refs / ref-cache.con commit blame: create scoreboard setup function (d0d0ef1)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
   8{
   9        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  10        dir->entries[dir->nr++] = entry;
  11        /* optimize for the case that entries are added in order */
  12        if (dir->nr == 1 ||
  13            (dir->nr == dir->sorted + 1 &&
  14             strcmp(dir->entries[dir->nr - 2]->name,
  15                    dir->entries[dir->nr - 1]->name) < 0))
  16                dir->sorted = dir->nr;
  17}
  18
  19struct ref_dir *get_ref_dir(struct ref_entry *entry)
  20{
  21        struct ref_dir *dir;
  22        assert(entry->flag & REF_DIR);
  23        dir = &entry->u.subdir;
  24        if (entry->flag & REF_INCOMPLETE) {
  25                if (!dir->cache->fill_ref_dir)
  26                        die("BUG: incomplete ref_store without fill_ref_dir function");
  27
  28                dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
  29                entry->flag &= ~REF_INCOMPLETE;
  30        }
  31        return dir;
  32}
  33
  34struct ref_entry *create_ref_entry(const char *refname,
  35                                   const unsigned char *sha1, int flag,
  36                                   int check_name)
  37{
  38        struct ref_entry *ref;
  39
  40        if (check_name &&
  41            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
  42                die("Reference has invalid format: '%s'", refname);
  43        FLEX_ALLOC_STR(ref, name, refname);
  44        hashcpy(ref->u.value.oid.hash, sha1);
  45        oidclr(&ref->u.value.peeled);
  46        ref->flag = flag;
  47        return ref;
  48}
  49
  50struct ref_cache *create_ref_cache(struct ref_store *refs,
  51                                   fill_ref_dir_fn *fill_ref_dir)
  52{
  53        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  54
  55        ret->ref_store = refs;
  56        ret->fill_ref_dir = fill_ref_dir;
  57        ret->root = create_dir_entry(ret, "", 0, 1);
  58        return ret;
  59}
  60
  61static void clear_ref_dir(struct ref_dir *dir);
  62
  63static void free_ref_entry(struct ref_entry *entry)
  64{
  65        if (entry->flag & REF_DIR) {
  66                /*
  67                 * Do not use get_ref_dir() here, as that might
  68                 * trigger the reading of loose refs.
  69                 */
  70                clear_ref_dir(&entry->u.subdir);
  71        }
  72        free(entry);
  73}
  74
  75void free_ref_cache(struct ref_cache *cache)
  76{
  77        free_ref_entry(cache->root);
  78        free(cache);
  79}
  80
  81/*
  82 * Clear and free all entries in dir, recursively.
  83 */
  84static void clear_ref_dir(struct ref_dir *dir)
  85{
  86        int i;
  87        for (i = 0; i < dir->nr; i++)
  88                free_ref_entry(dir->entries[i]);
  89        free(dir->entries);
  90        dir->sorted = dir->nr = dir->alloc = 0;
  91        dir->entries = NULL;
  92}
  93
  94struct ref_entry *create_dir_entry(struct ref_cache *cache,
  95                                   const char *dirname, size_t len,
  96                                   int incomplete)
  97{
  98        struct ref_entry *direntry;
  99
 100        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 101        direntry->u.subdir.cache = cache;
 102        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 103        return direntry;
 104}
 105
 106static int ref_entry_cmp(const void *a, const void *b)
 107{
 108        struct ref_entry *one = *(struct ref_entry **)a;
 109        struct ref_entry *two = *(struct ref_entry **)b;
 110        return strcmp(one->name, two->name);
 111}
 112
 113static void sort_ref_dir(struct ref_dir *dir);
 114
 115struct string_slice {
 116        size_t len;
 117        const char *str;
 118};
 119
 120static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 121{
 122        const struct string_slice *key = key_;
 123        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 124        int cmp = strncmp(key->str, ent->name, key->len);
 125        if (cmp)
 126                return cmp;
 127        return '\0' - (unsigned char)ent->name[key->len];
 128}
 129
 130int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 131{
 132        struct ref_entry **r;
 133        struct string_slice key;
 134
 135        if (refname == NULL || !dir->nr)
 136                return -1;
 137
 138        sort_ref_dir(dir);
 139        key.len = len;
 140        key.str = refname;
 141        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 142                    ref_entry_cmp_sslice);
 143
 144        if (r == NULL)
 145                return -1;
 146
 147        return r - dir->entries;
 148}
 149
 150/*
 151 * Search for a directory entry directly within dir (without
 152 * recursing).  Sort dir if necessary.  subdirname must be a directory
 153 * name (i.e., end in '/').  If mkdir is set, then create the
 154 * directory if it is missing; otherwise, return NULL if the desired
 155 * directory cannot be found.  dir must already be complete.
 156 */
 157static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 158                                         const char *subdirname, size_t len,
 159                                         int mkdir)
 160{
 161        int entry_index = search_ref_dir(dir, subdirname, len);
 162        struct ref_entry *entry;
 163        if (entry_index == -1) {
 164                if (!mkdir)
 165                        return NULL;
 166                /*
 167                 * Since dir is complete, the absence of a subdir
 168                 * means that the subdir really doesn't exist;
 169                 * therefore, create an empty record for it but mark
 170                 * the record complete.
 171                 */
 172                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 173                add_entry_to_dir(dir, entry);
 174        } else {
 175                entry = dir->entries[entry_index];
 176        }
 177        return get_ref_dir(entry);
 178}
 179
 180/*
 181 * If refname is a reference name, find the ref_dir within the dir
 182 * tree that should hold refname. If refname is a directory name
 183 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
 184 * represent the top-level directory and must already be complete.
 185 * Sort ref_dirs and recurse into subdirectories as necessary. If
 186 * mkdir is set, then create any missing directories; otherwise,
 187 * return NULL if the desired directory cannot be found.
 188 */
 189static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 190                                           const char *refname, int mkdir)
 191{
 192        const char *slash;
 193        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 194                size_t dirnamelen = slash - refname + 1;
 195                struct ref_dir *subdir;
 196                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 197                if (!subdir) {
 198                        dir = NULL;
 199                        break;
 200                }
 201                dir = subdir;
 202        }
 203
 204        return dir;
 205}
 206
 207struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 208{
 209        int entry_index;
 210        struct ref_entry *entry;
 211        dir = find_containing_dir(dir, refname, 0);
 212        if (!dir)
 213                return NULL;
 214        entry_index = search_ref_dir(dir, refname, strlen(refname));
 215        if (entry_index == -1)
 216                return NULL;
 217        entry = dir->entries[entry_index];
 218        return (entry->flag & REF_DIR) ? NULL : entry;
 219}
 220
 221int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 222{
 223        int refname_len = strlen(refname);
 224        int entry_index;
 225        struct ref_entry *entry;
 226        int is_dir = refname[refname_len - 1] == '/';
 227        if (is_dir) {
 228                /*
 229                 * refname represents a reference directory.  Remove
 230                 * the trailing slash; otherwise we will get the
 231                 * directory *representing* refname rather than the
 232                 * one *containing* it.
 233                 */
 234                char *dirname = xmemdupz(refname, refname_len - 1);
 235                dir = find_containing_dir(dir, dirname, 0);
 236                free(dirname);
 237        } else {
 238                dir = find_containing_dir(dir, refname, 0);
 239        }
 240        if (!dir)
 241                return -1;
 242        entry_index = search_ref_dir(dir, refname, refname_len);
 243        if (entry_index == -1)
 244                return -1;
 245        entry = dir->entries[entry_index];
 246
 247        memmove(&dir->entries[entry_index],
 248                &dir->entries[entry_index + 1],
 249                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 250                );
 251        dir->nr--;
 252        if (dir->sorted > entry_index)
 253                dir->sorted--;
 254        free_ref_entry(entry);
 255        return dir->nr;
 256}
 257
 258int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 259{
 260        dir = find_containing_dir(dir, ref->name, 1);
 261        if (!dir)
 262                return -1;
 263        add_entry_to_dir(dir, ref);
 264        return 0;
 265}
 266
 267/*
 268 * Emit a warning and return true iff ref1 and ref2 have the same name
 269 * and the same sha1.  Die if they have the same name but different
 270 * sha1s.
 271 */
 272static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 273{
 274        if (strcmp(ref1->name, ref2->name))
 275                return 0;
 276
 277        /* Duplicate name; make sure that they don't conflict: */
 278
 279        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 280                /* This is impossible by construction */
 281                die("Reference directory conflict: %s", ref1->name);
 282
 283        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 284                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 285
 286        warning("Duplicated ref: %s", ref1->name);
 287        return 1;
 288}
 289
 290/*
 291 * Sort the entries in dir non-recursively (if they are not already
 292 * sorted) and remove any duplicate entries.
 293 */
 294static void sort_ref_dir(struct ref_dir *dir)
 295{
 296        int i, j;
 297        struct ref_entry *last = NULL;
 298
 299        /*
 300         * This check also prevents passing a zero-length array to qsort(),
 301         * which is a problem on some platforms.
 302         */
 303        if (dir->sorted == dir->nr)
 304                return;
 305
 306        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 307
 308        /* Remove any duplicates: */
 309        for (i = 0, j = 0; j < dir->nr; j++) {
 310                struct ref_entry *entry = dir->entries[j];
 311                if (last && is_dup_ref(last, entry))
 312                        free_ref_entry(entry);
 313                else
 314                        last = dir->entries[i++] = entry;
 315        }
 316        dir->sorted = dir->nr = i;
 317}
 318
 319/*
 320 * Load all of the refs from `dir` (recursively) into our in-memory
 321 * cache.
 322 */
 323static void prime_ref_dir(struct ref_dir *dir)
 324{
 325        /*
 326         * The hard work of loading loose refs is done by get_ref_dir(), so we
 327         * just need to recurse through all of the sub-directories. We do not
 328         * even need to care about sorting, as traversal order does not matter
 329         * to us.
 330         */
 331        int i;
 332        for (i = 0; i < dir->nr; i++) {
 333                struct ref_entry *entry = dir->entries[i];
 334                if (entry->flag & REF_DIR)
 335                        prime_ref_dir(get_ref_dir(entry));
 336        }
 337}
 338
 339/*
 340 * A level in the reference hierarchy that is currently being iterated
 341 * through.
 342 */
 343struct cache_ref_iterator_level {
 344        /*
 345         * The ref_dir being iterated over at this level. The ref_dir
 346         * is sorted before being stored here.
 347         */
 348        struct ref_dir *dir;
 349
 350        /*
 351         * The index of the current entry within dir (which might
 352         * itself be a directory). If index == -1, then the iteration
 353         * hasn't yet begun. If index == dir->nr, then the iteration
 354         * through this level is over.
 355         */
 356        int index;
 357};
 358
 359/*
 360 * Represent an iteration through a ref_dir in the memory cache. The
 361 * iteration recurses through subdirectories.
 362 */
 363struct cache_ref_iterator {
 364        struct ref_iterator base;
 365
 366        /*
 367         * The number of levels currently on the stack. This is always
 368         * at least 1, because when it becomes zero the iteration is
 369         * ended and this struct is freed.
 370         */
 371        size_t levels_nr;
 372
 373        /* The number of levels that have been allocated on the stack */
 374        size_t levels_alloc;
 375
 376        /*
 377         * A stack of levels. levels[0] is the uppermost level that is
 378         * being iterated over in this iteration. (This is not
 379         * necessary the top level in the references hierarchy. If we
 380         * are iterating through a subtree, then levels[0] will hold
 381         * the ref_dir for that subtree, and subsequent levels will go
 382         * on from there.)
 383         */
 384        struct cache_ref_iterator_level *levels;
 385};
 386
 387static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 388{
 389        struct cache_ref_iterator *iter =
 390                (struct cache_ref_iterator *)ref_iterator;
 391
 392        while (1) {
 393                struct cache_ref_iterator_level *level =
 394                        &iter->levels[iter->levels_nr - 1];
 395                struct ref_dir *dir = level->dir;
 396                struct ref_entry *entry;
 397
 398                if (level->index == -1)
 399                        sort_ref_dir(dir);
 400
 401                if (++level->index == level->dir->nr) {
 402                        /* This level is exhausted; pop up a level */
 403                        if (--iter->levels_nr == 0)
 404                                return ref_iterator_abort(ref_iterator);
 405
 406                        continue;
 407                }
 408
 409                entry = dir->entries[level->index];
 410
 411                if (entry->flag & REF_DIR) {
 412                        /* push down a level */
 413                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 414                                   iter->levels_alloc);
 415
 416                        level = &iter->levels[iter->levels_nr++];
 417                        level->dir = get_ref_dir(entry);
 418                        level->index = -1;
 419                } else {
 420                        iter->base.refname = entry->name;
 421                        iter->base.oid = &entry->u.value.oid;
 422                        iter->base.flags = entry->flag;
 423                        return ITER_OK;
 424                }
 425        }
 426}
 427
 428enum peel_status peel_entry(struct ref_entry *entry, int repeel)
 429{
 430        enum peel_status status;
 431
 432        if (entry->flag & REF_KNOWS_PEELED) {
 433                if (repeel) {
 434                        entry->flag &= ~REF_KNOWS_PEELED;
 435                        oidclr(&entry->u.value.peeled);
 436                } else {
 437                        return is_null_oid(&entry->u.value.peeled) ?
 438                                PEEL_NON_TAG : PEEL_PEELED;
 439                }
 440        }
 441        if (entry->flag & REF_ISBROKEN)
 442                return PEEL_BROKEN;
 443        if (entry->flag & REF_ISSYMREF)
 444                return PEEL_IS_SYMREF;
 445
 446        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
 447        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
 448                entry->flag |= REF_KNOWS_PEELED;
 449        return status;
 450}
 451
 452static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 453                                   struct object_id *peeled)
 454{
 455        struct cache_ref_iterator *iter =
 456                (struct cache_ref_iterator *)ref_iterator;
 457        struct cache_ref_iterator_level *level;
 458        struct ref_entry *entry;
 459
 460        level = &iter->levels[iter->levels_nr - 1];
 461
 462        if (level->index == -1)
 463                die("BUG: peel called before advance for cache iterator");
 464
 465        entry = level->dir->entries[level->index];
 466
 467        if (peel_entry(entry, 0))
 468                return -1;
 469        oidcpy(peeled, &entry->u.value.peeled);
 470        return 0;
 471}
 472
 473static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 474{
 475        struct cache_ref_iterator *iter =
 476                (struct cache_ref_iterator *)ref_iterator;
 477
 478        free(iter->levels);
 479        base_ref_iterator_free(ref_iterator);
 480        return ITER_DONE;
 481}
 482
 483static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 484        cache_ref_iterator_advance,
 485        cache_ref_iterator_peel,
 486        cache_ref_iterator_abort
 487};
 488
 489struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
 490                                              const char *prefix,
 491                                              int prime_dir)
 492{
 493        struct ref_dir *dir;
 494        struct cache_ref_iterator *iter;
 495        struct ref_iterator *ref_iterator;
 496        struct cache_ref_iterator_level *level;
 497
 498        dir = get_ref_dir(cache->root);
 499        if (prefix && *prefix)
 500                dir = find_containing_dir(dir, prefix, 0);
 501        if (!dir)
 502                /* There's nothing to iterate over. */
 503                return  empty_ref_iterator_begin();
 504
 505        if (prime_dir)
 506                prime_ref_dir(dir);
 507
 508        iter = xcalloc(1, sizeof(*iter));
 509        ref_iterator = &iter->base;
 510        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 511        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 512
 513        iter->levels_nr = 1;
 514        level = &iter->levels[0];
 515        level->index = -1;
 516        level->dir = dir;
 517
 518        if (prefix && *prefix)
 519                ref_iterator = prefix_ref_iterator_begin(ref_iterator,
 520                                                         prefix, 0);
 521
 522        return ref_iterator;
 523}