Documentation / technical / pack-protocol.txton commit Merge branch 'ep/make-phoney' (ce7da1d)
   1Packfile transfer protocols
   2===========================
   3
   4Git supports transferring data in packfiles over the ssh://, git://, http:// and
   5file:// transports.  There exist two sets of protocols, one for pushing
   6data from a client to a server and another for fetching data from a
   7server to a client.  The three transports (ssh, git, file) use the same
   8protocol to transfer data. http is documented in http-protocol.txt.
   9
  10The processes invoked in the canonical Git implementation are 'upload-pack'
  11on the server side and 'fetch-pack' on the client side for fetching data;
  12then 'receive-pack' on the server and 'send-pack' on the client for pushing
  13data.  The protocol functions to have a server tell a client what is
  14currently on the server, then for the two to negotiate the smallest amount
  15of data to send in order to fully update one or the other.
  16
  17pkt-line Format
  18---------------
  19
  20The descriptions below build on the pkt-line format described in
  21protocol-common.txt. When the grammar indicate `PKT-LINE(...)`, unless
  22otherwise noted the usual pkt-line LF rules apply: the sender SHOULD
  23include a LF, but the receiver MUST NOT complain if it is not present.
  24
  25Transports
  26----------
  27There are three transports over which the packfile protocol is
  28initiated.  The Git transport is a simple, unauthenticated server that
  29takes the command (almost always 'upload-pack', though Git
  30servers can be configured to be globally writable, in which 'receive-
  31pack' initiation is also allowed) with which the client wishes to
  32communicate and executes it and connects it to the requesting
  33process.
  34
  35In the SSH transport, the client just runs the 'upload-pack'
  36or 'receive-pack' process on the server over the SSH protocol and then
  37communicates with that invoked process over the SSH connection.
  38
  39The file:// transport runs the 'upload-pack' or 'receive-pack'
  40process locally and communicates with it over a pipe.
  41
  42Git Transport
  43-------------
  44
  45The Git transport starts off by sending the command and repository
  46on the wire using the pkt-line format, followed by a NUL byte and a
  47hostname parameter, terminated by a NUL byte.
  48
  49   0032git-upload-pack /project.git\0host=myserver.com\0
  50
  51--
  52   git-proto-request = request-command SP pathname NUL [ host-parameter NUL ]
  53   request-command   = "git-upload-pack" / "git-receive-pack" /
  54                       "git-upload-archive"   ; case sensitive
  55   pathname          = *( %x01-ff ) ; exclude NUL
  56   host-parameter    = "host=" hostname [ ":" port ]
  57--
  58
  59Only host-parameter is allowed in the git-proto-request. Clients
  60MUST NOT attempt to send additional parameters. It is used for the
  61git-daemon name based virtual hosting.  See --interpolated-path
  62option to git daemon, with the %H/%CH format characters.
  63
  64Basically what the Git client is doing to connect to an 'upload-pack'
  65process on the server side over the Git protocol is this:
  66
  67   $ echo -e -n \
  68     "0039git-upload-pack /schacon/gitbook.git\0host=example.com\0" |
  69     nc -v example.com 9418
  70
  71If the server refuses the request for some reasons, it could abort
  72gracefully with an error message.
  73
  74----
  75  error-line     =  PKT-LINE("ERR" SP explanation-text)
  76----
  77
  78
  79SSH Transport
  80-------------
  81
  82Initiating the upload-pack or receive-pack processes over SSH is
  83executing the binary on the server via SSH remote execution.
  84It is basically equivalent to running this:
  85
  86   $ ssh git.example.com "git-upload-pack '/project.git'"
  87
  88For a server to support Git pushing and pulling for a given user over
  89SSH, that user needs to be able to execute one or both of those
  90commands via the SSH shell that they are provided on login.  On some
  91systems, that shell access is limited to only being able to run those
  92two commands, or even just one of them.
  93
  94In an ssh:// format URI, it's absolute in the URI, so the '/' after
  95the host name (or port number) is sent as an argument, which is then
  96read by the remote git-upload-pack exactly as is, so it's effectively
  97an absolute path in the remote filesystem.
  98
  99       git clone ssh://user@example.com/project.git
 100                    |
 101                    v
 102    ssh user@example.com "git-upload-pack '/project.git'"
 103
 104In a "user@host:path" format URI, its relative to the user's home
 105directory, because the Git client will run:
 106
 107     git clone user@example.com:project.git
 108                    |
 109                    v
 110  ssh user@example.com "git-upload-pack 'project.git'"
 111
 112The exception is if a '~' is used, in which case
 113we execute it without the leading '/'.
 114
 115      ssh://user@example.com/~alice/project.git,
 116                     |
 117                     v
 118   ssh user@example.com "git-upload-pack '~alice/project.git'"
 119
 120A few things to remember here:
 121
 122- The "command name" is spelled with dash (e.g. git-upload-pack), but
 123  this can be overridden by the client;
 124
 125- The repository path is always quoted with single quotes.
 126
 127Fetching Data From a Server
 128---------------------------
 129
 130When one Git repository wants to get data that a second repository
 131has, the first can 'fetch' from the second.  This operation determines
 132what data the server has that the client does not then streams that
 133data down to the client in packfile format.
 134
 135
 136Reference Discovery
 137-------------------
 138
 139When the client initially connects the server will immediately respond
 140with a listing of each reference it has (all branches and tags) along
 141with the object name that each reference currently points to.
 142
 143   $ echo -e -n "0039git-upload-pack /schacon/gitbook.git\0host=example.com\0" |
 144      nc -v example.com 9418
 145   00887217a7c7e582c46cec22a130adf4b9d7d950fba0 HEAD\0multi_ack thin-pack
 146                side-band side-band-64k ofs-delta shallow no-progress include-tag
 147   00441d3fcd5ced445d1abc402225c0b8a1299641f497 refs/heads/integration
 148   003f7217a7c7e582c46cec22a130adf4b9d7d950fba0 refs/heads/master
 149   003cb88d2441cac0977faf98efc80305012112238d9d refs/tags/v0.9
 150   003c525128480b96c89e6418b1e40909bf6c5b2d580f refs/tags/v1.0
 151   003fe92df48743b7bc7d26bcaabfddde0a1e20cae47c refs/tags/v1.0^{}
 152   0000
 153
 154The returned response is a pkt-line stream describing each ref and
 155its current value.  The stream MUST be sorted by name according to
 156the C locale ordering.
 157
 158If HEAD is a valid ref, HEAD MUST appear as the first advertised
 159ref.  If HEAD is not a valid ref, HEAD MUST NOT appear in the
 160advertisement list at all, but other refs may still appear.
 161
 162The stream MUST include capability declarations behind a NUL on the
 163first ref. The peeled value of a ref (that is "ref^{}") MUST be
 164immediately after the ref itself, if presented. A conforming server
 165MUST peel the ref if it's an annotated tag.
 166
 167----
 168  advertised-refs  =  (no-refs / list-of-refs)
 169                      *shallow
 170                      flush-pkt
 171
 172  no-refs          =  PKT-LINE(zero-id SP "capabilities^{}"
 173                      NUL capability-list)
 174
 175  list-of-refs     =  first-ref *other-ref
 176  first-ref        =  PKT-LINE(obj-id SP refname
 177                      NUL capability-list)
 178
 179  other-ref        =  PKT-LINE(other-tip / other-peeled)
 180  other-tip        =  obj-id SP refname
 181  other-peeled     =  obj-id SP refname "^{}"
 182
 183  shallow          =  PKT-LINE("shallow" SP obj-id)
 184
 185  capability-list  =  capability *(SP capability)
 186  capability       =  1*(LC_ALPHA / DIGIT / "-" / "_")
 187  LC_ALPHA         =  %x61-7A
 188----
 189
 190Server and client MUST use lowercase for obj-id, both MUST treat obj-id
 191as case-insensitive.
 192
 193See protocol-capabilities.txt for a list of allowed server capabilities
 194and descriptions.
 195
 196Packfile Negotiation
 197--------------------
 198After reference and capabilities discovery, the client can decide to
 199terminate the connection by sending a flush-pkt, telling the server it can
 200now gracefully terminate, and disconnect, when it does not need any pack
 201data. This can happen with the ls-remote command, and also can happen when
 202the client already is up-to-date.
 203
 204Otherwise, it enters the negotiation phase, where the client and
 205server determine what the minimal packfile necessary for transport is,
 206by telling the server what objects it wants, its shallow objects
 207(if any), and the maximum commit depth it wants (if any).  The client
 208will also send a list of the capabilities it wants to be in effect,
 209out of what the server said it could do with the first 'want' line.
 210
 211----
 212  upload-request    =  want-list
 213                       *shallow-line
 214                       *1depth-request
 215                       flush-pkt
 216
 217  want-list         =  first-want
 218                       *additional-want
 219
 220  shallow-line      =  PKT-LINE("shallow" SP obj-id)
 221
 222  depth-request     =  PKT-LINE("deepen" SP depth)
 223
 224  first-want        =  PKT-LINE("want" SP obj-id SP capability-list)
 225  additional-want   =  PKT-LINE("want" SP obj-id)
 226
 227  depth             =  1*DIGIT
 228----
 229
 230Clients MUST send all the obj-ids it wants from the reference
 231discovery phase as 'want' lines. Clients MUST send at least one
 232'want' command in the request body. Clients MUST NOT mention an
 233obj-id in a 'want' command which did not appear in the response
 234obtained through ref discovery.
 235
 236The client MUST write all obj-ids which it only has shallow copies
 237of (meaning that it does not have the parents of a commit) as
 238'shallow' lines so that the server is aware of the limitations of
 239the client's history.
 240
 241The client now sends the maximum commit history depth it wants for
 242this transaction, which is the number of commits it wants from the
 243tip of the history, if any, as a 'deepen' line.  A depth of 0 is the
 244same as not making a depth request. The client does not want to receive
 245any commits beyond this depth, nor does it want objects needed only to
 246complete those commits. Commits whose parents are not received as a
 247result are defined as shallow and marked as such in the server. This
 248information is sent back to the client in the next step.
 249
 250Once all the 'want's and 'shallow's (and optional 'deepen') are
 251transferred, clients MUST send a flush-pkt, to tell the server side
 252that it is done sending the list.
 253
 254Otherwise, if the client sent a positive depth request, the server
 255will determine which commits will and will not be shallow and
 256send this information to the client. If the client did not request
 257a positive depth, this step is skipped.
 258
 259----
 260  shallow-update   =  *shallow-line
 261                      *unshallow-line
 262                      flush-pkt
 263
 264  shallow-line     =  PKT-LINE("shallow" SP obj-id)
 265
 266  unshallow-line   =  PKT-LINE("unshallow" SP obj-id)
 267----
 268
 269If the client has requested a positive depth, the server will compute
 270the set of commits which are no deeper than the desired depth. The set
 271of commits start at the client's wants.
 272
 273The server writes 'shallow' lines for each
 274commit whose parents will not be sent as a result. The server writes
 275an 'unshallow' line for each commit which the client has indicated is
 276shallow, but is no longer shallow at the currently requested depth
 277(that is, its parents will now be sent). The server MUST NOT mark
 278as unshallow anything which the client has not indicated was shallow.
 279
 280Now the client will send a list of the obj-ids it has using 'have'
 281lines, so the server can make a packfile that only contains the objects
 282that the client needs. In multi_ack mode, the canonical implementation
 283will send up to 32 of these at a time, then will send a flush-pkt. The
 284canonical implementation will skip ahead and send the next 32 immediately,
 285so that there is always a block of 32 "in-flight on the wire" at a time.
 286
 287----
 288  upload-haves      =  have-list
 289                       compute-end
 290
 291  have-list         =  *have-line
 292  have-line         =  PKT-LINE("have" SP obj-id)
 293  compute-end       =  flush-pkt / PKT-LINE("done")
 294----
 295
 296If the server reads 'have' lines, it then will respond by ACKing any
 297of the obj-ids the client said it had that the server also has. The
 298server will ACK obj-ids differently depending on which ack mode is
 299chosen by the client.
 300
 301In multi_ack mode:
 302
 303  * the server will respond with 'ACK obj-id continue' for any common
 304    commits.
 305
 306  * once the server has found an acceptable common base commit and is
 307    ready to make a packfile, it will blindly ACK all 'have' obj-ids
 308    back to the client.
 309
 310  * the server will then send a 'NACK' and then wait for another response
 311    from the client - either a 'done' or another list of 'have' lines.
 312
 313In multi_ack_detailed mode:
 314
 315  * the server will differentiate the ACKs where it is signaling
 316    that it is ready to send data with 'ACK obj-id ready' lines, and
 317    signals the identified common commits with 'ACK obj-id common' lines.
 318
 319Without either multi_ack or multi_ack_detailed:
 320
 321 * upload-pack sends "ACK obj-id" on the first common object it finds.
 322   After that it says nothing until the client gives it a "done".
 323
 324 * upload-pack sends "NAK" on a flush-pkt if no common object
 325   has been found yet.  If one has been found, and thus an ACK
 326   was already sent, it's silent on the flush-pkt.
 327
 328After the client has gotten enough ACK responses that it can determine
 329that the server has enough information to send an efficient packfile
 330(in the canonical implementation, this is determined when it has received
 331enough ACKs that it can color everything left in the --date-order queue
 332as common with the server, or the --date-order queue is empty), or the
 333client determines that it wants to give up (in the canonical implementation,
 334this is determined when the client sends 256 'have' lines without getting
 335any of them ACKed by the server - meaning there is nothing in common and
 336the server should just send all of its objects), then the client will send
 337a 'done' command.  The 'done' command signals to the server that the client
 338is ready to receive its packfile data.
 339
 340However, the 256 limit *only* turns on in the canonical client
 341implementation if we have received at least one "ACK %s continue"
 342during a prior round.  This helps to ensure that at least one common
 343ancestor is found before we give up entirely.
 344
 345Once the 'done' line is read from the client, the server will either
 346send a final 'ACK obj-id' or it will send a 'NAK'. 'obj-id' is the object
 347name of the last commit determined to be common. The server only sends
 348ACK after 'done' if there is at least one common base and multi_ack or
 349multi_ack_detailed is enabled. The server always sends NAK after 'done'
 350if there is no common base found.
 351
 352Then the server will start sending its packfile data.
 353
 354----
 355  server-response = *ack_multi ack / nak
 356  ack_multi       = PKT-LINE("ACK" SP obj-id ack_status)
 357  ack_status      = "continue" / "common" / "ready"
 358  ack             = PKT-LINE("ACK" SP obj-id)
 359  nak             = PKT-LINE("NAK")
 360----
 361
 362A simple clone may look like this (with no 'have' lines):
 363
 364----
 365   C: 0054want 74730d410fcb6603ace96f1dc55ea6196122532d multi_ack \
 366     side-band-64k ofs-delta\n
 367   C: 0032want 7d1665144a3a975c05f1f43902ddaf084e784dbe\n
 368   C: 0032want 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a\n
 369   C: 0032want 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01\n
 370   C: 0032want 74730d410fcb6603ace96f1dc55ea6196122532d\n
 371   C: 0000
 372   C: 0009done\n
 373
 374   S: 0008NAK\n
 375   S: [PACKFILE]
 376----
 377
 378An incremental update (fetch) response might look like this:
 379
 380----
 381   C: 0054want 74730d410fcb6603ace96f1dc55ea6196122532d multi_ack \
 382     side-band-64k ofs-delta\n
 383   C: 0032want 7d1665144a3a975c05f1f43902ddaf084e784dbe\n
 384   C: 0032want 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a\n
 385   C: 0000
 386   C: 0032have 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01\n
 387   C: [30 more have lines]
 388   C: 0032have 74730d410fcb6603ace96f1dc55ea6196122532d\n
 389   C: 0000
 390
 391   S: 003aACK 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01 continue\n
 392   S: 003aACK 74730d410fcb6603ace96f1dc55ea6196122532d continue\n
 393   S: 0008NAK\n
 394
 395   C: 0009done\n
 396
 397   S: 0031ACK 74730d410fcb6603ace96f1dc55ea6196122532d\n
 398   S: [PACKFILE]
 399----
 400
 401
 402Packfile Data
 403-------------
 404
 405Now that the client and server have finished negotiation about what
 406the minimal amount of data that needs to be sent to the client is, the server
 407will construct and send the required data in packfile format.
 408
 409See pack-format.txt for what the packfile itself actually looks like.
 410
 411If 'side-band' or 'side-band-64k' capabilities have been specified by
 412the client, the server will send the packfile data multiplexed.
 413
 414Each packet starting with the packet-line length of the amount of data
 415that follows, followed by a single byte specifying the sideband the
 416following data is coming in on.
 417
 418In 'side-band' mode, it will send up to 999 data bytes plus 1 control
 419code, for a total of up to 1000 bytes in a pkt-line.  In 'side-band-64k'
 420mode it will send up to 65519 data bytes plus 1 control code, for a
 421total of up to 65520 bytes in a pkt-line.
 422
 423The sideband byte will be a '1', '2' or a '3'. Sideband '1' will contain
 424packfile data, sideband '2' will be used for progress information that the
 425client will generally print to stderr and sideband '3' is used for error
 426information.
 427
 428If no 'side-band' capability was specified, the server will stream the
 429entire packfile without multiplexing.
 430
 431
 432Pushing Data To a Server
 433------------------------
 434
 435Pushing data to a server will invoke the 'receive-pack' process on the
 436server, which will allow the client to tell it which references it should
 437update and then send all the data the server will need for those new
 438references to be complete.  Once all the data is received and validated,
 439the server will then update its references to what the client specified.
 440
 441Authentication
 442--------------
 443
 444The protocol itself contains no authentication mechanisms.  That is to be
 445handled by the transport, such as SSH, before the 'receive-pack' process is
 446invoked.  If 'receive-pack' is configured over the Git transport, those
 447repositories will be writable by anyone who can access that port (9418) as
 448that transport is unauthenticated.
 449
 450Reference Discovery
 451-------------------
 452
 453The reference discovery phase is done nearly the same way as it is in the
 454fetching protocol. Each reference obj-id and name on the server is sent
 455in packet-line format to the client, followed by a flush-pkt.  The only
 456real difference is that the capability listing is different - the only
 457possible values are 'report-status', 'delete-refs' and 'ofs-delta'.
 458
 459Reference Update Request and Packfile Transfer
 460----------------------------------------------
 461
 462Once the client knows what references the server is at, it can send a
 463list of reference update requests.  For each reference on the server
 464that it wants to update, it sends a line listing the obj-id currently on
 465the server, the obj-id the client would like to update it to and the name
 466of the reference.
 467
 468This list is followed by a flush-pkt and then the packfile that should
 469contain all the objects that the server will need to complete the new
 470references.
 471
 472----
 473  update-request    =  *shallow ( command-list | push-cert ) [packfile]
 474
 475  shallow           =  PKT-LINE("shallow" SP obj-id)
 476
 477  command-list      =  PKT-LINE(command NUL capability-list)
 478                       *PKT-LINE(command)
 479                       flush-pkt
 480
 481  command           =  create / delete / update
 482  create            =  zero-id SP new-id  SP name
 483  delete            =  old-id  SP zero-id SP name
 484  update            =  old-id  SP new-id  SP name
 485
 486  old-id            =  obj-id
 487  new-id            =  obj-id
 488
 489  push-cert         = PKT-LINE("push-cert" NUL capability-list LF)
 490                      PKT-LINE("certificate version 0.1" LF)
 491                      PKT-LINE("pusher" SP ident LF)
 492                      PKT-LINE("pushee" SP url LF)
 493                      PKT-LINE("nonce" SP nonce LF)
 494                      PKT-LINE(LF)
 495                      *PKT-LINE(command LF)
 496                      *PKT-LINE(gpg-signature-lines LF)
 497                      PKT-LINE("push-cert-end" LF)
 498
 499  packfile          = "PACK" 28*(OCTET)
 500----
 501
 502If the receiving end does not support delete-refs, the sending end MUST
 503NOT ask for delete command.
 504
 505If the receiving end does not support push-cert, the sending end
 506MUST NOT send a push-cert command.  When a push-cert command is
 507sent, command-list MUST NOT be sent; the commands recorded in the
 508push certificate is used instead.
 509
 510The packfile MUST NOT be sent if the only command used is 'delete'.
 511
 512A packfile MUST be sent if either create or update command is used,
 513even if the server already has all the necessary objects.  In this
 514case the client MUST send an empty packfile.   The only time this
 515is likely to happen is if the client is creating
 516a new branch or a tag that points to an existing obj-id.
 517
 518The server will receive the packfile, unpack it, then validate each
 519reference that is being updated that it hasn't changed while the request
 520was being processed (the obj-id is still the same as the old-id), and
 521it will run any update hooks to make sure that the update is acceptable.
 522If all of that is fine, the server will then update the references.
 523
 524Push Certificate
 525----------------
 526
 527A push certificate begins with a set of header lines.  After the
 528header and an empty line, the protocol commands follow, one per
 529line. Note that the the trailing LF in push-cert PKT-LINEs is _not_
 530optional; it must be present.
 531
 532Currently, the following header fields are defined:
 533
 534`pusher` ident::
 535        Identify the GPG key in "Human Readable Name <email@address>"
 536        format.
 537
 538`pushee` url::
 539        The repository URL (anonymized, if the URL contains
 540        authentication material) the user who ran `git push`
 541        intended to push into.
 542
 543`nonce` nonce::
 544        The 'nonce' string the receiving repository asked the
 545        pushing user to include in the certificate, to prevent
 546        replay attacks.
 547
 548The GPG signature lines are a detached signature for the contents
 549recorded in the push certificate before the signature block begins.
 550The detached signature is used to certify that the commands were
 551given by the pusher, who must be the signer.
 552
 553Report Status
 554-------------
 555
 556After receiving the pack data from the sender, the receiver sends a
 557report if 'report-status' capability is in effect.
 558It is a short listing of what happened in that update.  It will first
 559list the status of the packfile unpacking as either 'unpack ok' or
 560'unpack [error]'.  Then it will list the status for each of the references
 561that it tried to update.  Each line is either 'ok [refname]' if the
 562update was successful, or 'ng [refname] [error]' if the update was not.
 563
 564----
 565  report-status     = unpack-status
 566                      1*(command-status)
 567                      flush-pkt
 568
 569  unpack-status     = PKT-LINE("unpack" SP unpack-result)
 570  unpack-result     = "ok" / error-msg
 571
 572  command-status    = command-ok / command-fail
 573  command-ok        = PKT-LINE("ok" SP refname)
 574  command-fail      = PKT-LINE("ng" SP refname SP error-msg)
 575
 576  error-msg         = 1*(OCTECT) ; where not "ok"
 577----
 578
 579Updates can be unsuccessful for a number of reasons.  The reference can have
 580changed since the reference discovery phase was originally sent, meaning
 581someone pushed in the meantime.  The reference being pushed could be a
 582non-fast-forward reference and the update hooks or configuration could be
 583set to not allow that, etc.  Also, some references can be updated while others
 584can be rejected.
 585
 586An example client/server communication might look like this:
 587
 588----
 589   S: 007c74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/local\0report-status delete-refs ofs-delta\n
 590   S: 003e7d1665144a3a975c05f1f43902ddaf084e784dbe refs/heads/debug\n
 591   S: 003f74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/master\n
 592   S: 003f74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/team\n
 593   S: 0000
 594
 595   C: 003e7d1665144a3a975c05f1f43902ddaf084e784dbe 74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/debug\n
 596   C: 003e74730d410fcb6603ace96f1dc55ea6196122532d 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a refs/heads/master\n
 597   C: 0000
 598   C: [PACKDATA]
 599
 600   S: 000eunpack ok\n
 601   S: 0018ok refs/heads/debug\n
 602   S: 002ang refs/heads/master non-fast-forward\n
 603----