epoch.con commit git-apply: normalize file mode when comparing with expected value (de4971b)
   1/*
   2 * Copyright (c) 2005, Jon Seymour
   3 *
   4 * For more information about epoch theory on which this module is based,
   5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
   6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
   7 * for some of the algorithms used here.
   8 *
   9 */
  10#include <stdlib.h>
  11
  12/* Provides arbitrary precision integers required to accurately represent
  13 * fractional mass: */
  14#include <openssl/bn.h>
  15
  16#include "cache.h"
  17#include "commit.h"
  18#include "epoch.h"
  19
  20struct fraction {
  21        BIGNUM numerator;
  22        BIGNUM denominator;
  23};
  24
  25#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
  26
  27static BN_CTX *context = NULL;
  28static struct fraction *one = NULL;
  29static struct fraction *zero = NULL;
  30
  31static BN_CTX *get_BN_CTX()
  32{
  33        if (!context) {
  34                context = BN_CTX_new();
  35        }
  36        return context;
  37}
  38
  39static struct fraction *new_zero()
  40{
  41        struct fraction *result = xmalloc(sizeof(*result));
  42        BN_init(&result->numerator);
  43        BN_init(&result->denominator);
  44        BN_zero(&result->numerator);
  45        BN_one(&result->denominator);
  46        return result;
  47}
  48
  49static void clear_fraction(struct fraction *fraction)
  50{
  51        BN_clear(&fraction->numerator);
  52        BN_clear(&fraction->denominator);
  53}
  54
  55static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
  56{
  57        BIGNUM bn_divisor;
  58
  59        BN_init(&bn_divisor);
  60        BN_set_word(&bn_divisor, divisor);
  61
  62        BN_copy(&result->numerator, &fraction->numerator);
  63        BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());
  64
  65        BN_clear(&bn_divisor);
  66        return result;
  67}
  68
  69static struct fraction *init_fraction(struct fraction *fraction)
  70{
  71        BN_init(&fraction->numerator);
  72        BN_init(&fraction->denominator);
  73        BN_zero(&fraction->numerator);
  74        BN_one(&fraction->denominator);
  75        return fraction;
  76}
  77
  78static struct fraction *get_one()
  79{
  80        if (!one) {
  81                one = new_zero();
  82                BN_one(&one->numerator);
  83        }
  84        return one;
  85}
  86
  87static struct fraction *get_zero()
  88{
  89        if (!zero) {
  90                zero = new_zero();
  91        }
  92        return zero;
  93}
  94
  95static struct fraction *copy(struct fraction *to, struct fraction *from)
  96{
  97        BN_copy(&to->numerator, &from->numerator);
  98        BN_copy(&to->denominator, &from->denominator);
  99        return to;
 100}
 101
 102static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
 103{
 104        BIGNUM a, b, gcd;
 105
 106        BN_init(&a);
 107        BN_init(&b);
 108        BN_init(&gcd);
 109
 110        BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
 111        BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
 112        BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
 113        BN_add(&result->numerator, &a, &b);
 114
 115        BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
 116        BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
 117        BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());
 118
 119        BN_clear(&a);
 120        BN_clear(&b);
 121        BN_clear(&gcd);
 122
 123        return result;
 124}
 125
 126static int compare(struct fraction *left, struct fraction *right)
 127{
 128        BIGNUM a, b;
 129        int result;
 130
 131        BN_init(&a);
 132        BN_init(&b);
 133
 134        BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
 135        BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
 136
 137        result = BN_cmp(&a, &b);
 138
 139        BN_clear(&a);
 140        BN_clear(&b);
 141
 142        return result;
 143}
 144
 145struct mass_counter {
 146        struct fraction seen;
 147        struct fraction pending;
 148};
 149
 150static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
 151{
 152        struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
 153        memset(mass_counter, 0, sizeof(*mass_counter));
 154
 155        init_fraction(&mass_counter->seen);
 156        init_fraction(&mass_counter->pending);
 157
 158        copy(&mass_counter->pending, pending);
 159        copy(&mass_counter->seen, get_zero());
 160
 161        if (commit->object.util) {
 162                die("multiple attempts to initialize mass counter for %s",
 163                    sha1_to_hex(commit->object.sha1));
 164        }
 165
 166        commit->object.util = mass_counter;
 167
 168        return mass_counter;
 169}
 170
 171static void free_mass_counter(struct mass_counter *counter)
 172{
 173        clear_fraction(&counter->seen);
 174        clear_fraction(&counter->pending);
 175        free(counter);
 176}
 177
 178/*
 179 * Finds the base commit of a list of commits.
 180 *
 181 * One property of the commit being searched for is that every commit reachable
 182 * from the base commit is reachable from the commits in the starting list only
 183 * via paths that include the base commit.
 184 *
 185 * This algorithm uses a conservation of mass approach to find the base commit.
 186 *
 187 * We start by injecting one unit of mass into the graph at each
 188 * of the commits in the starting list. Injecting mass into a commit
 189 * is achieved by adding to its pending mass counter and, if it is not already
 190 * enqueued, enqueuing the commit in a list of pending commits, in latest
 191 * commit date first order.
 192 *
 193 * The algorithm then preceeds to visit each commit in the pending queue.
 194 * Upon each visit, the pending mass is added to the mass already seen for that
 195 * commit and then divided into N equal portions, where N is the number of
 196 * parents of the commit being visited. The divided portions are then injected
 197 * into each of the parents.
 198 *
 199 * The algorithm continues until we discover a commit which has seen all the
 200 * mass originally injected or until we run out of things to do.
 201 *
 202 * If we find a commit that has seen all the original mass, we have found
 203 * the common base of all the commits in the starting list.
 204 *
 205 * The algorithm does _not_ depend on accurate timestamps for correct operation.
 206 * However, reasonably sane (e.g. non-random) timestamps are required in order
 207 * to prevent an exponential performance characteristic. The occasional
 208 * timestamp inaccuracy will not dramatically affect performance but may
 209 * result in more nodes being processed than strictly necessary.
 210 *
 211 * This procedure sets *boundary to the address of the base commit. It returns
 212 * non-zero if, and only if, there was a problem parsing one of the
 213 * commits discovered during the traversal.
 214 */
 215static int find_base_for_list(struct commit_list *list, struct commit **boundary)
 216{
 217        int ret = 0;
 218        struct commit_list *cleaner = NULL;
 219        struct commit_list *pending = NULL;
 220        struct fraction injected;
 221        init_fraction(&injected);
 222        *boundary = NULL;
 223
 224        for (; list; list = list->next) {
 225                struct commit *item = list->item;
 226
 227                if (item->object.util) {
 228                        die("%s:%d:%s: logic error: this should not have happened - commit %s",
 229                            __FILE__, __LINE__, __FUNCTION__,
 230                            sha1_to_hex(item->object.sha1));
 231                }
 232
 233                new_mass_counter(list->item, get_one());
 234                add(&injected, &injected, get_one());
 235
 236                commit_list_insert(list->item, &cleaner);
 237                commit_list_insert(list->item, &pending);
 238        }
 239
 240        while (!*boundary && pending && !ret) {
 241                struct commit *latest = pop_commit(&pending);
 242                struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;
 243                int num_parents;
 244
 245                if ((ret = parse_commit(latest)))
 246                        continue;
 247                add(&latest_node->seen, &latest_node->seen, &latest_node->pending);
 248
 249                num_parents = count_parents(latest);
 250                if (num_parents) {
 251                        struct fraction distribution;
 252                        struct commit_list *parents;
 253
 254                        divide(init_fraction(&distribution), &latest_node->pending, num_parents);
 255
 256                        for (parents = latest->parents; parents; parents = parents->next) {
 257                                struct commit *parent = parents->item;
 258                                struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;
 259
 260                                if (!parent_node) {
 261                                        parent_node = new_mass_counter(parent, &distribution);
 262                                        insert_by_date(&pending, parent);
 263                                        commit_list_insert(parent, &cleaner);
 264                                } else {
 265                                        if (!compare(&parent_node->pending, get_zero()))
 266                                                insert_by_date(&pending, parent);
 267                                        add(&parent_node->pending, &parent_node->pending, &distribution);
 268                                }
 269                        }
 270
 271                        clear_fraction(&distribution);
 272                }
 273
 274                if (!compare(&latest_node->seen, &injected))
 275                        *boundary = latest;
 276                copy(&latest_node->pending, get_zero());
 277        }
 278
 279        while (cleaner) {
 280                struct commit *next = pop_commit(&cleaner);
 281                free_mass_counter((struct mass_counter *) next->object.util);
 282                next->object.util = NULL;
 283        }
 284
 285        if (pending)
 286                free_commit_list(pending);
 287
 288        clear_fraction(&injected);
 289        return ret;
 290}
 291
 292
 293/*
 294 * Finds the base of an minimal, non-linear epoch, headed at head, by
 295 * applying the find_base_for_list to a list consisting of the parents
 296 */
 297static int find_base(struct commit *head, struct commit **boundary)
 298{
 299        int ret = 0;
 300        struct commit_list *pending = NULL;
 301        struct commit_list *next;
 302
 303        for (next = head->parents; next; next = next->next) {
 304                commit_list_insert(next->item, &pending);
 305        }
 306        ret = find_base_for_list(pending, boundary);
 307        free_commit_list(pending);
 308
 309        return ret;
 310}
 311
 312/*
 313 * This procedure traverses to the boundary of the first epoch in the epoch
 314 * sequence of the epoch headed at head_of_epoch. This is either the end of
 315 * the maximal linear epoch or the base of a minimal non-linear epoch.
 316 *
 317 * The queue of pending nodes is sorted in reverse date order and each node
 318 * is currently in the queue at most once.
 319 */
 320static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
 321{
 322        int ret;
 323        struct commit *item = head_of_epoch;
 324
 325        ret = parse_commit(item);
 326        if (ret)
 327                return ret;
 328
 329        if (HAS_EXACTLY_ONE_PARENT(item)) {
 330                /*
 331                 * We are at the start of a maximimal linear epoch.
 332                 * Traverse to the end.
 333                 */
 334                while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
 335                        item = item->parents->item;
 336                        ret = parse_commit(item);
 337                }
 338                *boundary = item;
 339
 340        } else {
 341                /*
 342                 * Otherwise, we are at the start of a minimal, non-linear
 343                 * epoch - find the common base of all parents.
 344                 */
 345                ret = find_base(item, boundary);
 346        }
 347
 348        return ret;
 349}
 350
 351/*
 352 * Returns non-zero if parent is known to be a parent of child.
 353 */
 354static int is_parent_of(struct commit *parent, struct commit *child)
 355{
 356        struct commit_list *parents;
 357        for (parents = child->parents; parents; parents = parents->next) {
 358                if (!memcmp(parent->object.sha1, parents->item->object.sha1,
 359                            sizeof(parents->item->object.sha1)))
 360                        return 1;
 361        }
 362        return 0;
 363}
 364
 365/*
 366 * Pushes an item onto the merge order stack. If the top of the stack is
 367 * marked as being a possible "break", we check to see whether it actually
 368 * is a break.
 369 */
 370static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
 371{
 372        struct commit_list *top = *stack;
 373        if (top && (top->item->object.flags & DISCONTINUITY)) {
 374                if (is_parent_of(top->item, item)) {
 375                        top->item->object.flags &= ~DISCONTINUITY;
 376                }
 377        }
 378        commit_list_insert(item, stack);
 379}
 380
 381/*
 382 * Marks all interesting, visited commits reachable from this commit
 383 * as uninteresting. We stop recursing when we reach the epoch boundary,
 384 * an unvisited node or a node that has already been marking uninteresting.
 385 *
 386 * This doesn't actually mark all ancestors between the start node and the
 387 * epoch boundary uninteresting, but does ensure that they will eventually
 388 * be marked uninteresting when the main sort_first_epoch() traversal
 389 * eventually reaches them.
 390 */
 391static void mark_ancestors_uninteresting(struct commit *commit)
 392{
 393        unsigned int flags = commit->object.flags;
 394        int visited = flags & VISITED;
 395        int boundary = flags & BOUNDARY;
 396        int uninteresting = flags & UNINTERESTING;
 397        struct commit_list *next;
 398
 399        commit->object.flags |= UNINTERESTING;
 400
 401        /*
 402         * We only need to recurse if
 403         *      we are not on the boundary and
 404         *      we have not already been marked uninteresting and
 405         *      we have already been visited.
 406         *
 407         * The main sort_first_epoch traverse will mark unreachable
 408         * all uninteresting, unvisited parents as they are visited
 409         * so there is no need to duplicate that traversal here.
 410         *
 411         * Similarly, if we are already marked uninteresting
 412         * then either all ancestors have already been marked
 413         * uninteresting or will be once the sort_first_epoch
 414         * traverse reaches them.
 415         */
 416
 417        if (uninteresting || boundary || !visited)
 418                return;
 419
 420        for (next = commit->parents; next; next = next->next)
 421                mark_ancestors_uninteresting(next->item);
 422}
 423
 424/*
 425 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
 426 * into merge order.
 427 */
 428static void sort_first_epoch(struct commit *head, struct commit_list **stack)
 429{
 430        struct commit_list *parents;
 431        struct commit_list *reversed_parents = NULL;
 432
 433        head->object.flags |= VISITED;
 434
 435        /*
 436         * parse_commit() builds the parent list in reverse order with respect
 437         * to the order of the git-commit-tree arguments. So we need to reverse
 438         * this list to output the oldest (or most "local") commits last.
 439         */
 440        for (parents = head->parents; parents; parents = parents->next)
 441                commit_list_insert(parents->item, &reversed_parents);
 442
 443        /*
 444         * TODO: By sorting the parents in a different order, we can alter the
 445         * merge order to show contemporaneous changes in parallel branches
 446         * occurring after "local" changes. This is useful for a developer
 447         * when a developer wants to see all changes that were incorporated
 448         * into the same merge as her own changes occur after her own
 449         * changes.
 450         */
 451
 452        while (reversed_parents) {
 453                struct commit *parent = pop_commit(&reversed_parents);
 454
 455                if (head->object.flags & UNINTERESTING) {
 456                        /*
 457                         * Propagates the uninteresting bit to all parents.
 458                         * if we have already visited this parent, then
 459                         * the uninteresting bit will be propagated to each
 460                         * reachable commit that is still not marked
 461                         * uninteresting and won't otherwise be reached.
 462                         */
 463                        mark_ancestors_uninteresting(parent);
 464                }
 465
 466                if (!(parent->object.flags & VISITED)) {
 467                        if (parent->object.flags & BOUNDARY) {
 468                                if (*stack) {
 469                                        die("something else is on the stack - %s",
 470                                            sha1_to_hex((*stack)->item->object.sha1));
 471                                }
 472                                push_onto_merge_order_stack(stack, parent);
 473                                parent->object.flags |= VISITED;
 474
 475                        } else {
 476                                sort_first_epoch(parent, stack);
 477                                if (reversed_parents) {
 478                                        /*
 479                                         * This indicates a possible
 480                                         * discontinuity it may not be be
 481                                         * actual discontinuity if the head
 482                                         * of parent N happens to be the tail
 483                                         * of parent N+1.
 484                                         *
 485                                         * The next push onto the stack will
 486                                         * resolve the question.
 487                                         */
 488                                        (*stack)->item->object.flags |= DISCONTINUITY;
 489                                }
 490                        }
 491                }
 492        }
 493
 494        push_onto_merge_order_stack(stack, head);
 495}
 496
 497/*
 498 * Emit the contents of the stack.
 499 *
 500 * The stack is freed and replaced by NULL.
 501 *
 502 * Sets the return value to STOP if no further output should be generated.
 503 */
 504static int emit_stack(struct commit_list **stack, emitter_func emitter)
 505{
 506        unsigned int seen = 0;
 507        int action = CONTINUE;
 508
 509        while (*stack && (action != STOP)) {
 510                struct commit *next = pop_commit(stack);
 511                seen |= next->object.flags;
 512                if (*stack)
 513                        action = (*emitter) (next);
 514        }
 515
 516        if (*stack) {
 517                free_commit_list(*stack);
 518                *stack = NULL;
 519        }
 520
 521        return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
 522}
 523
 524/*
 525 * Sorts an arbitrary epoch into merge order by sorting each epoch
 526 * of its epoch sequence into order.
 527 *
 528 * Note: this algorithm currently leaves traces of its execution in the
 529 * object flags of nodes it discovers. This should probably be fixed.
 530 */
 531static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
 532{
 533        struct commit *next = head_of_epoch;
 534        int ret = 0;
 535        int action = CONTINUE;
 536
 537        ret = parse_commit(head_of_epoch);
 538
 539        while (next && next->parents && !ret && (action != STOP)) {
 540                struct commit *base = NULL;
 541
 542                ret = find_next_epoch_boundary(next, &base);
 543                if (ret)
 544                        return ret;
 545                next->object.flags |= BOUNDARY;
 546                if (base)
 547                        base->object.flags |= BOUNDARY;
 548
 549                if (HAS_EXACTLY_ONE_PARENT(next)) {
 550                        while (HAS_EXACTLY_ONE_PARENT(next)
 551                               && (action != STOP)
 552                               && !ret) {
 553                                if (next->object.flags & UNINTERESTING) {
 554                                        action = STOP;
 555                                } else {
 556                                        action = (*emitter) (next);
 557                                }
 558                                if (action != STOP) {
 559                                        next = next->parents->item;
 560                                        ret = parse_commit(next);
 561                                }
 562                        }
 563
 564                } else {
 565                        struct commit_list *stack = NULL;
 566                        sort_first_epoch(next, &stack);
 567                        action = emit_stack(&stack, emitter);
 568                        next = base;
 569                }
 570        }
 571
 572        if (next && (action != STOP) && !ret) {
 573                (*emitter) (next);
 574        }
 575
 576        return ret;
 577}
 578
 579/*
 580 * Sorts the nodes reachable from a starting list in merge order, we
 581 * first find the base for the starting list and then sort all nodes
 582 * in this subgraph using the sort_first_epoch algorithm. Once we have
 583 * reached the base we can continue sorting using sort_in_merge_order.
 584 */
 585int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
 586{
 587        struct commit_list *stack = NULL;
 588        struct commit *base;
 589        int ret = 0;
 590        int action = CONTINUE;
 591        struct commit_list *reversed = NULL;
 592
 593        for (; list; list = list->next) {
 594                struct commit *next = list->item;
 595
 596                if (!(next->object.flags & UNINTERESTING)) {
 597                        if (next->object.flags & DUPCHECK) {
 598                                fprintf(stderr, "%s: duplicate commit %s ignored\n",
 599                                        __FUNCTION__, sha1_to_hex(next->object.sha1));
 600                        } else {
 601                                next->object.flags |= DUPCHECK;
 602                                commit_list_insert(list->item, &reversed);
 603                        }
 604                }
 605        }
 606
 607        if (!reversed->next) {
 608                /*
 609                 * If there is only one element in the list, we can sort it
 610                 * using sort_in_merge_order.
 611                 */
 612                base = reversed->item;
 613        } else {
 614                /*
 615                 * Otherwise, we search for the base of the list.
 616                 */
 617                ret = find_base_for_list(reversed, &base);
 618                if (ret)
 619                        return ret;
 620                if (base)
 621                        base->object.flags |= BOUNDARY;
 622
 623                while (reversed) {
 624                        sort_first_epoch(pop_commit(&reversed), &stack);
 625                        if (reversed) {
 626                                /*
 627                                 * If we have more commits to push, then the
 628                                 * first push for the next parent may (or may
 629                                 * not) represent a discontinuity with respect
 630                                 * to the parent currently on the top of
 631                                 * the stack.
 632                                 *
 633                                 * Mark it for checking here, and check it
 634                                 * with the next push. See sort_first_epoch()
 635                                 * for more details.
 636                                 */
 637                                stack->item->object.flags |= DISCONTINUITY;
 638                        }
 639                }
 640
 641                action = emit_stack(&stack, emitter);
 642        }
 643
 644        if (base && (action != STOP)) {
 645                ret = sort_in_merge_order(base, emitter);
 646        }
 647
 648        return ret;
 649}