1#ifndef HASHMAP_H 2#define HASHMAP_H 3 4/* 5 * Generic implementation of hash-based key-value mappings. 6 * 7 * An example that maps long to a string: 8 * For the sake of the example this allows to lookup exact values, too 9 * (i.e. it is operated as a set, the value is part of the key) 10 * ------------------------------------- 11 * 12 * struct hashmap map; 13 * struct long2string { 14 * struct hashmap_entry ent; // must be the first member! 15 * long key; 16 * char value[FLEX_ARRAY]; // be careful with allocating on stack! 17 * }; 18 * 19 * #define COMPARE_VALUE 1 20 * 21 * static int long2string_cmp(const void *hashmap_cmp_fn_data, 22 * const struct long2string *e1, 23 * const struct long2string *e2, 24 * const void *keydata) 25 * { 26 * const char *string = keydata; 27 * unsigned flags = *(unsigned *)hashmap_cmp_fn_data; 28 * 29 * if (flags & COMPARE_VALUE) 30 * return e1->key != e2->key || 31 * strcmp(e1->value, string ? string : e2->value); 32 * else 33 * return e1->key != e2->key; 34 * } 35 * 36 * int main(int argc, char **argv) 37 * { 38 * long key; 39 * char value[255], action[32]; 40 * unsigned flags = 0; 41 * 42 * hashmap_init(&map, (hashmap_cmp_fn) long2string_cmp, &flags, 0); 43 * 44 * while (scanf("%s %ld %s", action, &key, value)) { 45 * 46 * if (!strcmp("add", action)) { 47 * struct long2string *e; 48 * FLEX_ALLOC_STR(e, value, value); 49 * hashmap_entry_init(e, memhash(&key, sizeof(long))); 50 * e->key = key; 51 * hashmap_add(&map, e); 52 * } 53 * 54 * if (!strcmp("print_all_by_key", action)) { 55 * struct long2string k, *e; 56 * hashmap_entry_init(&k, memhash(&key, sizeof(long))); 57 * k.key = key; 58 * 59 * flags &= ~COMPARE_VALUE; 60 * e = hashmap_get(&map, &k, NULL); 61 * if (e) { 62 * printf("first: %ld %s\n", e->key, e->value); 63 * while ((e = hashmap_get_next(&map, e))) 64 * printf("found more: %ld %s\n", e->key, e->value); 65 * } 66 * } 67 * 68 * if (!strcmp("has_exact_match", action)) { 69 * struct long2string *e; 70 * FLEX_ALLOC_STR(e, value, value); 71 * hashmap_entry_init(e, memhash(&key, sizeof(long))); 72 * e->key = key; 73 * 74 * flags |= COMPARE_VALUE; 75 * printf("%sfound\n", hashmap_get(&map, e, NULL) ? "" : "not "); 76 * free(e); 77 * } 78 * 79 * if (!strcmp("has_exact_match_no_heap_alloc", action)) { 80 * struct long2string k; 81 * hashmap_entry_init(&k, memhash(&key, sizeof(long))); 82 * k.key = key; 83 * 84 * flags |= COMPARE_VALUE; 85 * printf("%sfound\n", hashmap_get(&map, &k, value) ? "" : "not "); 86 * } 87 * 88 * if (!strcmp("end", action)) { 89 * hashmap_free(&map, 1); 90 * break; 91 * } 92 * } 93 * 94 * return 0; 95 * } 96 */ 97 98/* 99 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see 100 * http://www.isthe.com/chongo/tech/comp/fnv). 101 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and 102 * `memihash` operate on arbitrary-length memory. 103 * `strihash` and `memihash` are case insensitive versions. 104 * `memihash_cont` is a variant of `memihash` that allows a computation to be 105 * continued with another chunk of data. 106 */ 107extern unsigned int strhash(const char *buf); 108extern unsigned int strihash(const char *buf); 109extern unsigned int memhash(const void *buf, size_t len); 110extern unsigned int memihash(const void *buf, size_t len); 111extern unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len); 112 113/* 114 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code 115 * for use in hash tables. Cryptographic hashes are supposed to have 116 * uniform distribution, so in contrast to `memhash()`, this just copies 117 * the first `sizeof(int)` bytes without shuffling any bits. Note that 118 * the results will be different on big-endian and little-endian 119 * platforms, so they should not be stored or transferred over the net. 120 */ 121static inline unsigned int sha1hash(const unsigned char *sha1) 122{ 123 /* 124 * Equivalent to 'return *(unsigned int *)sha1;', but safe on 125 * platforms that don't support unaligned reads. 126 */ 127 unsigned int hash; 128 memcpy(&hash, sha1, sizeof(hash)); 129 return hash; 130} 131 132/* 133 * struct hashmap_entry is an opaque structure representing an entry in the 134 * hash table, which must be used as first member of user data structures. 135 * Ideally it should be followed by an int-sized member to prevent unused 136 * memory on 64-bit systems due to alignment. 137 */ 138struct hashmap_entry { 139 /* 140 * next points to the next entry in case of collisions (i.e. if 141 * multiple entries map to the same bucket) 142 */ 143 struct hashmap_entry *next; 144 145 /* entry's hash code */ 146 unsigned int hash; 147}; 148 149/* 150 * User-supplied function to test two hashmap entries for equality. Shall 151 * return 0 if the entries are equal. 152 * 153 * This function is always called with non-NULL `entry` and `entry_or_key` 154 * parameters that have the same hash code. 155 * 156 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get 157 * and hashmap_remove are always passed as second `entry_or_key` and third 158 * argument `keydata`, respectively. Otherwise, `keydata` is NULL. 159 * 160 * When it is too expensive to allocate a user entry (either because it is 161 * large or varialbe sized, such that it is not on the stack), then the 162 * relevant data to check for equality should be passed via `keydata`. 163 * In this case `key` can be a stripped down version of the user key data 164 * or even just a hashmap_entry having the correct hash. 165 * 166 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function. 167 */ 168typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data, 169 const void *entry, const void *entry_or_key, 170 const void *keydata); 171 172/* 173 * struct hashmap is the hash table structure. Members can be used as follows, 174 * but should not be modified directly. 175 */ 176struct hashmap { 177 struct hashmap_entry **table; 178 179 /* Stores the comparison function specified in `hashmap_init()`. */ 180 hashmap_cmp_fn cmpfn; 181 const void *cmpfn_data; 182 183 /* total number of entries (0 means the hashmap is empty) */ 184 unsigned int private_size; /* use hashmap_get_size() */ 185 186 /* 187 * tablesize is the allocated size of the hash table. A non-0 value 188 * indicates that the hashmap is initialized. It may also be useful 189 * for statistical purposes (i.e. `size / tablesize` is the current 190 * load factor). 191 */ 192 unsigned int tablesize; 193 194 unsigned int grow_at; 195 unsigned int shrink_at; 196 197 unsigned int do_count_items : 1; 198}; 199 200/* hashmap functions */ 201 202/* 203 * Initializes a hashmap structure. 204 * 205 * `map` is the hashmap to initialize. 206 * 207 * The `equals_function` can be specified to compare two entries for equality. 208 * If NULL, entries are considered equal if their hash codes are equal. 209 * 210 * The `equals_function_data` parameter can be used to provide additional data 211 * (a callback cookie) that will be passed to `equals_function` each time it 212 * is called. This allows a single `equals_function` to implement multiple 213 * comparison functions. 214 * 215 * If the total number of entries is known in advance, the `initial_size` 216 * parameter may be used to preallocate a sufficiently large table and thus 217 * prevent expensive resizing. If 0, the table is dynamically resized. 218 */ 219extern void hashmap_init(struct hashmap *map, 220 hashmap_cmp_fn equals_function, 221 const void *equals_function_data, 222 size_t initial_size); 223 224/* 225 * Frees a hashmap structure and allocated memory. 226 * 227 * If `free_entries` is true, each hashmap_entry in the map is freed as well 228 * using stdlibs free(). 229 */ 230extern void hashmap_free(struct hashmap *map, int free_entries); 231 232/* hashmap_entry functions */ 233 234/* 235 * Initializes a hashmap_entry structure. 236 * 237 * `entry` points to the entry to initialize. 238 * `hash` is the hash code of the entry. 239 * 240 * The hashmap_entry structure does not hold references to external resources, 241 * and it is safe to just discard it once you are done with it (i.e. if 242 * your structure was allocated with xmalloc(), you can just free(3) it, 243 * and if it is on stack, you can just let it go out of scope). 244 */ 245static inline void hashmap_entry_init(void *entry, unsigned int hash) 246{ 247 struct hashmap_entry *e = entry; 248 e->hash = hash; 249 e->next = NULL; 250} 251 252/* 253 * Return the number of items in the map. 254 */ 255static inline unsigned int hashmap_get_size(struct hashmap *map) 256{ 257 if (map->do_count_items) 258 return map->private_size; 259 260 BUG("hashmap_get_size: size not set"); 261 return 0; 262} 263 264/* 265 * Returns the hashmap entry for the specified key, or NULL if not found. 266 * 267 * `map` is the hashmap structure. 268 * 269 * `key` is a user data structure that starts with hashmap_entry that has at 270 * least been initialized with the proper hash code (via `hashmap_entry_init`). 271 * 272 * `keydata` is a data structure that holds just enough information to check 273 * for equality to a given entry. 274 * 275 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large, 276 * it is undesirable to create a full-fledged entry structure on the heap and 277 * copy all the key data into the structure. 278 * 279 * In this case, the `keydata` parameter can be used to pass 280 * variable-sized key data directly to the comparison function, and the `key` 281 * parameter can be a stripped-down, fixed size entry structure allocated on the 282 * stack. 283 * 284 * If an entry with matching hash code is found, `key` and `keydata` are passed 285 * to `hashmap_cmp_fn` to decide whether the entry matches the key. 286 */ 287extern void *hashmap_get(const struct hashmap *map, const void *key, 288 const void *keydata); 289 290/* 291 * Returns the hashmap entry for the specified hash code and key data, 292 * or NULL if not found. 293 * 294 * `map` is the hashmap structure. 295 * `hash` is the hash code of the entry to look up. 296 * 297 * If an entry with matching hash code is found, `keydata` is passed to 298 * `hashmap_cmp_fn` to decide whether the entry matches the key. The 299 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry 300 * structure that should not be used in the comparison. 301 */ 302static inline void *hashmap_get_from_hash(const struct hashmap *map, 303 unsigned int hash, 304 const void *keydata) 305{ 306 struct hashmap_entry key; 307 hashmap_entry_init(&key, hash); 308 return hashmap_get(map, &key, keydata); 309} 310 311/* 312 * Returns the next equal hashmap entry, or NULL if not found. This can be 313 * used to iterate over duplicate entries (see `hashmap_add`). 314 * 315 * `map` is the hashmap structure. 316 * `entry` is the hashmap_entry to start the search from, obtained via a previous 317 * call to `hashmap_get` or `hashmap_get_next`. 318 */ 319extern void *hashmap_get_next(const struct hashmap *map, const void *entry); 320 321/* 322 * Adds a hashmap entry. This allows to add duplicate entries (i.e. 323 * separate values with the same key according to hashmap_cmp_fn). 324 * 325 * `map` is the hashmap structure. 326 * `entry` is the entry to add. 327 */ 328extern void hashmap_add(struct hashmap *map, void *entry); 329 330/* 331 * Adds or replaces a hashmap entry. If the hashmap contains duplicate 332 * entries equal to the specified entry, only one of them will be replaced. 333 * 334 * `map` is the hashmap structure. 335 * `entry` is the entry to add or replace. 336 * Returns the replaced entry, or NULL if not found (i.e. the entry was added). 337 */ 338extern void *hashmap_put(struct hashmap *map, void *entry); 339 340/* 341 * Removes a hashmap entry matching the specified key. If the hashmap contains 342 * duplicate entries equal to the specified key, only one of them will be 343 * removed. Returns the removed entry, or NULL if not found. 344 * 345 * Argument explanation is the same as in `hashmap_get`. 346 */ 347extern void *hashmap_remove(struct hashmap *map, const void *key, 348 const void *keydata); 349 350/* 351 * Returns the `bucket` an entry is stored in. 352 * Useful for multithreaded read access. 353 */ 354int hashmap_bucket(const struct hashmap *map, unsigned int hash); 355 356/* 357 * Used to iterate over all entries of a hashmap. Note that it is 358 * not safe to add or remove entries to the hashmap while 359 * iterating. 360 */ 361struct hashmap_iter { 362 struct hashmap *map; 363 struct hashmap_entry *next; 364 unsigned int tablepos; 365}; 366 367/* Initializes a `hashmap_iter` structure. */ 368extern void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter); 369 370/* Returns the next hashmap_entry, or NULL if there are no more entries. */ 371extern void *hashmap_iter_next(struct hashmap_iter *iter); 372 373/* Initializes the iterator and returns the first entry, if any. */ 374static inline void *hashmap_iter_first(struct hashmap *map, 375 struct hashmap_iter *iter) 376{ 377 hashmap_iter_init(map, iter); 378 return hashmap_iter_next(iter); 379} 380 381/* 382 * Disable item counting and automatic rehashing when adding/removing items. 383 * 384 * Normally, the hashmap keeps track of the number of items in the map 385 * and uses it to dynamically resize it. This (both the counting and 386 * the resizing) can cause problems when the map is being used by 387 * threaded callers (because the hashmap code does not know about the 388 * locking strategy used by the threaded callers and therefore, does 389 * not know how to protect the "private_size" counter). 390 */ 391static inline void hashmap_disable_item_counting(struct hashmap *map) 392{ 393 map->do_count_items = 0; 394} 395 396/* 397 * Re-enable item couting when adding/removing items. 398 * If counting is currently disabled, it will force count them. 399 * It WILL NOT automatically rehash them. 400 */ 401static inline void hashmap_enable_item_counting(struct hashmap *map) 402{ 403 unsigned int n = 0; 404 struct hashmap_iter iter; 405 406 if (map->do_count_items) 407 return; 408 409 hashmap_iter_init(map, &iter); 410 while (hashmap_iter_next(&iter)) 411 n++; 412 413 map->do_count_items = 1; 414 map->private_size = n; 415} 416 417/* String interning */ 418 419/* 420 * Returns the unique, interned version of the specified string or data, 421 * similar to the `String.intern` API in Java and .NET, respectively. 422 * Interned strings remain valid for the entire lifetime of the process. 423 * 424 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned 425 * strings / data must not be modified or freed. 426 * 427 * Interned strings are best used for short strings with high probability of 428 * duplicates. 429 * 430 * Uses a hashmap to store the pool of interned strings. 431 */ 432extern const void *memintern(const void *data, size_t len); 433static inline const char *strintern(const char *string) 434{ 435 return memintern(string, strlen(string)); 436} 437 438#endif