal(root, info->prev);
 654        return cache_tree_find(our_parent, info->name.path);
 655}
 656
 657int cache_tree_matches_traversal(struct cache_tree *root,
 658                                 struct name_entry *ent,
 659                                 struct traverse_info *info)
 660{
 661        struct cache_tree *it;
 662
 663        it = find_cache_tree_from_traversal(root, info);
 664        it = cache_tree_find(it, ent->path);
 665        if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
 666                return it->entry_count;
 667        return 0;
 668}