refs / ref-cache.con commit ref-filter: limit traversal to prefix (cfe004a)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
   8{
   9        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  10        dir->entries[dir->nr++] = entry;
  11        /* optimize for the case that entries are added in order */
  12        if (dir->nr == 1 ||
  13            (dir->nr == dir->sorted + 1 &&
  14             strcmp(dir->entries[dir->nr - 2]->name,
  15                    dir->entries[dir->nr - 1]->name) < 0))
  16                dir->sorted = dir->nr;
  17}
  18
  19struct ref_dir *get_ref_dir(struct ref_entry *entry)
  20{
  21        struct ref_dir *dir;
  22        assert(entry->flag & REF_DIR);
  23        dir = &entry->u.subdir;
  24        if (entry->flag & REF_INCOMPLETE) {
  25                if (!dir->cache->fill_ref_dir)
  26                        die("BUG: incomplete ref_store without fill_ref_dir function");
  27
  28                dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
  29                entry->flag &= ~REF_INCOMPLETE;
  30        }
  31        return dir;
  32}
  33
  34struct ref_entry *create_ref_entry(const char *refname,
  35                                   const struct object_id *oid, int flag)
  36{
  37        struct ref_entry *ref;
  38
  39        FLEX_ALLOC_STR(ref, name, refname);
  40        oidcpy(&ref->u.value.oid, oid);
  41        oidclr(&ref->u.value.peeled);
  42        ref->flag = flag;
  43        return ref;
  44}
  45
  46struct ref_cache *create_ref_cache(struct ref_store *refs,
  47                                   fill_ref_dir_fn *fill_ref_dir)
  48{
  49        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  50
  51        ret->ref_store = refs;
  52        ret->fill_ref_dir = fill_ref_dir;
  53        ret->root = create_dir_entry(ret, "", 0, 1);
  54        return ret;
  55}
  56
  57static void clear_ref_dir(struct ref_dir *dir);
  58
  59static void free_ref_entry(struct ref_entry *entry)
  60{
  61        if (entry->flag & REF_DIR) {
  62                /*
  63                 * Do not use get_ref_dir() here, as that might
  64                 * trigger the reading of loose refs.
  65                 */
  66                clear_ref_dir(&entry->u.subdir);
  67        }
  68        free(entry);
  69}
  70
  71void free_ref_cache(struct ref_cache *cache)
  72{
  73        free_ref_entry(cache->root);
  74        free(cache);
  75}
  76
  77/*
  78 * Clear and free all entries in dir, recursively.
  79 */
  80static void clear_ref_dir(struct ref_dir *dir)
  81{
  82        int i;
  83        for (i = 0; i < dir->nr; i++)
  84                free_ref_entry(dir->entries[i]);
  85        free(dir->entries);
  86        dir->sorted = dir->nr = dir->alloc = 0;
  87        dir->entries = NULL;
  88}
  89
  90struct ref_entry *create_dir_entry(struct ref_cache *cache,
  91                                   const char *dirname, size_t len,
  92                                   int incomplete)
  93{
  94        struct ref_entry *direntry;
  95
  96        FLEX_ALLOC_MEM(direntry, name, dirname, len);
  97        direntry->u.subdir.cache = cache;
  98        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
  99        return direntry;
 100}
 101
 102static int ref_entry_cmp(const void *a, const void *b)
 103{
 104        struct ref_entry *one = *(struct ref_entry **)a;
 105        struct ref_entry *two = *(struct ref_entry **)b;
 106        return strcmp(one->name, two->name);
 107}
 108
 109static void sort_ref_dir(struct ref_dir *dir);
 110
 111struct string_slice {
 112        size_t len;
 113        const char *str;
 114};
 115
 116static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 117{
 118        const struct string_slice *key = key_;
 119        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 120        int cmp = strncmp(key->str, ent->name, key->len);
 121        if (cmp)
 122                return cmp;
 123        return '\0' - (unsigned char)ent->name[key->len];
 124}
 125
 126int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 127{
 128        struct ref_entry **r;
 129        struct string_slice key;
 130
 131        if (refname == NULL || !dir->nr)
 132                return -1;
 133
 134        sort_ref_dir(dir);
 135        key.len = len;
 136        key.str = refname;
 137        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 138                    ref_entry_cmp_sslice);
 139
 140        if (r == NULL)
 141                return -1;
 142
 143        return r - dir->entries;
 144}
 145
 146/*
 147 * Search for a directory entry directly within dir (without
 148 * recursing).  Sort dir if necessary.  subdirname must be a directory
 149 * name (i.e., end in '/').  If mkdir is set, then create the
 150 * directory if it is missing; otherwise, return NULL if the desired
 151 * directory cannot be found.  dir must already be complete.
 152 */
 153static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 154                                         const char *subdirname, size_t len,
 155                                         int mkdir)
 156{
 157        int entry_index = search_ref_dir(dir, subdirname, len);
 158        struct ref_entry *entry;
 159        if (entry_index == -1) {
 160                if (!mkdir)
 161                        return NULL;
 162                /*
 163                 * Since dir is complete, the absence of a subdir
 164                 * means that the subdir really doesn't exist;
 165                 * therefore, create an empty record for it but mark
 166                 * the record complete.
 167                 */
 168                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 169                add_entry_to_dir(dir, entry);
 170        } else {
 171                entry = dir->entries[entry_index];
 172        }
 173        return get_ref_dir(entry);
 174}
 175
 176/*
 177 * If refname is a reference name, find the ref_dir within the dir
 178 * tree that should hold refname. If refname is a directory name
 179 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
 180 * represent the top-level directory and must already be complete.
 181 * Sort ref_dirs and recurse into subdirectories as necessary. If
 182 * mkdir is set, then create any missing directories; otherwise,
 183 * return NULL if the desired directory cannot be found.
 184 */
 185static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 186                                           const char *refname, int mkdir)
 187{
 188        const char *slash;
 189        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 190                size_t dirnamelen = slash - refname + 1;
 191                struct ref_dir *subdir;
 192                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 193                if (!subdir) {
 194                        dir = NULL;
 195                        break;
 196                }
 197                dir = subdir;
 198        }
 199
 200        return dir;
 201}
 202
 203struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 204{
 205        int entry_index;
 206        struct ref_entry *entry;
 207        dir = find_containing_dir(dir, refname, 0);
 208        if (!dir)
 209                return NULL;
 210        entry_index = search_ref_dir(dir, refname, strlen(refname));
 211        if (entry_index == -1)
 212                return NULL;
 213        entry = dir->entries[entry_index];
 214        return (entry->flag & REF_DIR) ? NULL : entry;
 215}
 216
 217int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 218{
 219        int refname_len = strlen(refname);
 220        int entry_index;
 221        struct ref_entry *entry;
 222        int is_dir = refname[refname_len - 1] == '/';
 223        if (is_dir) {
 224                /*
 225                 * refname represents a reference directory.  Remove
 226                 * the trailing slash; otherwise we will get the
 227                 * directory *representing* refname rather than the
 228                 * one *containing* it.
 229                 */
 230                char *dirname = xmemdupz(refname, refname_len - 1);
 231                dir = find_containing_dir(dir, dirname, 0);
 232                free(dirname);
 233        } else {
 234                dir = find_containing_dir(dir, refname, 0);
 235        }
 236        if (!dir)
 237                return -1;
 238        entry_index = search_ref_dir(dir, refname, refname_len);
 239        if (entry_index == -1)
 240                return -1;
 241        entry = dir->entries[entry_index];
 242
 243        memmove(&dir->entries[entry_index],
 244                &dir->entries[entry_index + 1],
 245                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 246                );
 247        dir->nr--;
 248        if (dir->sorted > entry_index)
 249                dir->sorted--;
 250        free_ref_entry(entry);
 251        return dir->nr;
 252}
 253
 254int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 255{
 256        dir = find_containing_dir(dir, ref->name, 1);
 257        if (!dir)
 258                return -1;
 259        add_entry_to_dir(dir, ref);
 260        return 0;
 261}
 262
 263/*
 264 * Emit a warning and return true iff ref1 and ref2 have the same name
 265 * and the same sha1.  Die if they have the same name but different
 266 * sha1s.
 267 */
 268static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 269{
 270        if (strcmp(ref1->name, ref2->name))
 271                return 0;
 272
 273        /* Duplicate name; make sure that they don't conflict: */
 274
 275        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 276                /* This is impossible by construction */
 277                die("Reference directory conflict: %s", ref1->name);
 278
 279        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 280                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 281
 282        warning("Duplicated ref: %s", ref1->name);
 283        return 1;
 284}
 285
 286/*
 287 * Sort the entries in dir non-recursively (if they are not already
 288 * sorted) and remove any duplicate entries.
 289 */
 290static void sort_ref_dir(struct ref_dir *dir)
 291{
 292        int i, j;
 293        struct ref_entry *last = NULL;
 294
 295        /*
 296         * This check also prevents passing a zero-length array to qsort(),
 297         * which is a problem on some platforms.
 298         */
 299        if (dir->sorted == dir->nr)
 300                return;
 301
 302        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 303
 304        /* Remove any duplicates: */
 305        for (i = 0, j = 0; j < dir->nr; j++) {
 306                struct ref_entry *entry = dir->entries[j];
 307                if (last && is_dup_ref(last, entry))
 308                        free_ref_entry(entry);
 309                else
 310                        last = dir->entries[i++] = entry;
 311        }
 312        dir->sorted = dir->nr = i;
 313}
 314
 315/*
 316 * Load all of the refs from `dir` (recursively) into our in-memory
 317 * cache.
 318 */
 319static void prime_ref_dir(struct ref_dir *dir)
 320{
 321        /*
 322         * The hard work of loading loose refs is done by get_ref_dir(), so we
 323         * just need to recurse through all of the sub-directories. We do not
 324         * even need to care about sorting, as traversal order does not matter
 325         * to us.
 326         */
 327        int i;
 328        for (i = 0; i < dir->nr; i++) {
 329                struct ref_entry *entry = dir->entries[i];
 330                if (entry->flag & REF_DIR)
 331                        prime_ref_dir(get_ref_dir(entry));
 332        }
 333}
 334
 335/*
 336 * A level in the reference hierarchy that is currently being iterated
 337 * through.
 338 */
 339struct cache_ref_iterator_level {
 340        /*
 341         * The ref_dir being iterated over at this level. The ref_dir
 342         * is sorted before being stored here.
 343         */
 344        struct ref_dir *dir;
 345
 346        /*
 347         * The index of the current entry within dir (which might
 348         * itself be a directory). If index == -1, then the iteration
 349         * hasn't yet begun. If index == dir->nr, then the iteration
 350         * through this level is over.
 351         */
 352        int index;
 353};
 354
 355/*
 356 * Represent an iteration through a ref_dir in the memory cache. The
 357 * iteration recurses through subdirectories.
 358 */
 359struct cache_ref_iterator {
 360        struct ref_iterator base;
 361
 362        /*
 363         * The number of levels currently on the stack. This is always
 364         * at least 1, because when it becomes zero the iteration is
 365         * ended and this struct is freed.
 366         */
 367        size_t levels_nr;
 368
 369        /* The number of levels that have been allocated on the stack */
 370        size_t levels_alloc;
 371
 372        /*
 373         * A stack of levels. levels[0] is the uppermost level that is
 374         * being iterated over in this iteration. (This is not
 375         * necessary the top level in the references hierarchy. If we
 376         * are iterating through a subtree, then levels[0] will hold
 377         * the ref_dir for that subtree, and subsequent levels will go
 378         * on from there.)
 379         */
 380        struct cache_ref_iterator_level *levels;
 381};
 382
 383static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 384{
 385        struct cache_ref_iterator *iter =
 386                (struct cache_ref_iterator *)ref_iterator;
 387
 388        while (1) {
 389                struct cache_ref_iterator_level *level =
 390                        &iter->levels[iter->levels_nr - 1];
 391                struct ref_dir *dir = level->dir;
 392                struct ref_entry *entry;
 393
 394                if (level->index == -1)
 395                        sort_ref_dir(dir);
 396
 397                if (++level->index == level->dir->nr) {
 398                        /* This level is exhausted; pop up a level */
 399                        if (--iter->levels_nr == 0)
 400                                return ref_iterator_abort(ref_iterator);
 401
 402                        continue;
 403                }
 404
 405                entry = dir->entries[level->index];
 406
 407                if (entry->flag & REF_DIR) {
 408                        /* push down a level */
 409                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 410                                   iter->levels_alloc);
 411
 412                        level = &iter->levels[iter->levels_nr++];
 413                        level->dir = get_ref_dir(entry);
 414                        level->index = -1;
 415                } else {
 416                        iter->base.refname = entry->name;
 417                        iter->base.oid = &entry->u.value.oid;
 418                        iter->base.flags = entry->flag;
 419                        return ITER_OK;
 420                }
 421        }
 422}
 423
 424enum peel_status peel_entry(struct ref_entry *entry, int repeel)
 425{
 426        enum peel_status status;
 427
 428        if (entry->flag & REF_KNOWS_PEELED) {
 429                if (repeel) {
 430                        entry->flag &= ~REF_KNOWS_PEELED;
 431                        oidclr(&entry->u.value.peeled);
 432                } else {
 433                        return is_null_oid(&entry->u.value.peeled) ?
 434                                PEEL_NON_TAG : PEEL_PEELED;
 435                }
 436        }
 437        if (entry->flag & REF_ISBROKEN)
 438                return PEEL_BROKEN;
 439        if (entry->flag & REF_ISSYMREF)
 440                return PEEL_IS_SYMREF;
 441
 442        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
 443        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
 444                entry->flag |= REF_KNOWS_PEELED;
 445        return status;
 446}
 447
 448static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 449                                   struct object_id *peeled)
 450{
 451        struct cache_ref_iterator *iter =
 452                (struct cache_ref_iterator *)ref_iterator;
 453        struct cache_ref_iterator_level *level;
 454        struct ref_entry *entry;
 455
 456        level = &iter->levels[iter->levels_nr - 1];
 457
 458        if (level->index == -1)
 459                die("BUG: peel called before advance for cache iterator");
 460
 461        entry = level->dir->entries[level->index];
 462
 463        if (peel_entry(entry, 0))
 464                return -1;
 465        oidcpy(peeled, &entry->u.value.peeled);
 466        return 0;
 467}
 468
 469static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 470{
 471        struct cache_ref_iterator *iter =
 472                (struct cache_ref_iterator *)ref_iterator;
 473
 474        free(iter->levels);
 475        base_ref_iterator_free(ref_iterator);
 476        return ITER_DONE;
 477}
 478
 479static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 480        cache_ref_iterator_advance,
 481        cache_ref_iterator_peel,
 482        cache_ref_iterator_abort
 483};
 484
 485struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
 486                                              const char *prefix,
 487                                              int prime_dir)
 488{
 489        struct ref_dir *dir;
 490        struct cache_ref_iterator *iter;
 491        struct ref_iterator *ref_iterator;
 492        struct cache_ref_iterator_level *level;
 493
 494        dir = get_ref_dir(cache->root);
 495        if (prefix && *prefix)
 496                dir = find_containing_dir(dir, prefix, 0);
 497        if (!dir)
 498                /* There's nothing to iterate over. */
 499                return  empty_ref_iterator_begin();
 500
 501        if (prime_dir)
 502                prime_ref_dir(dir);
 503
 504        iter = xcalloc(1, sizeof(*iter));
 505        ref_iterator = &iter->base;
 506        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 507        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 508
 509        iter->levels_nr = 1;
 510        level = &iter->levels[0];
 511        level->index = -1;
 512        level->dir = dir;
 513
 514        if (prefix && *prefix)
 515                ref_iterator = prefix_ref_iterator_begin(ref_iterator,
 516                                                         prefix, 0);
 517
 518        return ref_iterator;
 519}