1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Return true iff refname is minimally safe. "Safe" here means that 60 * deleting a loose reference by this name will not do any damage, for 61 * example by causing a file that is not a reference to be deleted. 62 * This function does not check that the reference name is legal; for 63 * that, use check_refname_format(). 64 * 65 * We consider a refname that starts with "refs/" to be safe as long 66 * as any ".." components that it might contain do not escape "refs/". 67 * Names that do not start with "refs/" are considered safe iff they 68 * consist entirely of upper case characters and '_' (like "HEAD" and 69 * "MERGE_HEAD" but not "config" or "FOO/BAR"). 70 */ 71intrefname_is_safe(const char*refname); 72 73enum peel_status { 74/* object was peeled successfully: */ 75 PEEL_PEELED =0, 76 77/* 78 * object cannot be peeled because the named object (or an 79 * object referred to by a tag in the peel chain), does not 80 * exist. 81 */ 82 PEEL_INVALID = -1, 83 84/* object cannot be peeled because it is not a tag: */ 85 PEEL_NON_TAG = -2, 86 87/* ref_entry contains no peeled value because it is a symref: */ 88 PEEL_IS_SYMREF = -3, 89 90/* 91 * ref_entry cannot be peeled because it is broken (i.e., the 92 * symbolic reference cannot even be resolved to an object 93 * name): 94 */ 95 PEEL_BROKEN = -4 96}; 97 98/* 99 * Peel the named object; i.e., if the object is a tag, resolve the 100 * tag recursively until a non-tag is found. If successful, store the 101 * result to sha1 and return PEEL_PEELED. If the object is not a tag 102 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 103 * and leave sha1 unchanged. 104 */ 105enum peel_status peel_object(const unsigned char*name,unsigned char*sha1); 106 107/* 108 * Return 0 if a reference named refname could be created without 109 * conflicting with the name of an existing reference. Otherwise, 110 * return a negative value and write an explanation to err. If extras 111 * is non-NULL, it is a list of additional refnames with which refname 112 * is not allowed to conflict. If skip is non-NULL, ignore potential 113 * conflicts with refs in skip (e.g., because they are scheduled for 114 * deletion in the same operation). Behavior is undefined if the same 115 * name is listed in both extras and skip. 116 * 117 * Two reference names conflict if one of them exactly matches the 118 * leading components of the other; e.g., "foo/bar" conflicts with 119 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or 120 * "foo/barbados". 121 * 122 * extras and skip must be sorted. 123 */ 124intverify_refname_available(const char*newname, 125const struct string_list *extras, 126const struct string_list *skip, 127struct strbuf *err); 128 129/* 130 * Copy the reflog message msg to buf, which has been allocated sufficiently 131 * large, while cleaning up the whitespaces. Especially, convert LF to space, 132 * because reflog file is one line per entry. 133 */ 134intcopy_reflog_msg(char*buf,const char*msg); 135 136intshould_autocreate_reflog(const char*refname); 137 138/** 139 * Information needed for a single ref update. Set new_sha1 to the new 140 * value or to null_sha1 to delete the ref. To check the old value 141 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 142 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 143 * not exist before update. 144 */ 145struct ref_update { 146 147/* 148 * If (flags & REF_HAVE_NEW), set the reference to this value: 149 */ 150unsigned char new_sha1[20]; 151 152/* 153 * If (flags & REF_HAVE_OLD), check that the reference 154 * previously had this value: 155 */ 156unsigned char old_sha1[20]; 157 158/* 159 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 160 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, and 161 * REF_UPDATE_VIA_HEAD: 162 */ 163unsigned int flags; 164 165struct ref_lock *lock; 166unsigned int type; 167char*msg; 168 169/* 170 * If this ref_update was split off of a symref update via 171 * split_symref_update(), then this member points at that 172 * update. This is used for two purposes: 173 * 1. When reporting errors, we report the refname under which 174 * the update was originally requested. 175 * 2. When we read the old value of this reference, we 176 * propagate it back to its parent update for recording in 177 * the latter's reflog. 178 */ 179struct ref_update *parent_update; 180 181const char refname[FLEX_ARRAY]; 182}; 183 184/* 185 * Add a ref_update with the specified properties to transaction, and 186 * return a pointer to the new object. This function does not verify 187 * that refname is well-formed. new_sha1 and old_sha1 are only 188 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 189 * respectively, are set in flags. 190 */ 191struct ref_update *ref_transaction_add_update( 192struct ref_transaction *transaction, 193const char*refname,unsigned int flags, 194const unsigned char*new_sha1, 195const unsigned char*old_sha1, 196const char*msg); 197 198/* 199 * Transaction states. 200 * OPEN: The transaction is in a valid state and can accept new updates. 201 * An OPEN transaction can be committed. 202 * CLOSED: A closed transaction is no longer active and no other operations 203 * than free can be used on it in this state. 204 * A transaction can either become closed by successfully committing 205 * an active transaction or if there is a failure while building 206 * the transaction thus rendering it failed/inactive. 207 */ 208enum ref_transaction_state { 209 REF_TRANSACTION_OPEN =0, 210 REF_TRANSACTION_CLOSED =1 211}; 212 213/* 214 * Data structure for holding a reference transaction, which can 215 * consist of checks and updates to multiple references, carried out 216 * as atomically as possible. This structure is opaque to callers. 217 */ 218struct ref_transaction { 219struct ref_update **updates; 220size_t alloc; 221size_t nr; 222enum ref_transaction_state state; 223}; 224 225intfiles_log_ref_write(const char*refname,const unsigned char*old_sha1, 226const unsigned char*new_sha1,const char*msg, 227int flags,struct strbuf *err); 228 229/* 230 * Check for entries in extras that are within the specified 231 * directory, where dirname is a reference directory name including 232 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 233 * conflicting references that are found in skip. If there is a 234 * conflicting reference, return its name. 235 * 236 * extras and skip must be sorted lists of reference names. Either one 237 * can be NULL, signifying the empty list. 238 */ 239const char*find_descendant_ref(const char*dirname, 240const struct string_list *extras, 241const struct string_list *skip); 242 243intrename_ref_available(const char*oldname,const char*newname); 244 245/* We allow "recursive" symbolic refs. Only within reason, though */ 246#define SYMREF_MAXDEPTH 5 247 248/* Include broken references in a do_for_each_ref*() iteration: */ 249#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 250 251/* 252 * Reference iterators 253 * 254 * A reference iterator encapsulates the state of an in-progress 255 * iteration over references. Create an instance of `struct 256 * ref_iterator` via one of the functions in this module. 257 * 258 * A freshly-created ref_iterator doesn't yet point at a reference. To 259 * advance the iterator, call ref_iterator_advance(). If successful, 260 * this sets the iterator's refname, oid, and flags fields to describe 261 * the next reference and returns ITER_OK. The data pointed at by 262 * refname and oid belong to the iterator; if you want to retain them 263 * after calling ref_iterator_advance() again or calling 264 * ref_iterator_abort(), you must make a copy. When the iteration has 265 * been exhausted, ref_iterator_advance() releases any resources 266 * assocated with the iteration, frees the ref_iterator object, and 267 * returns ITER_DONE. If you want to abort the iteration early, call 268 * ref_iterator_abort(), which also frees the ref_iterator object and 269 * any associated resources. If there was an internal error advancing 270 * to the next entry, ref_iterator_advance() aborts the iteration, 271 * frees the ref_iterator, and returns ITER_ERROR. 272 * 273 * The reference currently being looked at can be peeled by calling 274 * ref_iterator_peel(). This function is often faster than peel_ref(), 275 * so it should be preferred when iterating over references. 276 * 277 * Putting it all together, a typical iteration looks like this: 278 * 279 * int ok; 280 * struct ref_iterator *iter = ...; 281 * 282 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 283 * if (want_to_stop_iteration()) { 284 * ok = ref_iterator_abort(iter); 285 * break; 286 * } 287 * 288 * // Access information about the current reference: 289 * if (!(iter->flags & REF_ISSYMREF)) 290 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 291 * 292 * // If you need to peel the reference: 293 * ref_iterator_peel(iter, &oid); 294 * } 295 * 296 * if (ok != ITER_DONE) 297 * handle_error(); 298 */ 299struct ref_iterator { 300struct ref_iterator_vtable *vtable; 301const char*refname; 302const struct object_id *oid; 303unsigned int flags; 304}; 305 306/* 307 * Advance the iterator to the first or next item and return ITER_OK. 308 * If the iteration is exhausted, free the resources associated with 309 * the ref_iterator and return ITER_DONE. On errors, free the iterator 310 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 311 * call this function again after it has returned ITER_DONE or 312 * ITER_ERROR. 313 */ 314intref_iterator_advance(struct ref_iterator *ref_iterator); 315 316/* 317 * If possible, peel the reference currently being viewed by the 318 * iterator. Return 0 on success. 319 */ 320intref_iterator_peel(struct ref_iterator *ref_iterator, 321struct object_id *peeled); 322 323/* 324 * End the iteration before it has been exhausted, freeing the 325 * reference iterator and any associated resources and returning 326 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 327 */ 328intref_iterator_abort(struct ref_iterator *ref_iterator); 329 330/* 331 * An iterator over nothing (its first ref_iterator_advance() call 332 * returns ITER_DONE). 333 */ 334struct ref_iterator *empty_ref_iterator_begin(void); 335 336/* 337 * Return true iff ref_iterator is an empty_ref_iterator. 338 */ 339intis_empty_ref_iterator(struct ref_iterator *ref_iterator); 340 341/* 342 * A callback function used to instruct merge_ref_iterator how to 343 * interleave the entries from iter0 and iter1. The function should 344 * return one of the constants defined in enum iterator_selection. It 345 * must not advance either of the iterators itself. 346 * 347 * The function must be prepared to handle the case that iter0 and/or 348 * iter1 is NULL, which indicates that the corresponding sub-iterator 349 * has been exhausted. Its return value must be consistent with the 350 * current states of the iterators; e.g., it must not return 351 * ITER_SKIP_1 if iter1 has already been exhausted. 352 */ 353typedefenum iterator_selection ref_iterator_select_fn( 354struct ref_iterator *iter0,struct ref_iterator *iter1, 355void*cb_data); 356 357/* 358 * Iterate over the entries from iter0 and iter1, with the values 359 * interleaved as directed by the select function. The iterator takes 360 * ownership of iter0 and iter1 and frees them when the iteration is 361 * over. 362 */ 363struct ref_iterator *merge_ref_iterator_begin( 364struct ref_iterator *iter0,struct ref_iterator *iter1, 365 ref_iterator_select_fn *select,void*cb_data); 366 367/* 368 * An iterator consisting of the union of the entries from front and 369 * back. If there are entries common to the two sub-iterators, use the 370 * one from front. Each iterator must iterate over its entries in 371 * strcmp() order by refname for this to work. 372 * 373 * The new iterator takes ownership of its arguments and frees them 374 * when the iteration is over. As a convenience to callers, if front 375 * or back is an empty_ref_iterator, then abort that one immediately 376 * and return the other iterator directly, without wrapping it. 377 */ 378struct ref_iterator *overlay_ref_iterator_begin( 379struct ref_iterator *front,struct ref_iterator *back); 380 381/* 382 * Wrap iter0, only letting through the references whose names start 383 * with prefix. If trim is set, set iter->refname to the name of the 384 * reference with that many characters trimmed off the front; 385 * otherwise set it to the full refname. The new iterator takes over 386 * ownership of iter0 and frees it when iteration is over. It makes 387 * its own copy of prefix. 388 * 389 * As an convenience to callers, if prefix is the empty string and 390 * trim is zero, this function returns iter0 directly, without 391 * wrapping it. 392 */ 393struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 394const char*prefix, 395int trim); 396 397/* 398 * Iterate over the packed and loose references in the specified 399 * submodule that are within find_containing_dir(prefix). If prefix is 400 * NULL or the empty string, iterate over all references in the 401 * submodule. 402 */ 403struct ref_iterator *files_ref_iterator_begin(const char*submodule, 404const char*prefix, 405unsigned int flags); 406 407/* 408 * Iterate over the references in the main ref_store that have a 409 * reflog. The paths within a directory are iterated over in arbitrary 410 * order. 411 */ 412struct ref_iterator *files_reflog_iterator_begin(void); 413 414/* Internal implementation of reference iteration: */ 415 416/* 417 * Base class constructor for ref_iterators. Initialize the 418 * ref_iterator part of iter, setting its vtable pointer as specified. 419 * This is meant to be called only by the initializers of derived 420 * classes. 421 */ 422voidbase_ref_iterator_init(struct ref_iterator *iter, 423struct ref_iterator_vtable *vtable); 424 425/* 426 * Base class destructor for ref_iterators. Destroy the ref_iterator 427 * part of iter and shallow-free the object. This is meant to be 428 * called only by the destructors of derived classes. 429 */ 430voidbase_ref_iterator_free(struct ref_iterator *iter); 431 432/* Virtual function declarations for ref_iterators: */ 433 434typedefintref_iterator_advance_fn(struct ref_iterator *ref_iterator); 435 436typedefintref_iterator_peel_fn(struct ref_iterator *ref_iterator, 437struct object_id *peeled); 438 439/* 440 * Implementations of this function should free any resources specific 441 * to the derived class, then call base_ref_iterator_free() to clean 442 * up and free the ref_iterator object. 443 */ 444typedefintref_iterator_abort_fn(struct ref_iterator *ref_iterator); 445 446struct ref_iterator_vtable { 447 ref_iterator_advance_fn *advance; 448 ref_iterator_peel_fn *peel; 449 ref_iterator_abort_fn *abort; 450}; 451 452/* 453 * current_ref_iter is a performance hack: when iterating over 454 * references using the for_each_ref*() functions, current_ref_iter is 455 * set to the reference iterator before calling the callback function. 456 * If the callback function calls peel_ref(), then peel_ref() first 457 * checks whether the reference to be peeled is the one referred to by 458 * the iterator (it usually is) and if so, asks the iterator for the 459 * peeled version of the reference if it is available. This avoids a 460 * refname lookup in a common case. current_ref_iter is set to NULL 461 * when the iteration is over. 462 */ 463externstruct ref_iterator *current_ref_iter; 464 465/* 466 * The common backend for the for_each_*ref* functions. Call fn for 467 * each reference in iter. If the iterator itself ever returns 468 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 469 * the iteration and return that value. Otherwise, return 0. In any 470 * case, free the iterator when done. This function is basically an 471 * adapter between the callback style of reference iteration and the 472 * iterator style. 473 */ 474intdo_for_each_ref_iterator(struct ref_iterator *iter, 475 each_ref_fn fn,void*cb_data); 476 477/* 478 * Read the specified reference from the filesystem or packed refs 479 * file, non-recursively. Set type to describe the reference, and: 480 * 481 * - If refname is the name of a normal reference, fill in sha1 482 * (leaving referent unchanged). 483 * 484 * - If refname is the name of a symbolic reference, write the full 485 * name of the reference to which it refers (e.g. 486 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 487 * type (leaving sha1 unchanged). The caller is responsible for 488 * validating that referent is a valid reference name. 489 * 490 * WARNING: refname might be used as part of a filename, so it is 491 * important from a security standpoint that it be safe in the sense 492 * of refname_is_safe(). Moreover, for symrefs this function sets 493 * referent to whatever the repository says, which might not be a 494 * properly-formatted or even safe reference name. NEITHER INPUT NOR 495 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 496 * 497 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 498 * and return -1. If the ref exists but is neither a symbolic ref nor 499 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 500 * EINVAL, and return -1. If there is another error reading the ref, 501 * set errno appropriately and return -1. 502 * 503 * Backend-specific flags might be set in type as well, regardless of 504 * outcome. 505 * 506 * It is OK for refname to point into referent. If so: 507 * 508 * - if the function succeeds with REF_ISSYMREF, referent will be 509 * overwritten and the memory formerly pointed to by it might be 510 * changed or even freed. 511 * 512 * - in all other cases, referent will be untouched, and therefore 513 * refname will still be valid and unchanged. 514 */ 515intread_raw_ref(const char*refname,unsigned char*sha1, 516struct strbuf *referent,unsigned int*type); 517 518#endif/* REFS_REFS_INTERNAL_H */