1#ifndef STRBUF_H 2#define STRBUF_H 3 4struct string_list; 5 6/** 7 * strbuf's are meant to be used with all the usual C string and memory 8 * APIs. Given that the length of the buffer is known, it's often better to 9 * use the mem* functions than a str* one (memchr vs. strchr e.g.). 10 * Though, one has to be careful about the fact that str* functions often 11 * stop on NULs and that strbufs may have embedded NULs. 12 * 13 * A strbuf is NUL terminated for convenience, but no function in the 14 * strbuf API actually relies on the string being free of NULs. 15 * 16 * strbufs have some invariants that are very important to keep in mind: 17 * 18 * - The `buf` member is never NULL, so it can be used in any usual C 19 * string operations safely. strbuf's _have_ to be initialized either by 20 * `strbuf_init()` or by `= STRBUF_INIT` before the invariants, though. 21 * 22 * Do *not* assume anything on what `buf` really is (e.g. if it is 23 * allocated memory or not), use `strbuf_detach()` to unwrap a memory 24 * buffer from its strbuf shell in a safe way. That is the sole supported 25 * way. This will give you a malloced buffer that you can later `free()`. 26 * 27 * However, it is totally safe to modify anything in the string pointed by 28 * the `buf` member, between the indices `0` and `len-1` (inclusive). 29 * 30 * - The `buf` member is a byte array that has at least `len + 1` bytes 31 * allocated. The extra byte is used to store a `'\0'`, allowing the 32 * `buf` member to be a valid C-string. Every strbuf function ensure this 33 * invariant is preserved. 34 * 35 * NOTE: It is OK to "play" with the buffer directly if you work it this 36 * way: 37 * 38 * strbuf_grow(sb, SOME_SIZE); <1> 39 * strbuf_setlen(sb, sb->len + SOME_OTHER_SIZE); 40 * 41 * <1> Here, the memory array starting at `sb->buf`, and of length 42 * `strbuf_avail(sb)` is all yours, and you can be sure that 43 * `strbuf_avail(sb)` is at least `SOME_SIZE`. 44 * 45 * NOTE: `SOME_OTHER_SIZE` must be smaller or equal to `strbuf_avail(sb)`. 46 * 47 * Doing so is safe, though if it has to be done in many places, adding the 48 * missing API to the strbuf module is the way to go. 49 * 50 * WARNING: Do _not_ assume that the area that is yours is of size `alloc 51 * - 1` even if it's true in the current implementation. Alloc is somehow a 52 * "private" member that should not be messed with. Use `strbuf_avail()` 53 * instead. 54*/ 55 56/** 57 * Data Structures 58 * --------------- 59 */ 60 61/** 62 * This is the string buffer structure. The `len` member can be used to 63 * determine the current length of the string, and `buf` member provides 64 * access to the string itself. 65 */ 66struct strbuf { 67size_t alloc; 68size_t len; 69char*buf; 70}; 71 72externchar strbuf_slopbuf[]; 73#define STRBUF_INIT { .alloc = 0, .len = 0, .buf = strbuf_slopbuf } 74 75/* 76 * Predeclare this here, since cache.h includes this file before it defines the 77 * struct. 78 */ 79struct object_id; 80 81/** 82 * Life Cycle Functions 83 * -------------------- 84 */ 85 86/** 87 * Initialize the structure. The second parameter can be zero or a bigger 88 * number to allocate memory, in case you want to prevent further reallocs. 89 */ 90voidstrbuf_init(struct strbuf *sb,size_t alloc); 91 92/** 93 * Release a string buffer and the memory it used. After this call, the 94 * strbuf points to an empty string that does not need to be free()ed, as 95 * if it had been set to `STRBUF_INIT` and never modified. 96 * 97 * To clear a strbuf in preparation for further use without the overhead 98 * of free()ing and malloc()ing again, use strbuf_reset() instead. 99 */ 100voidstrbuf_release(struct strbuf *sb); 101 102/** 103 * Detach the string from the strbuf and returns it; you now own the 104 * storage the string occupies and it is your responsibility from then on 105 * to release it with `free(3)` when you are done with it. 106 * 107 * The strbuf that previously held the string is reset to `STRBUF_INIT` so 108 * it can be reused after calling this function. 109 */ 110char*strbuf_detach(struct strbuf *sb,size_t*sz); 111 112/** 113 * Attach a string to a buffer. You should specify the string to attach, 114 * the current length of the string and the amount of allocated memory. 115 * The amount must be larger than the string length, because the string you 116 * pass is supposed to be a NUL-terminated string. This string _must_ be 117 * malloc()ed, and after attaching, the pointer cannot be relied upon 118 * anymore, and neither be free()d directly. 119 */ 120voidstrbuf_attach(struct strbuf *sb,void*str,size_t len,size_t mem); 121 122/** 123 * Swap the contents of two string buffers. 124 */ 125staticinlinevoidstrbuf_swap(struct strbuf *a,struct strbuf *b) 126{ 127SWAP(*a, *b); 128} 129 130 131/** 132 * Functions related to the size of the buffer 133 * ------------------------------------------- 134 */ 135 136/** 137 * Determine the amount of allocated but unused memory. 138 */ 139staticinlinesize_tstrbuf_avail(const struct strbuf *sb) 140{ 141return sb->alloc ? sb->alloc - sb->len -1:0; 142} 143 144/** 145 * Ensure that at least this amount of unused memory is available after 146 * `len`. This is used when you know a typical size for what you will add 147 * and want to avoid repetitive automatic resizing of the underlying buffer. 148 * This is never a needed operation, but can be critical for performance in 149 * some cases. 150 */ 151voidstrbuf_grow(struct strbuf *sb,size_t amount); 152 153/** 154 * Set the length of the buffer to a given value. This function does *not* 155 * allocate new memory, so you should not perform a `strbuf_setlen()` to a 156 * length that is larger than `len + strbuf_avail()`. `strbuf_setlen()` is 157 * just meant as a 'please fix invariants from this strbuf I just messed 158 * with'. 159 */ 160staticinlinevoidstrbuf_setlen(struct strbuf *sb,size_t len) 161{ 162if(len > (sb->alloc ? sb->alloc -1:0)) 163die("BUG: strbuf_setlen() beyond buffer"); 164 sb->len = len; 165if(sb->buf != strbuf_slopbuf) 166 sb->buf[len] ='\0'; 167else 168assert(!strbuf_slopbuf[0]); 169} 170 171/** 172 * Empty the buffer by setting the size of it to zero. 173 */ 174#define strbuf_reset(sb) strbuf_setlen(sb, 0) 175 176 177/** 178 * Functions related to the contents of the buffer 179 * ----------------------------------------------- 180 */ 181 182/** 183 * Strip whitespace from the beginning (`ltrim`), end (`rtrim`), or both side 184 * (`trim`) of a string. 185 */ 186voidstrbuf_trim(struct strbuf *sb); 187voidstrbuf_rtrim(struct strbuf *sb); 188voidstrbuf_ltrim(struct strbuf *sb); 189 190/* Strip trailing directory separators */ 191voidstrbuf_trim_trailing_dir_sep(struct strbuf *sb); 192 193/* Strip trailing LF or CR/LF */ 194voidstrbuf_trim_trailing_newline(struct strbuf *sb); 195 196/** 197 * Replace the contents of the strbuf with a reencoded form. Returns -1 198 * on error, 0 on success. 199 */ 200intstrbuf_reencode(struct strbuf *sb,const char*from,const char*to); 201 202/** 203 * Lowercase each character in the buffer using `tolower`. 204 */ 205voidstrbuf_tolower(struct strbuf *sb); 206 207/** 208 * Compare two buffers. Returns an integer less than, equal to, or greater 209 * than zero if the first buffer is found, respectively, to be less than, 210 * to match, or be greater than the second buffer. 211 */ 212intstrbuf_cmp(const struct strbuf *first,const struct strbuf *second); 213 214 215/** 216 * Adding data to the buffer 217 * ------------------------- 218 * 219 * NOTE: All of the functions in this section will grow the buffer as 220 * necessary. If they fail for some reason other than memory shortage and the 221 * buffer hadn't been allocated before (i.e. the `struct strbuf` was set to 222 * `STRBUF_INIT`), then they will free() it. 223 */ 224 225/** 226 * Add a single character to the buffer. 227 */ 228staticinlinevoidstrbuf_addch(struct strbuf *sb,int c) 229{ 230if(!strbuf_avail(sb)) 231strbuf_grow(sb,1); 232 sb->buf[sb->len++] = c; 233 sb->buf[sb->len] ='\0'; 234} 235 236/** 237 * Add a character the specified number of times to the buffer. 238 */ 239voidstrbuf_addchars(struct strbuf *sb,int c,size_t n); 240 241/** 242 * Insert data to the given position of the buffer. The remaining contents 243 * will be shifted, not overwritten. 244 */ 245voidstrbuf_insert(struct strbuf *sb,size_t pos,const void*,size_t); 246 247/** 248 * Remove given amount of data from a given position of the buffer. 249 */ 250voidstrbuf_remove(struct strbuf *sb,size_t pos,size_t len); 251 252/** 253 * Remove the bytes between `pos..pos+len` and replace it with the given 254 * data. 255 */ 256voidstrbuf_splice(struct strbuf *sb,size_t pos,size_t len, 257const void*data,size_t data_len); 258 259/** 260 * Add a NUL-terminated string to the buffer. Each line will be prepended 261 * by a comment character and a blank. 262 */ 263voidstrbuf_add_commented_lines(struct strbuf *out, 264const char*buf,size_t size); 265 266 267/** 268 * Add data of given length to the buffer. 269 */ 270voidstrbuf_add(struct strbuf *sb,const void*data,size_t len); 271 272/** 273 * Add a NUL-terminated string to the buffer. 274 * 275 * NOTE: This function will *always* be implemented as an inline or a macro 276 * using strlen, meaning that this is efficient to write things like: 277 * 278 * strbuf_addstr(sb, "immediate string"); 279 * 280 */ 281staticinlinevoidstrbuf_addstr(struct strbuf *sb,const char*s) 282{ 283strbuf_add(sb, s,strlen(s)); 284} 285 286/** 287 * Copy the contents of another buffer at the end of the current one. 288 */ 289voidstrbuf_addbuf(struct strbuf *sb,const struct strbuf *sb2); 290 291/** 292 * This function can be used to expand a format string containing 293 * placeholders. To that end, it parses the string and calls the specified 294 * function for every percent sign found. 295 * 296 * The callback function is given a pointer to the character after the `%` 297 * and a pointer to the struct strbuf. It is expected to add the expanded 298 * version of the placeholder to the strbuf, e.g. to add a newline 299 * character if the letter `n` appears after a `%`. The function returns 300 * the length of the placeholder recognized and `strbuf_expand()` skips 301 * over it. 302 * 303 * The format `%%` is automatically expanded to a single `%` as a quoting 304 * mechanism; callers do not need to handle the `%` placeholder themselves, 305 * and the callback function will not be invoked for this placeholder. 306 * 307 * All other characters (non-percent and not skipped ones) are copied 308 * verbatim to the strbuf. If the callback returned zero, meaning that the 309 * placeholder is unknown, then the percent sign is copied, too. 310 * 311 * In order to facilitate caching and to make it possible to give 312 * parameters to the callback, `strbuf_expand()` passes a context pointer, 313 * which can be used by the programmer of the callback as she sees fit. 314 */ 315typedefsize_t(*expand_fn_t) (struct strbuf *sb, 316const char*placeholder, 317void*context); 318voidstrbuf_expand(struct strbuf *sb, 319const char*format, 320 expand_fn_t fn, 321void*context); 322 323/** 324 * Used as callback for `strbuf_expand()`, expects an array of 325 * struct strbuf_expand_dict_entry as context, i.e. pairs of 326 * placeholder and replacement string. The array needs to be 327 * terminated by an entry with placeholder set to NULL. 328 */ 329struct strbuf_expand_dict_entry { 330const char*placeholder; 331const char*value; 332}; 333size_tstrbuf_expand_dict_cb(struct strbuf *sb, 334const char*placeholder, 335void*context); 336 337/** 338 * Append the contents of one strbuf to another, quoting any 339 * percent signs ("%") into double-percents ("%%") in the 340 * destination. This is useful for literal data to be fed to either 341 * strbuf_expand or to the *printf family of functions. 342 */ 343voidstrbuf_addbuf_percentquote(struct strbuf *dst,const struct strbuf *src); 344 345/** 346 * Append the given byte size as a human-readable string (i.e. 12.23 KiB, 347 * 3.50 MiB). 348 */ 349voidstrbuf_humanise_bytes(struct strbuf *buf, off_t bytes); 350 351/** 352 * Add a formatted string to the buffer. 353 */ 354__attribute__((format(printf,2,3))) 355voidstrbuf_addf(struct strbuf *sb,const char*fmt, ...); 356 357/** 358 * Add a formatted string prepended by a comment character and a 359 * blank to the buffer. 360 */ 361__attribute__((format(printf,2,3))) 362voidstrbuf_commented_addf(struct strbuf *sb,const char*fmt, ...); 363 364__attribute__((format(printf,2,0))) 365voidstrbuf_vaddf(struct strbuf *sb,const char*fmt,va_list ap); 366 367/** 368 * Add the time specified by `tm`, as formatted by `strftime`. 369 * `tz_offset` is in decimal hhmm format, e.g. -600 means six hours west 370 * of Greenwich, and it's used to expand %z internally. However, tokens 371 * with modifiers (e.g. %Ez) are passed to `strftime`. 372 * `suppress_tz_name`, when set, expands %Z internally to the empty 373 * string rather than passing it to `strftime`. 374 */ 375voidstrbuf_addftime(struct strbuf *sb,const char*fmt, 376const struct tm *tm,int tz_offset, 377int suppress_tz_name); 378 379/** 380 * Read a given size of data from a FILE* pointer to the buffer. 381 * 382 * NOTE: The buffer is rewound if the read fails. If -1 is returned, 383 * `errno` must be consulted, like you would do for `read(3)`. 384 * `strbuf_read()`, `strbuf_read_file()` and `strbuf_getline_*()` 385 * family of functions have the same behaviour as well. 386 */ 387size_tstrbuf_fread(struct strbuf *sb,size_t size,FILE*file); 388 389/** 390 * Read the contents of a given file descriptor. The third argument can be 391 * used to give a hint about the file size, to avoid reallocs. If read fails, 392 * any partial read is undone. 393 */ 394ssize_t strbuf_read(struct strbuf *sb,int fd,size_t hint); 395 396/** 397 * Read the contents of a given file descriptor partially by using only one 398 * attempt of xread. The third argument can be used to give a hint about the 399 * file size, to avoid reallocs. Returns the number of new bytes appended to 400 * the sb. 401 */ 402ssize_t strbuf_read_once(struct strbuf *sb,int fd,size_t hint); 403 404/** 405 * Read the contents of a file, specified by its path. The third argument 406 * can be used to give a hint about the file size, to avoid reallocs. 407 * Return the number of bytes read or a negative value if some error 408 * occurred while opening or reading the file. 409 */ 410ssize_t strbuf_read_file(struct strbuf *sb,const char*path,size_t hint); 411 412/** 413 * Read the target of a symbolic link, specified by its path. The third 414 * argument can be used to give a hint about the size, to avoid reallocs. 415 */ 416intstrbuf_readlink(struct strbuf *sb,const char*path,size_t hint); 417 418/** 419 * Write the whole content of the strbuf to the stream not stopping at 420 * NUL bytes. 421 */ 422ssize_t strbuf_write(struct strbuf *sb,FILE*stream); 423 424/** 425 * Read a line from a FILE *, overwriting the existing contents of 426 * the strbuf. The strbuf_getline*() family of functions share 427 * this signature, but have different line termination conventions. 428 * 429 * Reading stops after the terminator or at EOF. The terminator 430 * is removed from the buffer before returning. Returns 0 unless 431 * there was nothing left before EOF, in which case it returns `EOF`. 432 */ 433typedefint(*strbuf_getline_fn)(struct strbuf *,FILE*); 434 435/* Uses LF as the line terminator */ 436intstrbuf_getline_lf(struct strbuf *sb,FILE*fp); 437 438/* Uses NUL as the line terminator */ 439intstrbuf_getline_nul(struct strbuf *sb,FILE*fp); 440 441/* 442 * Similar to strbuf_getline_lf(), but additionally treats a CR that 443 * comes immediately before the LF as part of the terminator. 444 * This is the most friendly version to be used to read "text" files 445 * that can come from platforms whose native text format is CRLF 446 * terminated. 447 */ 448intstrbuf_getline(struct strbuf *sb,FILE*file); 449 450 451/** 452 * Like `strbuf_getline`, but keeps the trailing terminator (if 453 * any) in the buffer. 454 */ 455intstrbuf_getwholeline(struct strbuf *sb,FILE*file,int term); 456 457/** 458 * Like `strbuf_getwholeline`, but operates on a file descriptor. 459 * It reads one character at a time, so it is very slow. Do not 460 * use it unless you need the correct position in the file 461 * descriptor. 462 */ 463intstrbuf_getwholeline_fd(struct strbuf *sb,int fd,int term); 464 465/** 466 * Set the buffer to the path of the current working directory. 467 */ 468intstrbuf_getcwd(struct strbuf *sb); 469 470/** 471 * Add a path to a buffer, converting a relative path to an 472 * absolute one in the process. Symbolic links are not 473 * resolved. 474 */ 475voidstrbuf_add_absolute_path(struct strbuf *sb,const char*path); 476 477/** 478 * Canonize `path` (make it absolute, resolve symlinks, remove extra 479 * slashes) and append it to `sb`. Die with an informative error 480 * message if there is a problem. 481 * 482 * The directory part of `path` (i.e., everything up to the last 483 * dir_sep) must denote a valid, existing directory, but the last 484 * component need not exist. 485 * 486 * Callers that don't mind links should use the more lightweight 487 * strbuf_add_absolute_path() instead. 488 */ 489voidstrbuf_add_real_path(struct strbuf *sb,const char*path); 490 491 492/** 493 * Normalize in-place the path contained in the strbuf. See 494 * normalize_path_copy() for details. If an error occurs, the contents of "sb" 495 * are left untouched, and -1 is returned. 496 */ 497intstrbuf_normalize_path(struct strbuf *sb); 498 499/** 500 * Strip whitespace from a buffer. The second parameter controls if 501 * comments are considered contents to be removed or not. 502 */ 503voidstrbuf_stripspace(struct strbuf *buf,int skip_comments); 504 505staticinlineintstrbuf_strip_suffix(struct strbuf *sb,const char*suffix) 506{ 507if(strip_suffix_mem(sb->buf, &sb->len, suffix)) { 508strbuf_setlen(sb, sb->len); 509return1; 510}else 511return0; 512} 513 514/** 515 * Split str (of length slen) at the specified terminator character. 516 * Return a null-terminated array of pointers to strbuf objects 517 * holding the substrings. The substrings include the terminator, 518 * except for the last substring, which might be unterminated if the 519 * original string did not end with a terminator. If max is positive, 520 * then split the string into at most max substrings (with the last 521 * substring containing everything following the (max-1)th terminator 522 * character). 523 * 524 * The most generic form is `strbuf_split_buf`, which takes an arbitrary 525 * pointer/len buffer. The `_str` variant takes a NUL-terminated string, 526 * the `_max` variant takes a strbuf, and just `strbuf_split` is a convenience 527 * wrapper to drop the `max` parameter. 528 * 529 * For lighter-weight alternatives, see string_list_split() and 530 * string_list_split_in_place(). 531 */ 532struct strbuf **strbuf_split_buf(const char*str,size_t len, 533int terminator,int max); 534 535staticinlinestruct strbuf **strbuf_split_str(const char*str, 536int terminator,int max) 537{ 538returnstrbuf_split_buf(str,strlen(str), terminator, max); 539} 540 541staticinlinestruct strbuf **strbuf_split_max(const struct strbuf *sb, 542int terminator,int max) 543{ 544returnstrbuf_split_buf(sb->buf, sb->len, terminator, max); 545} 546 547staticinlinestruct strbuf **strbuf_split(const struct strbuf *sb, 548int terminator) 549{ 550returnstrbuf_split_max(sb, terminator,0); 551} 552 553/* 554 * Adds all strings of a string list to the strbuf, separated by the given 555 * separator. For example, if sep is 556 * ', ' 557 * and slist contains 558 * ['element1', 'element2', ..., 'elementN'], 559 * then write: 560 * 'element1, element2, ..., elementN' 561 * to str. If only one element, just write "element1" to str. 562 */ 563voidstrbuf_add_separated_string_list(struct strbuf *str, 564const char*sep, 565struct string_list *slist); 566 567/** 568 * Free a NULL-terminated list of strbufs (for example, the return 569 * values of the strbuf_split*() functions). 570 */ 571voidstrbuf_list_free(struct strbuf **list); 572 573/** 574 * Add the abbreviation, as generated by find_unique_abbrev, of `sha1` to 575 * the strbuf `sb`. 576 */ 577voidstrbuf_add_unique_abbrev(struct strbuf *sb, 578const struct object_id *oid, 579int abbrev_len); 580 581/** 582 * Launch the user preferred editor to edit a file and fill the buffer 583 * with the file's contents upon the user completing their editing. The 584 * third argument can be used to set the environment which the editor is 585 * run in. If the buffer is NULL the editor is launched as usual but the 586 * file's contents are not read into the buffer upon completion. 587 */ 588intlaunch_editor(const char*path,struct strbuf *buffer, 589const char*const*env); 590 591intlaunch_sequence_editor(const char*path,struct strbuf *buffer, 592const char*const*env); 593 594voidstrbuf_add_lines(struct strbuf *sb, 595const char*prefix, 596const char*buf, 597size_t size); 598 599/** 600 * Append s to sb, with the characters '<', '>', '&' and '"' converted 601 * into XML entities. 602 */ 603voidstrbuf_addstr_xml_quoted(struct strbuf *sb, 604const char*s); 605 606/** 607 * "Complete" the contents of `sb` by ensuring that either it ends with the 608 * character `term`, or it is empty. This can be used, for example, 609 * to ensure that text ends with a newline, but without creating an empty 610 * blank line if there is no content in the first place. 611 */ 612staticinlinevoidstrbuf_complete(struct strbuf *sb,char term) 613{ 614if(sb->len && sb->buf[sb->len -1] != term) 615strbuf_addch(sb, term); 616} 617 618staticinlinevoidstrbuf_complete_line(struct strbuf *sb) 619{ 620strbuf_complete(sb,'\n'); 621} 622 623/* 624 * Copy "name" to "sb", expanding any special @-marks as handled by 625 * interpret_branch_name(). The result is a non-qualified branch name 626 * (so "foo" or "origin/master" instead of "refs/heads/foo" or 627 * "refs/remotes/origin/master"). 628 * 629 * Note that the resulting name may not be a syntactically valid refname. 630 * 631 * If "allowed" is non-zero, restrict the set of allowed expansions. See 632 * interpret_branch_name() for details. 633 */ 634voidstrbuf_branchname(struct strbuf *sb,const char*name, 635unsigned allowed); 636 637/* 638 * Like strbuf_branchname() above, but confirm that the result is 639 * syntactically valid to be used as a local branch name in refs/heads/. 640 * 641 * The return value is "0" if the result is valid, and "-1" otherwise. 642 */ 643intstrbuf_check_branch_ref(struct strbuf *sb,const char*name); 644 645voidstrbuf_addstr_urlencode(struct strbuf *sb,const char*name, 646int reserved); 647 648__attribute__((format(printf,1,2))) 649intprintf_ln(const char*fmt, ...); 650__attribute__((format(printf,2,3))) 651intfprintf_ln(FILE*fp,const char*fmt, ...); 652 653char*xstrdup_tolower(const char*); 654char*xstrdup_toupper(const char*); 655 656/** 657 * Create a newly allocated string using printf format. You can do this easily 658 * with a strbuf, but this provides a shortcut to save a few lines. 659 */ 660__attribute__((format(printf,1,0))) 661char*xstrvfmt(const char*fmt,va_list ap); 662__attribute__((format(printf,1,2))) 663char*xstrfmt(const char*fmt, ...); 664 665#endif/* STRBUF_H */