1#include "cache.h"
2#include "run-command.h"
3#include "exec-cmd.h"
4#include "sigchain.h"
5#include "argv-array.h"
6#include "thread-utils.h"
7#include "strbuf.h"
8#include "string-list.h"
9#include "quote.h"
10
11void child_process_init(struct child_process *child)
12{
13 memset(child, 0, sizeof(*child));
14 argv_array_init(&child->args);
15 argv_array_init(&child->env_array);
16}
17
18void child_process_clear(struct child_process *child)
19{
20 argv_array_clear(&child->args);
21 argv_array_clear(&child->env_array);
22}
23
24struct child_to_clean {
25 pid_t pid;
26 struct child_process *process;
27 struct child_to_clean *next;
28};
29static struct child_to_clean *children_to_clean;
30static int installed_child_cleanup_handler;
31
32static void cleanup_children(int sig, int in_signal)
33{
34 struct child_to_clean *children_to_wait_for = NULL;
35
36 while (children_to_clean) {
37 struct child_to_clean *p = children_to_clean;
38 children_to_clean = p->next;
39
40 if (p->process && !in_signal) {
41 struct child_process *process = p->process;
42 if (process->clean_on_exit_handler) {
43 trace_printf(
44 "trace: run_command: running exit handler for pid %"
45 PRIuMAX, (uintmax_t)p->pid
46 );
47 process->clean_on_exit_handler(process);
48 }
49 }
50
51 kill(p->pid, sig);
52
53 if (p->process && p->process->wait_after_clean) {
54 p->next = children_to_wait_for;
55 children_to_wait_for = p;
56 } else {
57 if (!in_signal)
58 free(p);
59 }
60 }
61
62 while (children_to_wait_for) {
63 struct child_to_clean *p = children_to_wait_for;
64 children_to_wait_for = p->next;
65
66 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
67 ; /* spin waiting for process exit or error */
68
69 if (!in_signal)
70 free(p);
71 }
72}
73
74static void cleanup_children_on_signal(int sig)
75{
76 cleanup_children(sig, 1);
77 sigchain_pop(sig);
78 raise(sig);
79}
80
81static void cleanup_children_on_exit(void)
82{
83 cleanup_children(SIGTERM, 0);
84}
85
86static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
87{
88 struct child_to_clean *p = xmalloc(sizeof(*p));
89 p->pid = pid;
90 p->process = process;
91 p->next = children_to_clean;
92 children_to_clean = p;
93
94 if (!installed_child_cleanup_handler) {
95 atexit(cleanup_children_on_exit);
96 sigchain_push_common(cleanup_children_on_signal);
97 installed_child_cleanup_handler = 1;
98 }
99}
100
101static void clear_child_for_cleanup(pid_t pid)
102{
103 struct child_to_clean **pp;
104
105 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
106 struct child_to_clean *clean_me = *pp;
107
108 if (clean_me->pid == pid) {
109 *pp = clean_me->next;
110 free(clean_me);
111 return;
112 }
113 }
114}
115
116static inline void close_pair(int fd[2])
117{
118 close(fd[0]);
119 close(fd[1]);
120}
121
122int is_executable(const char *name)
123{
124 struct stat st;
125
126 if (stat(name, &st) || /* stat, not lstat */
127 !S_ISREG(st.st_mode))
128 return 0;
129
130#if defined(GIT_WINDOWS_NATIVE)
131 /*
132 * On Windows there is no executable bit. The file extension
133 * indicates whether it can be run as an executable, and Git
134 * has special-handling to detect scripts and launch them
135 * through the indicated script interpreter. We test for the
136 * file extension first because virus scanners may make
137 * it quite expensive to open many files.
138 */
139 if (ends_with(name, ".exe"))
140 return S_IXUSR;
141
142{
143 /*
144 * Now that we know it does not have an executable extension,
145 * peek into the file instead.
146 */
147 char buf[3] = { 0 };
148 int n;
149 int fd = open(name, O_RDONLY);
150 st.st_mode &= ~S_IXUSR;
151 if (fd >= 0) {
152 n = read(fd, buf, 2);
153 if (n == 2)
154 /* look for a she-bang */
155 if (!strcmp(buf, "#!"))
156 st.st_mode |= S_IXUSR;
157 close(fd);
158 }
159}
160#endif
161 return st.st_mode & S_IXUSR;
162}
163
164/*
165 * Search $PATH for a command. This emulates the path search that
166 * execvp would perform, without actually executing the command so it
167 * can be used before fork() to prepare to run a command using
168 * execve() or after execvp() to diagnose why it failed.
169 *
170 * The caller should ensure that file contains no directory
171 * separators.
172 *
173 * Returns the path to the command, as found in $PATH or NULL if the
174 * command could not be found. The caller inherits ownership of the memory
175 * used to store the resultant path.
176 *
177 * This should not be used on Windows, where the $PATH search rules
178 * are more complicated (e.g., a search for "foo" should find
179 * "foo.exe").
180 */
181static char *locate_in_PATH(const char *file)
182{
183 const char *p = getenv("PATH");
184 struct strbuf buf = STRBUF_INIT;
185
186 if (!p || !*p)
187 return NULL;
188
189 while (1) {
190 const char *end = strchrnul(p, ':');
191
192 strbuf_reset(&buf);
193
194 /* POSIX specifies an empty entry as the current directory. */
195 if (end != p) {
196 strbuf_add(&buf, p, end - p);
197 strbuf_addch(&buf, '/');
198 }
199 strbuf_addstr(&buf, file);
200
201 if (is_executable(buf.buf))
202 return strbuf_detach(&buf, NULL);
203
204 if (!*end)
205 break;
206 p = end + 1;
207 }
208
209 strbuf_release(&buf);
210 return NULL;
211}
212
213static int exists_in_PATH(const char *file)
214{
215 char *r = locate_in_PATH(file);
216 free(r);
217 return r != NULL;
218}
219
220int sane_execvp(const char *file, char * const argv[])
221{
222 if (!execvp(file, argv))
223 return 0; /* cannot happen ;-) */
224
225 /*
226 * When a command can't be found because one of the directories
227 * listed in $PATH is unsearchable, execvp reports EACCES, but
228 * careful usability testing (read: analysis of occasional bug
229 * reports) reveals that "No such file or directory" is more
230 * intuitive.
231 *
232 * We avoid commands with "/", because execvp will not do $PATH
233 * lookups in that case.
234 *
235 * The reassignment of EACCES to errno looks like a no-op below,
236 * but we need to protect against exists_in_PATH overwriting errno.
237 */
238 if (errno == EACCES && !strchr(file, '/'))
239 errno = exists_in_PATH(file) ? EACCES : ENOENT;
240 else if (errno == ENOTDIR && !strchr(file, '/'))
241 errno = ENOENT;
242 return -1;
243}
244
245static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
246{
247 if (!argv[0])
248 die("BUG: shell command is empty");
249
250 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
251#ifndef GIT_WINDOWS_NATIVE
252 argv_array_push(out, SHELL_PATH);
253#else
254 argv_array_push(out, "sh");
255#endif
256 argv_array_push(out, "-c");
257
258 /*
259 * If we have no extra arguments, we do not even need to
260 * bother with the "$@" magic.
261 */
262 if (!argv[1])
263 argv_array_push(out, argv[0]);
264 else
265 argv_array_pushf(out, "%s \"$@\"", argv[0]);
266 }
267
268 argv_array_pushv(out, argv);
269 return out->argv;
270}
271
272#ifndef GIT_WINDOWS_NATIVE
273static int child_notifier = -1;
274
275enum child_errcode {
276 CHILD_ERR_CHDIR,
277 CHILD_ERR_DUP2,
278 CHILD_ERR_CLOSE,
279 CHILD_ERR_SIGPROCMASK,
280 CHILD_ERR_ENOENT,
281 CHILD_ERR_SILENT,
282 CHILD_ERR_ERRNO
283};
284
285struct child_err {
286 enum child_errcode err;
287 int syserr; /* errno */
288};
289
290static void child_die(enum child_errcode err)
291{
292 struct child_err buf;
293
294 buf.err = err;
295 buf.syserr = errno;
296
297 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
298 xwrite(child_notifier, &buf, sizeof(buf));
299 _exit(1);
300}
301
302static void child_dup2(int fd, int to)
303{
304 if (dup2(fd, to) < 0)
305 child_die(CHILD_ERR_DUP2);
306}
307
308static void child_close(int fd)
309{
310 if (close(fd))
311 child_die(CHILD_ERR_CLOSE);
312}
313
314static void child_close_pair(int fd[2])
315{
316 child_close(fd[0]);
317 child_close(fd[1]);
318}
319
320/*
321 * parent will make it look like the child spewed a fatal error and died
322 * this is needed to prevent changes to t0061.
323 */
324static void fake_fatal(const char *err, va_list params)
325{
326 vreportf("fatal: ", err, params);
327}
328
329static void child_error_fn(const char *err, va_list params)
330{
331 const char msg[] = "error() should not be called in child\n";
332 xwrite(2, msg, sizeof(msg) - 1);
333}
334
335static void child_warn_fn(const char *err, va_list params)
336{
337 const char msg[] = "warn() should not be called in child\n";
338 xwrite(2, msg, sizeof(msg) - 1);
339}
340
341static void NORETURN child_die_fn(const char *err, va_list params)
342{
343 const char msg[] = "die() should not be called in child\n";
344 xwrite(2, msg, sizeof(msg) - 1);
345 _exit(2);
346}
347
348/* this runs in the parent process */
349static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
350{
351 static void (*old_errfn)(const char *err, va_list params);
352
353 old_errfn = get_error_routine();
354 set_error_routine(fake_fatal);
355 errno = cerr->syserr;
356
357 switch (cerr->err) {
358 case CHILD_ERR_CHDIR:
359 error_errno("exec '%s': cd to '%s' failed",
360 cmd->argv[0], cmd->dir);
361 break;
362 case CHILD_ERR_DUP2:
363 error_errno("dup2() in child failed");
364 break;
365 case CHILD_ERR_CLOSE:
366 error_errno("close() in child failed");
367 break;
368 case CHILD_ERR_SIGPROCMASK:
369 error_errno("sigprocmask failed restoring signals");
370 break;
371 case CHILD_ERR_ENOENT:
372 error_errno("cannot run %s", cmd->argv[0]);
373 break;
374 case CHILD_ERR_SILENT:
375 break;
376 case CHILD_ERR_ERRNO:
377 error_errno("cannot exec '%s'", cmd->argv[0]);
378 break;
379 }
380 set_error_routine(old_errfn);
381}
382
383static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
384{
385 if (!cmd->argv[0])
386 die("BUG: command is empty");
387
388 /*
389 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
390 * attempt to interpret the command with 'sh'.
391 */
392 argv_array_push(out, SHELL_PATH);
393
394 if (cmd->git_cmd) {
395 argv_array_push(out, "git");
396 argv_array_pushv(out, cmd->argv);
397 } else if (cmd->use_shell) {
398 prepare_shell_cmd(out, cmd->argv);
399 } else {
400 argv_array_pushv(out, cmd->argv);
401 }
402
403 /*
404 * If there are no '/' characters in the command then perform a path
405 * lookup and use the resolved path as the command to exec. If there
406 * are no '/' characters or if the command wasn't found in the path,
407 * have exec attempt to invoke the command directly.
408 */
409 if (!strchr(out->argv[1], '/')) {
410 char *program = locate_in_PATH(out->argv[1]);
411 if (program) {
412 free((char *)out->argv[1]);
413 out->argv[1] = program;
414 }
415 }
416}
417
418static char **prep_childenv(const char *const *deltaenv)
419{
420 extern char **environ;
421 char **childenv;
422 struct string_list env = STRING_LIST_INIT_DUP;
423 struct strbuf key = STRBUF_INIT;
424 const char *const *p;
425 int i;
426
427 /* Construct a sorted string list consisting of the current environ */
428 for (p = (const char *const *) environ; p && *p; p++) {
429 const char *equals = strchr(*p, '=');
430
431 if (equals) {
432 strbuf_reset(&key);
433 strbuf_add(&key, *p, equals - *p);
434 string_list_append(&env, key.buf)->util = (void *) *p;
435 } else {
436 string_list_append(&env, *p)->util = (void *) *p;
437 }
438 }
439 string_list_sort(&env);
440
441 /* Merge in 'deltaenv' with the current environ */
442 for (p = deltaenv; p && *p; p++) {
443 const char *equals = strchr(*p, '=');
444
445 if (equals) {
446 /* ('key=value'), insert or replace entry */
447 strbuf_reset(&key);
448 strbuf_add(&key, *p, equals - *p);
449 string_list_insert(&env, key.buf)->util = (void *) *p;
450 } else {
451 /* otherwise ('key') remove existing entry */
452 string_list_remove(&env, *p, 0);
453 }
454 }
455
456 /* Create an array of 'char *' to be used as the childenv */
457 ALLOC_ARRAY(childenv, env.nr + 1);
458 for (i = 0; i < env.nr; i++)
459 childenv[i] = env.items[i].util;
460 childenv[env.nr] = NULL;
461
462 string_list_clear(&env, 0);
463 strbuf_release(&key);
464 return childenv;
465}
466
467struct atfork_state {
468#ifndef NO_PTHREADS
469 int cs;
470#endif
471 sigset_t old;
472};
473
474#ifndef NO_PTHREADS
475static void bug_die(int err, const char *msg)
476{
477 if (err) {
478 errno = err;
479 die_errno("BUG: %s", msg);
480 }
481}
482#endif
483
484static void atfork_prepare(struct atfork_state *as)
485{
486 sigset_t all;
487
488 if (sigfillset(&all))
489 die_errno("sigfillset");
490#ifdef NO_PTHREADS
491 if (sigprocmask(SIG_SETMASK, &all, &as->old))
492 die_errno("sigprocmask");
493#else
494 bug_die(pthread_sigmask(SIG_SETMASK, &all, &as->old),
495 "blocking all signals");
496 bug_die(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
497 "disabling cancellation");
498#endif
499}
500
501static void atfork_parent(struct atfork_state *as)
502{
503#ifdef NO_PTHREADS
504 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
505 die_errno("sigprocmask");
506#else
507 bug_die(pthread_setcancelstate(as->cs, NULL),
508 "re-enabling cancellation");
509 bug_die(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
510 "restoring signal mask");
511#endif
512}
513#endif /* GIT_WINDOWS_NATIVE */
514
515static inline void set_cloexec(int fd)
516{
517 int flags = fcntl(fd, F_GETFD);
518 if (flags >= 0)
519 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
520}
521
522static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
523{
524 int status, code = -1;
525 pid_t waiting;
526 int failed_errno = 0;
527
528 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
529 ; /* nothing */
530 if (in_signal)
531 return 0;
532
533 if (waiting < 0) {
534 failed_errno = errno;
535 error_errno("waitpid for %s failed", argv0);
536 } else if (waiting != pid) {
537 error("waitpid is confused (%s)", argv0);
538 } else if (WIFSIGNALED(status)) {
539 code = WTERMSIG(status);
540 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
541 error("%s died of signal %d", argv0, code);
542 /*
543 * This return value is chosen so that code & 0xff
544 * mimics the exit code that a POSIX shell would report for
545 * a program that died from this signal.
546 */
547 code += 128;
548 } else if (WIFEXITED(status)) {
549 code = WEXITSTATUS(status);
550 } else {
551 error("waitpid is confused (%s)", argv0);
552 }
553
554 clear_child_for_cleanup(pid);
555
556 errno = failed_errno;
557 return code;
558}
559
560static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
561{
562 struct string_list envs = STRING_LIST_INIT_DUP;
563 const char *const *e;
564 int i;
565 int printed_unset = 0;
566
567 /* Last one wins, see run-command.c:prep_childenv() for context */
568 for (e = deltaenv; e && *e; e++) {
569 struct strbuf key = STRBUF_INIT;
570 char *equals = strchr(*e, '=');
571
572 if (equals) {
573 strbuf_add(&key, *e, equals - *e);
574 string_list_insert(&envs, key.buf)->util = equals + 1;
575 } else {
576 string_list_insert(&envs, *e)->util = NULL;
577 }
578 strbuf_release(&key);
579 }
580
581 /* "unset X Y...;" */
582 for (i = 0; i < envs.nr; i++) {
583 const char *var = envs.items[i].string;
584 const char *val = envs.items[i].util;
585
586 if (val || !getenv(var))
587 continue;
588
589 if (!printed_unset) {
590 strbuf_addstr(dst, " unset");
591 printed_unset = 1;
592 }
593 strbuf_addf(dst, " %s", var);
594 }
595 if (printed_unset)
596 strbuf_addch(dst, ';');
597
598 /* ... followed by "A=B C=D ..." */
599 for (i = 0; i < envs.nr; i++) {
600 const char *var = envs.items[i].string;
601 const char *val = envs.items[i].util;
602 const char *oldval;
603
604 if (!val)
605 continue;
606
607 oldval = getenv(var);
608 if (oldval && !strcmp(val, oldval))
609 continue;
610
611 strbuf_addf(dst, " %s=", var);
612 sq_quote_buf_pretty(dst, val);
613 }
614 string_list_clear(&envs, 0);
615}
616
617static void trace_run_command(const struct child_process *cp)
618{
619 struct strbuf buf = STRBUF_INIT;
620
621 if (!trace_want(&trace_default_key))
622 return;
623
624 strbuf_addstr(&buf, "trace: run_command:");
625 if (cp->dir) {
626 strbuf_addstr(&buf, " cd ");
627 sq_quote_buf_pretty(&buf, cp->dir);
628 strbuf_addch(&buf, ';');
629 }
630 /*
631 * The caller is responsible for initializing cp->env from
632 * cp->env_array if needed. We only check one place.
633 */
634 if (cp->env)
635 trace_add_env(&buf, cp->env);
636 if (cp->git_cmd)
637 strbuf_addstr(&buf, " git");
638 sq_quote_argv_pretty(&buf, cp->argv);
639
640 trace_printf("%s", buf.buf);
641 strbuf_release(&buf);
642}
643
644int start_command(struct child_process *cmd)
645{
646 int need_in, need_out, need_err;
647 int fdin[2], fdout[2], fderr[2];
648 int failed_errno;
649 char *str;
650
651 if (!cmd->argv)
652 cmd->argv = cmd->args.argv;
653 if (!cmd->env)
654 cmd->env = cmd->env_array.argv;
655
656 /*
657 * In case of errors we must keep the promise to close FDs
658 * that have been passed in via ->in and ->out.
659 */
660
661 need_in = !cmd->no_stdin && cmd->in < 0;
662 if (need_in) {
663 if (pipe(fdin) < 0) {
664 failed_errno = errno;
665 if (cmd->out > 0)
666 close(cmd->out);
667 str = "standard input";
668 goto fail_pipe;
669 }
670 cmd->in = fdin[1];
671 }
672
673 need_out = !cmd->no_stdout
674 && !cmd->stdout_to_stderr
675 && cmd->out < 0;
676 if (need_out) {
677 if (pipe(fdout) < 0) {
678 failed_errno = errno;
679 if (need_in)
680 close_pair(fdin);
681 else if (cmd->in)
682 close(cmd->in);
683 str = "standard output";
684 goto fail_pipe;
685 }
686 cmd->out = fdout[0];
687 }
688
689 need_err = !cmd->no_stderr && cmd->err < 0;
690 if (need_err) {
691 if (pipe(fderr) < 0) {
692 failed_errno = errno;
693 if (need_in)
694 close_pair(fdin);
695 else if (cmd->in)
696 close(cmd->in);
697 if (need_out)
698 close_pair(fdout);
699 else if (cmd->out)
700 close(cmd->out);
701 str = "standard error";
702fail_pipe:
703 error("cannot create %s pipe for %s: %s",
704 str, cmd->argv[0], strerror(failed_errno));
705 child_process_clear(cmd);
706 errno = failed_errno;
707 return -1;
708 }
709 cmd->err = fderr[0];
710 }
711
712 trace_run_command(cmd);
713
714 fflush(NULL);
715
716#ifndef GIT_WINDOWS_NATIVE
717{
718 int notify_pipe[2];
719 int null_fd = -1;
720 char **childenv;
721 struct argv_array argv = ARGV_ARRAY_INIT;
722 struct child_err cerr;
723 struct atfork_state as;
724
725 if (pipe(notify_pipe))
726 notify_pipe[0] = notify_pipe[1] = -1;
727
728 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
729 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
730 if (null_fd < 0)
731 die_errno(_("open /dev/null failed"));
732 set_cloexec(null_fd);
733 }
734
735 prepare_cmd(&argv, cmd);
736 childenv = prep_childenv(cmd->env);
737 atfork_prepare(&as);
738
739 /*
740 * NOTE: In order to prevent deadlocking when using threads special
741 * care should be taken with the function calls made in between the
742 * fork() and exec() calls. No calls should be made to functions which
743 * require acquiring a lock (e.g. malloc) as the lock could have been
744 * held by another thread at the time of forking, causing the lock to
745 * never be released in the child process. This means only
746 * Async-Signal-Safe functions are permitted in the child.
747 */
748 cmd->pid = fork();
749 failed_errno = errno;
750 if (!cmd->pid) {
751 int sig;
752 /*
753 * Ensure the default die/error/warn routines do not get
754 * called, they can take stdio locks and malloc.
755 */
756 set_die_routine(child_die_fn);
757 set_error_routine(child_error_fn);
758 set_warn_routine(child_warn_fn);
759
760 close(notify_pipe[0]);
761 set_cloexec(notify_pipe[1]);
762 child_notifier = notify_pipe[1];
763
764 if (cmd->no_stdin)
765 child_dup2(null_fd, 0);
766 else if (need_in) {
767 child_dup2(fdin[0], 0);
768 child_close_pair(fdin);
769 } else if (cmd->in) {
770 child_dup2(cmd->in, 0);
771 child_close(cmd->in);
772 }
773
774 if (cmd->no_stderr)
775 child_dup2(null_fd, 2);
776 else if (need_err) {
777 child_dup2(fderr[1], 2);
778 child_close_pair(fderr);
779 } else if (cmd->err > 1) {
780 child_dup2(cmd->err, 2);
781 child_close(cmd->err);
782 }
783
784 if (cmd->no_stdout)
785 child_dup2(null_fd, 1);
786 else if (cmd->stdout_to_stderr)
787 child_dup2(2, 1);
788 else if (need_out) {
789 child_dup2(fdout[1], 1);
790 child_close_pair(fdout);
791 } else if (cmd->out > 1) {
792 child_dup2(cmd->out, 1);
793 child_close(cmd->out);
794 }
795
796 if (cmd->dir && chdir(cmd->dir))
797 child_die(CHILD_ERR_CHDIR);
798
799 /*
800 * restore default signal handlers here, in case
801 * we catch a signal right before execve below
802 */
803 for (sig = 1; sig < NSIG; sig++) {
804 /* ignored signals get reset to SIG_DFL on execve */
805 if (signal(sig, SIG_DFL) == SIG_IGN)
806 signal(sig, SIG_IGN);
807 }
808
809 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
810 child_die(CHILD_ERR_SIGPROCMASK);
811
812 /*
813 * Attempt to exec using the command and arguments starting at
814 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
815 * be used in the event exec failed with ENOEXEC at which point
816 * we will try to interpret the command using 'sh'.
817 */
818 execve(argv.argv[1], (char *const *) argv.argv + 1,
819 (char *const *) childenv);
820 if (errno == ENOEXEC)
821 execve(argv.argv[0], (char *const *) argv.argv,
822 (char *const *) childenv);
823
824 if (errno == ENOENT) {
825 if (cmd->silent_exec_failure)
826 child_die(CHILD_ERR_SILENT);
827 child_die(CHILD_ERR_ENOENT);
828 } else {
829 child_die(CHILD_ERR_ERRNO);
830 }
831 }
832 atfork_parent(&as);
833 if (cmd->pid < 0)
834 error_errno("cannot fork() for %s", cmd->argv[0]);
835 else if (cmd->clean_on_exit)
836 mark_child_for_cleanup(cmd->pid, cmd);
837
838 /*
839 * Wait for child's exec. If the exec succeeds (or if fork()
840 * failed), EOF is seen immediately by the parent. Otherwise, the
841 * child process sends a child_err struct.
842 * Note that use of this infrastructure is completely advisory,
843 * therefore, we keep error checks minimal.
844 */
845 close(notify_pipe[1]);
846 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
847 /*
848 * At this point we know that fork() succeeded, but exec()
849 * failed. Errors have been reported to our stderr.
850 */
851 wait_or_whine(cmd->pid, cmd->argv[0], 0);
852 child_err_spew(cmd, &cerr);
853 failed_errno = errno;
854 cmd->pid = -1;
855 }
856 close(notify_pipe[0]);
857
858 if (null_fd >= 0)
859 close(null_fd);
860 argv_array_clear(&argv);
861 free(childenv);
862}
863#else
864{
865 int fhin = 0, fhout = 1, fherr = 2;
866 const char **sargv = cmd->argv;
867 struct argv_array nargv = ARGV_ARRAY_INIT;
868
869 if (cmd->no_stdin)
870 fhin = open("/dev/null", O_RDWR);
871 else if (need_in)
872 fhin = dup(fdin[0]);
873 else if (cmd->in)
874 fhin = dup(cmd->in);
875
876 if (cmd->no_stderr)
877 fherr = open("/dev/null", O_RDWR);
878 else if (need_err)
879 fherr = dup(fderr[1]);
880 else if (cmd->err > 2)
881 fherr = dup(cmd->err);
882
883 if (cmd->no_stdout)
884 fhout = open("/dev/null", O_RDWR);
885 else if (cmd->stdout_to_stderr)
886 fhout = dup(fherr);
887 else if (need_out)
888 fhout = dup(fdout[1]);
889 else if (cmd->out > 1)
890 fhout = dup(cmd->out);
891
892 if (cmd->git_cmd)
893 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
894 else if (cmd->use_shell)
895 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
896
897 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
898 cmd->dir, fhin, fhout, fherr);
899 failed_errno = errno;
900 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
901 error_errno("cannot spawn %s", cmd->argv[0]);
902 if (cmd->clean_on_exit && cmd->pid >= 0)
903 mark_child_for_cleanup(cmd->pid, cmd);
904
905 argv_array_clear(&nargv);
906 cmd->argv = sargv;
907 if (fhin != 0)
908 close(fhin);
909 if (fhout != 1)
910 close(fhout);
911 if (fherr != 2)
912 close(fherr);
913}
914#endif
915
916 if (cmd->pid < 0) {
917 if (need_in)
918 close_pair(fdin);
919 else if (cmd->in)
920 close(cmd->in);
921 if (need_out)
922 close_pair(fdout);
923 else if (cmd->out)
924 close(cmd->out);
925 if (need_err)
926 close_pair(fderr);
927 else if (cmd->err)
928 close(cmd->err);
929 child_process_clear(cmd);
930 errno = failed_errno;
931 return -1;
932 }
933
934 if (need_in)
935 close(fdin[0]);
936 else if (cmd->in)
937 close(cmd->in);
938
939 if (need_out)
940 close(fdout[1]);
941 else if (cmd->out)
942 close(cmd->out);
943
944 if (need_err)
945 close(fderr[1]);
946 else if (cmd->err)
947 close(cmd->err);
948
949 return 0;
950}
951
952int finish_command(struct child_process *cmd)
953{
954 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
955 child_process_clear(cmd);
956 return ret;
957}
958
959int finish_command_in_signal(struct child_process *cmd)
960{
961 return wait_or_whine(cmd->pid, cmd->argv[0], 1);
962}
963
964
965int run_command(struct child_process *cmd)
966{
967 int code;
968
969 if (cmd->out < 0 || cmd->err < 0)
970 die("BUG: run_command with a pipe can cause deadlock");
971
972 code = start_command(cmd);
973 if (code)
974 return code;
975 return finish_command(cmd);
976}
977
978int run_command_v_opt(const char **argv, int opt)
979{
980 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
981}
982
983int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
984{
985 struct child_process cmd = CHILD_PROCESS_INIT;
986 cmd.argv = argv;
987 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
988 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
989 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
990 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
991 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
992 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
993 cmd.dir = dir;
994 cmd.env = env;
995 return run_command(&cmd);
996}
997
998#ifndef NO_PTHREADS
999static pthread_t main_thread;
1000static int main_thread_set;
1001static pthread_key_t async_key;
1002static pthread_key_t async_die_counter;
1003
1004static void *run_thread(void *data)
1005{
1006 struct async *async = data;
1007 intptr_t ret;
1008
1009 if (async->isolate_sigpipe) {
1010 sigset_t mask;
1011 sigemptyset(&mask);
1012 sigaddset(&mask, SIGPIPE);
1013 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1014 ret = error("unable to block SIGPIPE in async thread");
1015 return (void *)ret;
1016 }
1017 }
1018
1019 pthread_setspecific(async_key, async);
1020 ret = async->proc(async->proc_in, async->proc_out, async->data);
1021 return (void *)ret;
1022}
1023
1024static NORETURN void die_async(const char *err, va_list params)
1025{
1026 vreportf("fatal: ", err, params);
1027
1028 if (in_async()) {
1029 struct async *async = pthread_getspecific(async_key);
1030 if (async->proc_in >= 0)
1031 close(async->proc_in);
1032 if (async->proc_out >= 0)
1033 close(async->proc_out);
1034 pthread_exit((void *)128);
1035 }
1036
1037 exit(128);
1038}
1039
1040static int async_die_is_recursing(void)
1041{
1042 void *ret = pthread_getspecific(async_die_counter);
1043 pthread_setspecific(async_die_counter, (void *)1);
1044 return ret != NULL;
1045}
1046
1047int in_async(void)
1048{
1049 if (!main_thread_set)
1050 return 0; /* no asyncs started yet */
1051 return !pthread_equal(main_thread, pthread_self());
1052}
1053
1054static void NORETURN async_exit(int code)
1055{
1056 pthread_exit((void *)(intptr_t)code);
1057}
1058
1059#else
1060
1061static struct {
1062 void (**handlers)(void);
1063 size_t nr;
1064 size_t alloc;
1065} git_atexit_hdlrs;
1066
1067static int git_atexit_installed;
1068
1069static void git_atexit_dispatch(void)
1070{
1071 size_t i;
1072
1073 for (i=git_atexit_hdlrs.nr ; i ; i--)
1074 git_atexit_hdlrs.handlers[i-1]();
1075}
1076
1077static void git_atexit_clear(void)
1078{
1079 free(git_atexit_hdlrs.handlers);
1080 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1081 git_atexit_installed = 0;
1082}
1083
1084#undef atexit
1085int git_atexit(void (*handler)(void))
1086{
1087 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1088 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1089 if (!git_atexit_installed) {
1090 if (atexit(&git_atexit_dispatch))
1091 return -1;
1092 git_atexit_installed = 1;
1093 }
1094 return 0;
1095}
1096#define atexit git_atexit
1097
1098static int process_is_async;
1099int in_async(void)
1100{
1101 return process_is_async;
1102}
1103
1104static void NORETURN async_exit(int code)
1105{
1106 exit(code);
1107}
1108
1109#endif
1110
1111void check_pipe(int err)
1112{
1113 if (err == EPIPE) {
1114 if (in_async())
1115 async_exit(141);
1116
1117 signal(SIGPIPE, SIG_DFL);
1118 raise(SIGPIPE);
1119 /* Should never happen, but just in case... */
1120 exit(141);
1121 }
1122}
1123
1124int start_async(struct async *async)
1125{
1126 int need_in, need_out;
1127 int fdin[2], fdout[2];
1128 int proc_in, proc_out;
1129
1130 need_in = async->in < 0;
1131 if (need_in) {
1132 if (pipe(fdin) < 0) {
1133 if (async->out > 0)
1134 close(async->out);
1135 return error_errno("cannot create pipe");
1136 }
1137 async->in = fdin[1];
1138 }
1139
1140 need_out = async->out < 0;
1141 if (need_out) {
1142 if (pipe(fdout) < 0) {
1143 if (need_in)
1144 close_pair(fdin);
1145 else if (async->in)
1146 close(async->in);
1147 return error_errno("cannot create pipe");
1148 }
1149 async->out = fdout[0];
1150 }
1151
1152 if (need_in)
1153 proc_in = fdin[0];
1154 else if (async->in)
1155 proc_in = async->in;
1156 else
1157 proc_in = -1;
1158
1159 if (need_out)
1160 proc_out = fdout[1];
1161 else if (async->out)
1162 proc_out = async->out;
1163 else
1164 proc_out = -1;
1165
1166#ifdef NO_PTHREADS
1167 /* Flush stdio before fork() to avoid cloning buffers */
1168 fflush(NULL);
1169
1170 async->pid = fork();
1171 if (async->pid < 0) {
1172 error_errno("fork (async) failed");
1173 goto error;
1174 }
1175 if (!async->pid) {
1176 if (need_in)
1177 close(fdin[1]);
1178 if (need_out)
1179 close(fdout[0]);
1180 git_atexit_clear();
1181 process_is_async = 1;
1182 exit(!!async->proc(proc_in, proc_out, async->data));
1183 }
1184
1185 mark_child_for_cleanup(async->pid, NULL);
1186
1187 if (need_in)
1188 close(fdin[0]);
1189 else if (async->in)
1190 close(async->in);
1191
1192 if (need_out)
1193 close(fdout[1]);
1194 else if (async->out)
1195 close(async->out);
1196#else
1197 if (!main_thread_set) {
1198 /*
1199 * We assume that the first time that start_async is called
1200 * it is from the main thread.
1201 */
1202 main_thread_set = 1;
1203 main_thread = pthread_self();
1204 pthread_key_create(&async_key, NULL);
1205 pthread_key_create(&async_die_counter, NULL);
1206 set_die_routine(die_async);
1207 set_die_is_recursing_routine(async_die_is_recursing);
1208 }
1209
1210 if (proc_in >= 0)
1211 set_cloexec(proc_in);
1212 if (proc_out >= 0)
1213 set_cloexec(proc_out);
1214 async->proc_in = proc_in;
1215 async->proc_out = proc_out;
1216 {
1217 int err = pthread_create(&async->tid, NULL, run_thread, async);
1218 if (err) {
1219 error_errno("cannot create thread");
1220 goto error;
1221 }
1222 }
1223#endif
1224 return 0;
1225
1226error:
1227 if (need_in)
1228 close_pair(fdin);
1229 else if (async->in)
1230 close(async->in);
1231
1232 if (need_out)
1233 close_pair(fdout);
1234 else if (async->out)
1235 close(async->out);
1236 return -1;
1237}
1238
1239int finish_async(struct async *async)
1240{
1241#ifdef NO_PTHREADS
1242 return wait_or_whine(async->pid, "child process", 0);
1243#else
1244 void *ret = (void *)(intptr_t)(-1);
1245
1246 if (pthread_join(async->tid, &ret))
1247 error("pthread_join failed");
1248 return (int)(intptr_t)ret;
1249#endif
1250}
1251
1252const char *find_hook(const char *name)
1253{
1254 static struct strbuf path = STRBUF_INIT;
1255
1256 strbuf_reset(&path);
1257 strbuf_git_path(&path, "hooks/%s", name);
1258 if (access(path.buf, X_OK) < 0) {
1259 int err = errno;
1260
1261#ifdef STRIP_EXTENSION
1262 strbuf_addstr(&path, STRIP_EXTENSION);
1263 if (access(path.buf, X_OK) >= 0)
1264 return path.buf;
1265 if (errno == EACCES)
1266 err = errno;
1267#endif
1268
1269 if (err == EACCES && advice_ignored_hook) {
1270 static struct string_list advise_given = STRING_LIST_INIT_DUP;
1271
1272 if (!string_list_lookup(&advise_given, name)) {
1273 string_list_insert(&advise_given, name);
1274 advise(_("The '%s' hook was ignored because "
1275 "it's not set as executable.\n"
1276 "You can disable this warning with "
1277 "`git config advice.ignoredHook false`."),
1278 path.buf);
1279 }
1280 }
1281 return NULL;
1282 }
1283 return path.buf;
1284}
1285
1286int run_hook_ve(const char *const *env, const char *name, va_list args)
1287{
1288 struct child_process hook = CHILD_PROCESS_INIT;
1289 const char *p;
1290
1291 p = find_hook(name);
1292 if (!p)
1293 return 0;
1294
1295 argv_array_push(&hook.args, p);
1296 while ((p = va_arg(args, const char *)))
1297 argv_array_push(&hook.args, p);
1298 hook.env = env;
1299 hook.no_stdin = 1;
1300 hook.stdout_to_stderr = 1;
1301
1302 return run_command(&hook);
1303}
1304
1305int run_hook_le(const char *const *env, const char *name, ...)
1306{
1307 va_list args;
1308 int ret;
1309
1310 va_start(args, name);
1311 ret = run_hook_ve(env, name, args);
1312 va_end(args);
1313
1314 return ret;
1315}
1316
1317struct io_pump {
1318 /* initialized by caller */
1319 int fd;
1320 int type; /* POLLOUT or POLLIN */
1321 union {
1322 struct {
1323 const char *buf;
1324 size_t len;
1325 } out;
1326 struct {
1327 struct strbuf *buf;
1328 size_t hint;
1329 } in;
1330 } u;
1331
1332 /* returned by pump_io */
1333 int error; /* 0 for success, otherwise errno */
1334
1335 /* internal use */
1336 struct pollfd *pfd;
1337};
1338
1339static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1340{
1341 int pollsize = 0;
1342 int i;
1343
1344 for (i = 0; i < nr; i++) {
1345 struct io_pump *io = &slots[i];
1346 if (io->fd < 0)
1347 continue;
1348 pfd[pollsize].fd = io->fd;
1349 pfd[pollsize].events = io->type;
1350 io->pfd = &pfd[pollsize++];
1351 }
1352
1353 if (!pollsize)
1354 return 0;
1355
1356 if (poll(pfd, pollsize, -1) < 0) {
1357 if (errno == EINTR)
1358 return 1;
1359 die_errno("poll failed");
1360 }
1361
1362 for (i = 0; i < nr; i++) {
1363 struct io_pump *io = &slots[i];
1364
1365 if (io->fd < 0)
1366 continue;
1367
1368 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1369 continue;
1370
1371 if (io->type == POLLOUT) {
1372 ssize_t len = xwrite(io->fd,
1373 io->u.out.buf, io->u.out.len);
1374 if (len < 0) {
1375 io->error = errno;
1376 close(io->fd);
1377 io->fd = -1;
1378 } else {
1379 io->u.out.buf += len;
1380 io->u.out.len -= len;
1381 if (!io->u.out.len) {
1382 close(io->fd);
1383 io->fd = -1;
1384 }
1385 }
1386 }
1387
1388 if (io->type == POLLIN) {
1389 ssize_t len = strbuf_read_once(io->u.in.buf,
1390 io->fd, io->u.in.hint);
1391 if (len < 0)
1392 io->error = errno;
1393 if (len <= 0) {
1394 close(io->fd);
1395 io->fd = -1;
1396 }
1397 }
1398 }
1399
1400 return 1;
1401}
1402
1403static int pump_io(struct io_pump *slots, int nr)
1404{
1405 struct pollfd *pfd;
1406 int i;
1407
1408 for (i = 0; i < nr; i++)
1409 slots[i].error = 0;
1410
1411 ALLOC_ARRAY(pfd, nr);
1412 while (pump_io_round(slots, nr, pfd))
1413 ; /* nothing */
1414 free(pfd);
1415
1416 /* There may be multiple errno values, so just pick the first. */
1417 for (i = 0; i < nr; i++) {
1418 if (slots[i].error) {
1419 errno = slots[i].error;
1420 return -1;
1421 }
1422 }
1423 return 0;
1424}
1425
1426
1427int pipe_command(struct child_process *cmd,
1428 const char *in, size_t in_len,
1429 struct strbuf *out, size_t out_hint,
1430 struct strbuf *err, size_t err_hint)
1431{
1432 struct io_pump io[3];
1433 int nr = 0;
1434
1435 if (in)
1436 cmd->in = -1;
1437 if (out)
1438 cmd->out = -1;
1439 if (err)
1440 cmd->err = -1;
1441
1442 if (start_command(cmd) < 0)
1443 return -1;
1444
1445 if (in) {
1446 io[nr].fd = cmd->in;
1447 io[nr].type = POLLOUT;
1448 io[nr].u.out.buf = in;
1449 io[nr].u.out.len = in_len;
1450 nr++;
1451 }
1452 if (out) {
1453 io[nr].fd = cmd->out;
1454 io[nr].type = POLLIN;
1455 io[nr].u.in.buf = out;
1456 io[nr].u.in.hint = out_hint;
1457 nr++;
1458 }
1459 if (err) {
1460 io[nr].fd = cmd->err;
1461 io[nr].type = POLLIN;
1462 io[nr].u.in.buf = err;
1463 io[nr].u.in.hint = err_hint;
1464 nr++;
1465 }
1466
1467 if (pump_io(io, nr) < 0) {
1468 finish_command(cmd); /* throw away exit code */
1469 return -1;
1470 }
1471
1472 return finish_command(cmd);
1473}
1474
1475enum child_state {
1476 GIT_CP_FREE,
1477 GIT_CP_WORKING,
1478 GIT_CP_WAIT_CLEANUP,
1479};
1480
1481struct parallel_processes {
1482 void *data;
1483
1484 int max_processes;
1485 int nr_processes;
1486
1487 get_next_task_fn get_next_task;
1488 start_failure_fn start_failure;
1489 task_finished_fn task_finished;
1490
1491 struct {
1492 enum child_state state;
1493 struct child_process process;
1494 struct strbuf err;
1495 void *data;
1496 } *children;
1497 /*
1498 * The struct pollfd is logically part of *children,
1499 * but the system call expects it as its own array.
1500 */
1501 struct pollfd *pfd;
1502
1503 unsigned shutdown : 1;
1504
1505 int output_owner;
1506 struct strbuf buffered_output; /* of finished children */
1507};
1508
1509static int default_start_failure(struct strbuf *out,
1510 void *pp_cb,
1511 void *pp_task_cb)
1512{
1513 return 0;
1514}
1515
1516static int default_task_finished(int result,
1517 struct strbuf *out,
1518 void *pp_cb,
1519 void *pp_task_cb)
1520{
1521 return 0;
1522}
1523
1524static void kill_children(struct parallel_processes *pp, int signo)
1525{
1526 int i, n = pp->max_processes;
1527
1528 for (i = 0; i < n; i++)
1529 if (pp->children[i].state == GIT_CP_WORKING)
1530 kill(pp->children[i].process.pid, signo);
1531}
1532
1533static struct parallel_processes *pp_for_signal;
1534
1535static void handle_children_on_signal(int signo)
1536{
1537 kill_children(pp_for_signal, signo);
1538 sigchain_pop(signo);
1539 raise(signo);
1540}
1541
1542static void pp_init(struct parallel_processes *pp,
1543 int n,
1544 get_next_task_fn get_next_task,
1545 start_failure_fn start_failure,
1546 task_finished_fn task_finished,
1547 void *data)
1548{
1549 int i;
1550
1551 if (n < 1)
1552 n = online_cpus();
1553
1554 pp->max_processes = n;
1555
1556 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1557
1558 pp->data = data;
1559 if (!get_next_task)
1560 die("BUG: you need to specify a get_next_task function");
1561 pp->get_next_task = get_next_task;
1562
1563 pp->start_failure = start_failure ? start_failure : default_start_failure;
1564 pp->task_finished = task_finished ? task_finished : default_task_finished;
1565
1566 pp->nr_processes = 0;
1567 pp->output_owner = 0;
1568 pp->shutdown = 0;
1569 pp->children = xcalloc(n, sizeof(*pp->children));
1570 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1571 strbuf_init(&pp->buffered_output, 0);
1572
1573 for (i = 0; i < n; i++) {
1574 strbuf_init(&pp->children[i].err, 0);
1575 child_process_init(&pp->children[i].process);
1576 pp->pfd[i].events = POLLIN | POLLHUP;
1577 pp->pfd[i].fd = -1;
1578 }
1579
1580 pp_for_signal = pp;
1581 sigchain_push_common(handle_children_on_signal);
1582}
1583
1584static void pp_cleanup(struct parallel_processes *pp)
1585{
1586 int i;
1587
1588 trace_printf("run_processes_parallel: done");
1589 for (i = 0; i < pp->max_processes; i++) {
1590 strbuf_release(&pp->children[i].err);
1591 child_process_clear(&pp->children[i].process);
1592 }
1593
1594 free(pp->children);
1595 free(pp->pfd);
1596
1597 /*
1598 * When get_next_task added messages to the buffer in its last
1599 * iteration, the buffered output is non empty.
1600 */
1601 strbuf_write(&pp->buffered_output, stderr);
1602 strbuf_release(&pp->buffered_output);
1603
1604 sigchain_pop_common();
1605}
1606
1607/* returns
1608 * 0 if a new task was started.
1609 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1610 * problem with starting a new command)
1611 * <0 no new job was started, user wishes to shutdown early. Use negative code
1612 * to signal the children.
1613 */
1614static int pp_start_one(struct parallel_processes *pp)
1615{
1616 int i, code;
1617
1618 for (i = 0; i < pp->max_processes; i++)
1619 if (pp->children[i].state == GIT_CP_FREE)
1620 break;
1621 if (i == pp->max_processes)
1622 die("BUG: bookkeeping is hard");
1623
1624 code = pp->get_next_task(&pp->children[i].process,
1625 &pp->children[i].err,
1626 pp->data,
1627 &pp->children[i].data);
1628 if (!code) {
1629 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1630 strbuf_reset(&pp->children[i].err);
1631 return 1;
1632 }
1633 pp->children[i].process.err = -1;
1634 pp->children[i].process.stdout_to_stderr = 1;
1635 pp->children[i].process.no_stdin = 1;
1636
1637 if (start_command(&pp->children[i].process)) {
1638 code = pp->start_failure(&pp->children[i].err,
1639 pp->data,
1640 pp->children[i].data);
1641 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1642 strbuf_reset(&pp->children[i].err);
1643 if (code)
1644 pp->shutdown = 1;
1645 return code;
1646 }
1647
1648 pp->nr_processes++;
1649 pp->children[i].state = GIT_CP_WORKING;
1650 pp->pfd[i].fd = pp->children[i].process.err;
1651 return 0;
1652}
1653
1654static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1655{
1656 int i;
1657
1658 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1659 if (errno == EINTR)
1660 continue;
1661 pp_cleanup(pp);
1662 die_errno("poll");
1663 }
1664
1665 /* Buffer output from all pipes. */
1666 for (i = 0; i < pp->max_processes; i++) {
1667 if (pp->children[i].state == GIT_CP_WORKING &&
1668 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1669 int n = strbuf_read_once(&pp->children[i].err,
1670 pp->children[i].process.err, 0);
1671 if (n == 0) {
1672 close(pp->children[i].process.err);
1673 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1674 } else if (n < 0)
1675 if (errno != EAGAIN)
1676 die_errno("read");
1677 }
1678 }
1679}
1680
1681static void pp_output(struct parallel_processes *pp)
1682{
1683 int i = pp->output_owner;
1684 if (pp->children[i].state == GIT_CP_WORKING &&
1685 pp->children[i].err.len) {
1686 strbuf_write(&pp->children[i].err, stderr);
1687 strbuf_reset(&pp->children[i].err);
1688 }
1689}
1690
1691static int pp_collect_finished(struct parallel_processes *pp)
1692{
1693 int i, code;
1694 int n = pp->max_processes;
1695 int result = 0;
1696
1697 while (pp->nr_processes > 0) {
1698 for (i = 0; i < pp->max_processes; i++)
1699 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1700 break;
1701 if (i == pp->max_processes)
1702 break;
1703
1704 code = finish_command(&pp->children[i].process);
1705
1706 code = pp->task_finished(code,
1707 &pp->children[i].err, pp->data,
1708 pp->children[i].data);
1709
1710 if (code)
1711 result = code;
1712 if (code < 0)
1713 break;
1714
1715 pp->nr_processes--;
1716 pp->children[i].state = GIT_CP_FREE;
1717 pp->pfd[i].fd = -1;
1718 child_process_init(&pp->children[i].process);
1719
1720 if (i != pp->output_owner) {
1721 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1722 strbuf_reset(&pp->children[i].err);
1723 } else {
1724 strbuf_write(&pp->children[i].err, stderr);
1725 strbuf_reset(&pp->children[i].err);
1726
1727 /* Output all other finished child processes */
1728 strbuf_write(&pp->buffered_output, stderr);
1729 strbuf_reset(&pp->buffered_output);
1730
1731 /*
1732 * Pick next process to output live.
1733 * NEEDSWORK:
1734 * For now we pick it randomly by doing a round
1735 * robin. Later we may want to pick the one with
1736 * the most output or the longest or shortest
1737 * running process time.
1738 */
1739 for (i = 0; i < n; i++)
1740 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1741 break;
1742 pp->output_owner = (pp->output_owner + i) % n;
1743 }
1744 }
1745 return result;
1746}
1747
1748int run_processes_parallel(int n,
1749 get_next_task_fn get_next_task,
1750 start_failure_fn start_failure,
1751 task_finished_fn task_finished,
1752 void *pp_cb)
1753{
1754 int i, code;
1755 int output_timeout = 100;
1756 int spawn_cap = 4;
1757 struct parallel_processes pp;
1758
1759 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1760 while (1) {
1761 for (i = 0;
1762 i < spawn_cap && !pp.shutdown &&
1763 pp.nr_processes < pp.max_processes;
1764 i++) {
1765 code = pp_start_one(&pp);
1766 if (!code)
1767 continue;
1768 if (code < 0) {
1769 pp.shutdown = 1;
1770 kill_children(&pp, -code);
1771 }
1772 break;
1773 }
1774 if (!pp.nr_processes)
1775 break;
1776 pp_buffer_stderr(&pp, output_timeout);
1777 pp_output(&pp);
1778 code = pp_collect_finished(&pp);
1779 if (code) {
1780 pp.shutdown = 1;
1781 if (code < 0)
1782 kill_children(&pp, -code);
1783 }
1784 }
1785
1786 pp_cleanup(&pp);
1787 return 0;
1788}