df1edd963f2567486b8d7bbb2926e0320f8dac71
1#include "cache.h"
2#include "run-command.h"
3#include "exec_cmd.h"
4#include "sigchain.h"
5#include "argv-array.h"
6#include "thread-utils.h"
7#include "strbuf.h"
8
9void child_process_init(struct child_process *child)
10{
11 memset(child, 0, sizeof(*child));
12 argv_array_init(&child->args);
13 argv_array_init(&child->env_array);
14}
15
16void child_process_clear(struct child_process *child)
17{
18 argv_array_clear(&child->args);
19 argv_array_clear(&child->env_array);
20}
21
22struct child_to_clean {
23 pid_t pid;
24 struct child_process *process;
25 struct child_to_clean *next;
26};
27static struct child_to_clean *children_to_clean;
28static int installed_child_cleanup_handler;
29
30static void cleanup_children(int sig, int in_signal)
31{
32 struct child_to_clean *children_to_wait_for = NULL;
33
34 while (children_to_clean) {
35 struct child_to_clean *p = children_to_clean;
36 children_to_clean = p->next;
37
38 if (p->process && !in_signal) {
39 struct child_process *process = p->process;
40 if (process->clean_on_exit_handler) {
41 trace_printf(
42 "trace: run_command: running exit handler for pid %"
43 PRIuMAX, (uintmax_t)p->pid
44 );
45 process->clean_on_exit_handler(process);
46 }
47 }
48
49 kill(p->pid, sig);
50
51 if (p->process && p->process->wait_after_clean) {
52 p->next = children_to_wait_for;
53 children_to_wait_for = p;
54 } else {
55 if (!in_signal)
56 free(p);
57 }
58 }
59
60 while (children_to_wait_for) {
61 struct child_to_clean *p = children_to_wait_for;
62 children_to_wait_for = p->next;
63
64 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
65 ; /* spin waiting for process exit or error */
66
67 if (!in_signal)
68 free(p);
69 }
70}
71
72static void cleanup_children_on_signal(int sig)
73{
74 cleanup_children(sig, 1);
75 sigchain_pop(sig);
76 raise(sig);
77}
78
79static void cleanup_children_on_exit(void)
80{
81 cleanup_children(SIGTERM, 0);
82}
83
84static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
85{
86 struct child_to_clean *p = xmalloc(sizeof(*p));
87 p->pid = pid;
88 p->process = process;
89 p->next = children_to_clean;
90 children_to_clean = p;
91
92 if (!installed_child_cleanup_handler) {
93 atexit(cleanup_children_on_exit);
94 sigchain_push_common(cleanup_children_on_signal);
95 installed_child_cleanup_handler = 1;
96 }
97}
98
99static void clear_child_for_cleanup(pid_t pid)
100{
101 struct child_to_clean **pp;
102
103 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
104 struct child_to_clean *clean_me = *pp;
105
106 if (clean_me->pid == pid) {
107 *pp = clean_me->next;
108 free(clean_me);
109 return;
110 }
111 }
112}
113
114static inline void close_pair(int fd[2])
115{
116 close(fd[0]);
117 close(fd[1]);
118}
119
120static char *locate_in_PATH(const char *file)
121{
122 const char *p = getenv("PATH");
123 struct strbuf buf = STRBUF_INIT;
124
125 if (!p || !*p)
126 return NULL;
127
128 while (1) {
129 const char *end = strchrnul(p, ':');
130
131 strbuf_reset(&buf);
132
133 /* POSIX specifies an empty entry as the current directory. */
134 if (end != p) {
135 strbuf_add(&buf, p, end - p);
136 strbuf_addch(&buf, '/');
137 }
138 strbuf_addstr(&buf, file);
139
140 if (!access(buf.buf, F_OK))
141 return strbuf_detach(&buf, NULL);
142
143 if (!*end)
144 break;
145 p = end + 1;
146 }
147
148 strbuf_release(&buf);
149 return NULL;
150}
151
152static int exists_in_PATH(const char *file)
153{
154 char *r = locate_in_PATH(file);
155 free(r);
156 return r != NULL;
157}
158
159int sane_execvp(const char *file, char * const argv[])
160{
161 if (!execvp(file, argv))
162 return 0; /* cannot happen ;-) */
163
164 /*
165 * When a command can't be found because one of the directories
166 * listed in $PATH is unsearchable, execvp reports EACCES, but
167 * careful usability testing (read: analysis of occasional bug
168 * reports) reveals that "No such file or directory" is more
169 * intuitive.
170 *
171 * We avoid commands with "/", because execvp will not do $PATH
172 * lookups in that case.
173 *
174 * The reassignment of EACCES to errno looks like a no-op below,
175 * but we need to protect against exists_in_PATH overwriting errno.
176 */
177 if (errno == EACCES && !strchr(file, '/'))
178 errno = exists_in_PATH(file) ? EACCES : ENOENT;
179 else if (errno == ENOTDIR && !strchr(file, '/'))
180 errno = ENOENT;
181 return -1;
182}
183
184static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
185{
186 if (!argv[0])
187 die("BUG: shell command is empty");
188
189 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
190#ifndef GIT_WINDOWS_NATIVE
191 argv_array_push(out, SHELL_PATH);
192#else
193 argv_array_push(out, "sh");
194#endif
195 argv_array_push(out, "-c");
196
197 /*
198 * If we have no extra arguments, we do not even need to
199 * bother with the "$@" magic.
200 */
201 if (!argv[1])
202 argv_array_push(out, argv[0]);
203 else
204 argv_array_pushf(out, "%s \"$@\"", argv[0]);
205 }
206
207 argv_array_pushv(out, argv);
208 return out->argv;
209}
210
211#ifndef GIT_WINDOWS_NATIVE
212static int child_notifier = -1;
213
214enum child_errcode {
215 CHILD_ERR_CHDIR,
216 CHILD_ERR_DUP2,
217 CHILD_ERR_CLOSE,
218 CHILD_ERR_ENOENT,
219 CHILD_ERR_SILENT,
220 CHILD_ERR_ERRNO
221};
222
223struct child_err {
224 enum child_errcode err;
225 int syserr; /* errno */
226};
227
228static void child_die(enum child_errcode err)
229{
230 struct child_err buf;
231
232 buf.err = err;
233 buf.syserr = errno;
234
235 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
236 xwrite(child_notifier, &buf, sizeof(buf));
237 _exit(1);
238}
239
240static void child_dup2(int fd, int to)
241{
242 if (dup2(fd, to) < 0)
243 child_die(CHILD_ERR_DUP2);
244}
245
246static void child_close(int fd)
247{
248 if (close(fd))
249 child_die(CHILD_ERR_CLOSE);
250}
251
252static void child_close_pair(int fd[2])
253{
254 child_close(fd[0]);
255 child_close(fd[1]);
256}
257
258/*
259 * parent will make it look like the child spewed a fatal error and died
260 * this is needed to prevent changes to t0061.
261 */
262static void fake_fatal(const char *err, va_list params)
263{
264 vreportf("fatal: ", err, params);
265}
266
267static void child_error_fn(const char *err, va_list params)
268{
269 const char msg[] = "error() should not be called in child\n";
270 xwrite(2, msg, sizeof(msg) - 1);
271}
272
273static void child_warn_fn(const char *err, va_list params)
274{
275 const char msg[] = "warn() should not be called in child\n";
276 xwrite(2, msg, sizeof(msg) - 1);
277}
278
279static void NORETURN child_die_fn(const char *err, va_list params)
280{
281 const char msg[] = "die() should not be called in child\n";
282 xwrite(2, msg, sizeof(msg) - 1);
283 _exit(2);
284}
285
286/* this runs in the parent process */
287static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
288{
289 static void (*old_errfn)(const char *err, va_list params);
290
291 old_errfn = get_error_routine();
292 set_error_routine(fake_fatal);
293 errno = cerr->syserr;
294
295 switch (cerr->err) {
296 case CHILD_ERR_CHDIR:
297 error_errno("exec '%s': cd to '%s' failed",
298 cmd->argv[0], cmd->dir);
299 break;
300 case CHILD_ERR_DUP2:
301 error_errno("dup2() in child failed");
302 break;
303 case CHILD_ERR_CLOSE:
304 error_errno("close() in child failed");
305 break;
306 case CHILD_ERR_ENOENT:
307 error_errno("cannot run %s", cmd->argv[0]);
308 break;
309 case CHILD_ERR_SILENT:
310 break;
311 case CHILD_ERR_ERRNO:
312 error_errno("cannot exec '%s'", cmd->argv[0]);
313 break;
314 }
315 set_error_routine(old_errfn);
316}
317
318static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
319{
320 if (!cmd->argv[0])
321 die("BUG: command is empty");
322
323 /*
324 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
325 * attempt to interpret the command with 'sh'.
326 */
327 argv_array_push(out, SHELL_PATH);
328
329 if (cmd->git_cmd) {
330 argv_array_push(out, "git");
331 argv_array_pushv(out, cmd->argv);
332 } else if (cmd->use_shell) {
333 prepare_shell_cmd(out, cmd->argv);
334 } else {
335 argv_array_pushv(out, cmd->argv);
336 }
337
338 /*
339 * If there are no '/' characters in the command then perform a path
340 * lookup and use the resolved path as the command to exec. If there
341 * are no '/' characters or if the command wasn't found in the path,
342 * have exec attempt to invoke the command directly.
343 */
344 if (!strchr(out->argv[1], '/')) {
345 char *program = locate_in_PATH(out->argv[1]);
346 if (program) {
347 free((char *)out->argv[1]);
348 out->argv[1] = program;
349 }
350 }
351}
352
353static char **prep_childenv(const char *const *deltaenv)
354{
355 extern char **environ;
356 char **childenv;
357 struct string_list env = STRING_LIST_INIT_DUP;
358 struct strbuf key = STRBUF_INIT;
359 const char *const *p;
360 int i;
361
362 /* Construct a sorted string list consisting of the current environ */
363 for (p = (const char *const *) environ; p && *p; p++) {
364 const char *equals = strchr(*p, '=');
365
366 if (equals) {
367 strbuf_reset(&key);
368 strbuf_add(&key, *p, equals - *p);
369 string_list_append(&env, key.buf)->util = (void *) *p;
370 } else {
371 string_list_append(&env, *p)->util = (void *) *p;
372 }
373 }
374 string_list_sort(&env);
375
376 /* Merge in 'deltaenv' with the current environ */
377 for (p = deltaenv; p && *p; p++) {
378 const char *equals = strchr(*p, '=');
379
380 if (equals) {
381 /* ('key=value'), insert or replace entry */
382 strbuf_reset(&key);
383 strbuf_add(&key, *p, equals - *p);
384 string_list_insert(&env, key.buf)->util = (void *) *p;
385 } else {
386 /* otherwise ('key') remove existing entry */
387 string_list_remove(&env, *p, 0);
388 }
389 }
390
391 /* Create an array of 'char *' to be used as the childenv */
392 childenv = xmalloc((env.nr + 1) * sizeof(char *));
393 for (i = 0; i < env.nr; i++)
394 childenv[i] = env.items[i].util;
395 childenv[env.nr] = NULL;
396
397 string_list_clear(&env, 0);
398 strbuf_release(&key);
399 return childenv;
400}
401#endif
402
403static inline void set_cloexec(int fd)
404{
405 int flags = fcntl(fd, F_GETFD);
406 if (flags >= 0)
407 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
408}
409
410static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
411{
412 int status, code = -1;
413 pid_t waiting;
414 int failed_errno = 0;
415
416 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
417 ; /* nothing */
418 if (in_signal)
419 return 0;
420
421 if (waiting < 0) {
422 failed_errno = errno;
423 error_errno("waitpid for %s failed", argv0);
424 } else if (waiting != pid) {
425 error("waitpid is confused (%s)", argv0);
426 } else if (WIFSIGNALED(status)) {
427 code = WTERMSIG(status);
428 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
429 error("%s died of signal %d", argv0, code);
430 /*
431 * This return value is chosen so that code & 0xff
432 * mimics the exit code that a POSIX shell would report for
433 * a program that died from this signal.
434 */
435 code += 128;
436 } else if (WIFEXITED(status)) {
437 code = WEXITSTATUS(status);
438 } else {
439 error("waitpid is confused (%s)", argv0);
440 }
441
442 clear_child_for_cleanup(pid);
443
444 errno = failed_errno;
445 return code;
446}
447
448int start_command(struct child_process *cmd)
449{
450 int need_in, need_out, need_err;
451 int fdin[2], fdout[2], fderr[2];
452 int failed_errno;
453 char *str;
454
455 if (!cmd->argv)
456 cmd->argv = cmd->args.argv;
457 if (!cmd->env)
458 cmd->env = cmd->env_array.argv;
459
460 /*
461 * In case of errors we must keep the promise to close FDs
462 * that have been passed in via ->in and ->out.
463 */
464
465 need_in = !cmd->no_stdin && cmd->in < 0;
466 if (need_in) {
467 if (pipe(fdin) < 0) {
468 failed_errno = errno;
469 if (cmd->out > 0)
470 close(cmd->out);
471 str = "standard input";
472 goto fail_pipe;
473 }
474 cmd->in = fdin[1];
475 }
476
477 need_out = !cmd->no_stdout
478 && !cmd->stdout_to_stderr
479 && cmd->out < 0;
480 if (need_out) {
481 if (pipe(fdout) < 0) {
482 failed_errno = errno;
483 if (need_in)
484 close_pair(fdin);
485 else if (cmd->in)
486 close(cmd->in);
487 str = "standard output";
488 goto fail_pipe;
489 }
490 cmd->out = fdout[0];
491 }
492
493 need_err = !cmd->no_stderr && cmd->err < 0;
494 if (need_err) {
495 if (pipe(fderr) < 0) {
496 failed_errno = errno;
497 if (need_in)
498 close_pair(fdin);
499 else if (cmd->in)
500 close(cmd->in);
501 if (need_out)
502 close_pair(fdout);
503 else if (cmd->out)
504 close(cmd->out);
505 str = "standard error";
506fail_pipe:
507 error("cannot create %s pipe for %s: %s",
508 str, cmd->argv[0], strerror(failed_errno));
509 child_process_clear(cmd);
510 errno = failed_errno;
511 return -1;
512 }
513 cmd->err = fderr[0];
514 }
515
516 trace_argv_printf(cmd->argv, "trace: run_command:");
517 fflush(NULL);
518
519#ifndef GIT_WINDOWS_NATIVE
520{
521 int notify_pipe[2];
522 int null_fd = -1;
523 char **childenv;
524 struct argv_array argv = ARGV_ARRAY_INIT;
525 struct child_err cerr;
526
527 if (pipe(notify_pipe))
528 notify_pipe[0] = notify_pipe[1] = -1;
529
530 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
531 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
532 if (null_fd < 0)
533 die_errno(_("open /dev/null failed"));
534 set_cloexec(null_fd);
535 }
536
537 prepare_cmd(&argv, cmd);
538 childenv = prep_childenv(cmd->env);
539
540 /*
541 * NOTE: In order to prevent deadlocking when using threads special
542 * care should be taken with the function calls made in between the
543 * fork() and exec() calls. No calls should be made to functions which
544 * require acquiring a lock (e.g. malloc) as the lock could have been
545 * held by another thread at the time of forking, causing the lock to
546 * never be released in the child process. This means only
547 * Async-Signal-Safe functions are permitted in the child.
548 */
549 cmd->pid = fork();
550 failed_errno = errno;
551 if (!cmd->pid) {
552 /*
553 * Ensure the default die/error/warn routines do not get
554 * called, they can take stdio locks and malloc.
555 */
556 set_die_routine(child_die_fn);
557 set_error_routine(child_error_fn);
558 set_warn_routine(child_warn_fn);
559
560 close(notify_pipe[0]);
561 set_cloexec(notify_pipe[1]);
562 child_notifier = notify_pipe[1];
563
564 if (cmd->no_stdin)
565 child_dup2(null_fd, 0);
566 else if (need_in) {
567 child_dup2(fdin[0], 0);
568 child_close_pair(fdin);
569 } else if (cmd->in) {
570 child_dup2(cmd->in, 0);
571 child_close(cmd->in);
572 }
573
574 if (cmd->no_stderr)
575 child_dup2(null_fd, 2);
576 else if (need_err) {
577 child_dup2(fderr[1], 2);
578 child_close_pair(fderr);
579 } else if (cmd->err > 1) {
580 child_dup2(cmd->err, 2);
581 child_close(cmd->err);
582 }
583
584 if (cmd->no_stdout)
585 child_dup2(null_fd, 1);
586 else if (cmd->stdout_to_stderr)
587 child_dup2(2, 1);
588 else if (need_out) {
589 child_dup2(fdout[1], 1);
590 child_close_pair(fdout);
591 } else if (cmd->out > 1) {
592 child_dup2(cmd->out, 1);
593 child_close(cmd->out);
594 }
595
596 if (cmd->dir && chdir(cmd->dir))
597 child_die(CHILD_ERR_CHDIR);
598
599 /*
600 * Attempt to exec using the command and arguments starting at
601 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
602 * be used in the event exec failed with ENOEXEC at which point
603 * we will try to interpret the command using 'sh'.
604 */
605 execve(argv.argv[1], (char *const *) argv.argv + 1,
606 (char *const *) childenv);
607 if (errno == ENOEXEC)
608 execve(argv.argv[0], (char *const *) argv.argv,
609 (char *const *) childenv);
610
611 if (errno == ENOENT) {
612 if (cmd->silent_exec_failure)
613 child_die(CHILD_ERR_SILENT);
614 child_die(CHILD_ERR_ENOENT);
615 } else {
616 child_die(CHILD_ERR_ERRNO);
617 }
618 }
619 if (cmd->pid < 0)
620 error_errno("cannot fork() for %s", cmd->argv[0]);
621 else if (cmd->clean_on_exit)
622 mark_child_for_cleanup(cmd->pid, cmd);
623
624 /*
625 * Wait for child's exec. If the exec succeeds (or if fork()
626 * failed), EOF is seen immediately by the parent. Otherwise, the
627 * child process sends a child_err struct.
628 * Note that use of this infrastructure is completely advisory,
629 * therefore, we keep error checks minimal.
630 */
631 close(notify_pipe[1]);
632 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
633 /*
634 * At this point we know that fork() succeeded, but exec()
635 * failed. Errors have been reported to our stderr.
636 */
637 wait_or_whine(cmd->pid, cmd->argv[0], 0);
638 child_err_spew(cmd, &cerr);
639 failed_errno = errno;
640 cmd->pid = -1;
641 }
642 close(notify_pipe[0]);
643
644 if (null_fd >= 0)
645 close(null_fd);
646 argv_array_clear(&argv);
647 free(childenv);
648}
649#else
650{
651 int fhin = 0, fhout = 1, fherr = 2;
652 const char **sargv = cmd->argv;
653 struct argv_array nargv = ARGV_ARRAY_INIT;
654
655 if (cmd->no_stdin)
656 fhin = open("/dev/null", O_RDWR);
657 else if (need_in)
658 fhin = dup(fdin[0]);
659 else if (cmd->in)
660 fhin = dup(cmd->in);
661
662 if (cmd->no_stderr)
663 fherr = open("/dev/null", O_RDWR);
664 else if (need_err)
665 fherr = dup(fderr[1]);
666 else if (cmd->err > 2)
667 fherr = dup(cmd->err);
668
669 if (cmd->no_stdout)
670 fhout = open("/dev/null", O_RDWR);
671 else if (cmd->stdout_to_stderr)
672 fhout = dup(fherr);
673 else if (need_out)
674 fhout = dup(fdout[1]);
675 else if (cmd->out > 1)
676 fhout = dup(cmd->out);
677
678 if (cmd->git_cmd)
679 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
680 else if (cmd->use_shell)
681 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
682
683 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
684 cmd->dir, fhin, fhout, fherr);
685 failed_errno = errno;
686 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
687 error_errno("cannot spawn %s", cmd->argv[0]);
688 if (cmd->clean_on_exit && cmd->pid >= 0)
689 mark_child_for_cleanup(cmd->pid, cmd);
690
691 argv_array_clear(&nargv);
692 cmd->argv = sargv;
693 if (fhin != 0)
694 close(fhin);
695 if (fhout != 1)
696 close(fhout);
697 if (fherr != 2)
698 close(fherr);
699}
700#endif
701
702 if (cmd->pid < 0) {
703 if (need_in)
704 close_pair(fdin);
705 else if (cmd->in)
706 close(cmd->in);
707 if (need_out)
708 close_pair(fdout);
709 else if (cmd->out)
710 close(cmd->out);
711 if (need_err)
712 close_pair(fderr);
713 else if (cmd->err)
714 close(cmd->err);
715 child_process_clear(cmd);
716 errno = failed_errno;
717 return -1;
718 }
719
720 if (need_in)
721 close(fdin[0]);
722 else if (cmd->in)
723 close(cmd->in);
724
725 if (need_out)
726 close(fdout[1]);
727 else if (cmd->out)
728 close(cmd->out);
729
730 if (need_err)
731 close(fderr[1]);
732 else if (cmd->err)
733 close(cmd->err);
734
735 return 0;
736}
737
738int finish_command(struct child_process *cmd)
739{
740 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
741 child_process_clear(cmd);
742 return ret;
743}
744
745int finish_command_in_signal(struct child_process *cmd)
746{
747 return wait_or_whine(cmd->pid, cmd->argv[0], 1);
748}
749
750
751int run_command(struct child_process *cmd)
752{
753 int code;
754
755 if (cmd->out < 0 || cmd->err < 0)
756 die("BUG: run_command with a pipe can cause deadlock");
757
758 code = start_command(cmd);
759 if (code)
760 return code;
761 return finish_command(cmd);
762}
763
764int run_command_v_opt(const char **argv, int opt)
765{
766 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
767}
768
769int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
770{
771 struct child_process cmd = CHILD_PROCESS_INIT;
772 cmd.argv = argv;
773 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
774 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
775 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
776 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
777 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
778 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
779 cmd.dir = dir;
780 cmd.env = env;
781 return run_command(&cmd);
782}
783
784#ifndef NO_PTHREADS
785static pthread_t main_thread;
786static int main_thread_set;
787static pthread_key_t async_key;
788static pthread_key_t async_die_counter;
789
790static void *run_thread(void *data)
791{
792 struct async *async = data;
793 intptr_t ret;
794
795 if (async->isolate_sigpipe) {
796 sigset_t mask;
797 sigemptyset(&mask);
798 sigaddset(&mask, SIGPIPE);
799 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
800 ret = error("unable to block SIGPIPE in async thread");
801 return (void *)ret;
802 }
803 }
804
805 pthread_setspecific(async_key, async);
806 ret = async->proc(async->proc_in, async->proc_out, async->data);
807 return (void *)ret;
808}
809
810static NORETURN void die_async(const char *err, va_list params)
811{
812 vreportf("fatal: ", err, params);
813
814 if (in_async()) {
815 struct async *async = pthread_getspecific(async_key);
816 if (async->proc_in >= 0)
817 close(async->proc_in);
818 if (async->proc_out >= 0)
819 close(async->proc_out);
820 pthread_exit((void *)128);
821 }
822
823 exit(128);
824}
825
826static int async_die_is_recursing(void)
827{
828 void *ret = pthread_getspecific(async_die_counter);
829 pthread_setspecific(async_die_counter, (void *)1);
830 return ret != NULL;
831}
832
833int in_async(void)
834{
835 if (!main_thread_set)
836 return 0; /* no asyncs started yet */
837 return !pthread_equal(main_thread, pthread_self());
838}
839
840static void NORETURN async_exit(int code)
841{
842 pthread_exit((void *)(intptr_t)code);
843}
844
845#else
846
847static struct {
848 void (**handlers)(void);
849 size_t nr;
850 size_t alloc;
851} git_atexit_hdlrs;
852
853static int git_atexit_installed;
854
855static void git_atexit_dispatch(void)
856{
857 size_t i;
858
859 for (i=git_atexit_hdlrs.nr ; i ; i--)
860 git_atexit_hdlrs.handlers[i-1]();
861}
862
863static void git_atexit_clear(void)
864{
865 free(git_atexit_hdlrs.handlers);
866 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
867 git_atexit_installed = 0;
868}
869
870#undef atexit
871int git_atexit(void (*handler)(void))
872{
873 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
874 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
875 if (!git_atexit_installed) {
876 if (atexit(&git_atexit_dispatch))
877 return -1;
878 git_atexit_installed = 1;
879 }
880 return 0;
881}
882#define atexit git_atexit
883
884static int process_is_async;
885int in_async(void)
886{
887 return process_is_async;
888}
889
890static void NORETURN async_exit(int code)
891{
892 exit(code);
893}
894
895#endif
896
897void check_pipe(int err)
898{
899 if (err == EPIPE) {
900 if (in_async())
901 async_exit(141);
902
903 signal(SIGPIPE, SIG_DFL);
904 raise(SIGPIPE);
905 /* Should never happen, but just in case... */
906 exit(141);
907 }
908}
909
910int start_async(struct async *async)
911{
912 int need_in, need_out;
913 int fdin[2], fdout[2];
914 int proc_in, proc_out;
915
916 need_in = async->in < 0;
917 if (need_in) {
918 if (pipe(fdin) < 0) {
919 if (async->out > 0)
920 close(async->out);
921 return error_errno("cannot create pipe");
922 }
923 async->in = fdin[1];
924 }
925
926 need_out = async->out < 0;
927 if (need_out) {
928 if (pipe(fdout) < 0) {
929 if (need_in)
930 close_pair(fdin);
931 else if (async->in)
932 close(async->in);
933 return error_errno("cannot create pipe");
934 }
935 async->out = fdout[0];
936 }
937
938 if (need_in)
939 proc_in = fdin[0];
940 else if (async->in)
941 proc_in = async->in;
942 else
943 proc_in = -1;
944
945 if (need_out)
946 proc_out = fdout[1];
947 else if (async->out)
948 proc_out = async->out;
949 else
950 proc_out = -1;
951
952#ifdef NO_PTHREADS
953 /* Flush stdio before fork() to avoid cloning buffers */
954 fflush(NULL);
955
956 async->pid = fork();
957 if (async->pid < 0) {
958 error_errno("fork (async) failed");
959 goto error;
960 }
961 if (!async->pid) {
962 if (need_in)
963 close(fdin[1]);
964 if (need_out)
965 close(fdout[0]);
966 git_atexit_clear();
967 process_is_async = 1;
968 exit(!!async->proc(proc_in, proc_out, async->data));
969 }
970
971 mark_child_for_cleanup(async->pid, NULL);
972
973 if (need_in)
974 close(fdin[0]);
975 else if (async->in)
976 close(async->in);
977
978 if (need_out)
979 close(fdout[1]);
980 else if (async->out)
981 close(async->out);
982#else
983 if (!main_thread_set) {
984 /*
985 * We assume that the first time that start_async is called
986 * it is from the main thread.
987 */
988 main_thread_set = 1;
989 main_thread = pthread_self();
990 pthread_key_create(&async_key, NULL);
991 pthread_key_create(&async_die_counter, NULL);
992 set_die_routine(die_async);
993 set_die_is_recursing_routine(async_die_is_recursing);
994 }
995
996 if (proc_in >= 0)
997 set_cloexec(proc_in);
998 if (proc_out >= 0)
999 set_cloexec(proc_out);
1000 async->proc_in = proc_in;
1001 async->proc_out = proc_out;
1002 {
1003 int err = pthread_create(&async->tid, NULL, run_thread, async);
1004 if (err) {
1005 error_errno("cannot create thread");
1006 goto error;
1007 }
1008 }
1009#endif
1010 return 0;
1011
1012error:
1013 if (need_in)
1014 close_pair(fdin);
1015 else if (async->in)
1016 close(async->in);
1017
1018 if (need_out)
1019 close_pair(fdout);
1020 else if (async->out)
1021 close(async->out);
1022 return -1;
1023}
1024
1025int finish_async(struct async *async)
1026{
1027#ifdef NO_PTHREADS
1028 return wait_or_whine(async->pid, "child process", 0);
1029#else
1030 void *ret = (void *)(intptr_t)(-1);
1031
1032 if (pthread_join(async->tid, &ret))
1033 error("pthread_join failed");
1034 return (int)(intptr_t)ret;
1035#endif
1036}
1037
1038const char *find_hook(const char *name)
1039{
1040 static struct strbuf path = STRBUF_INIT;
1041
1042 strbuf_reset(&path);
1043 strbuf_git_path(&path, "hooks/%s", name);
1044 if (access(path.buf, X_OK) < 0) {
1045#ifdef STRIP_EXTENSION
1046 strbuf_addstr(&path, STRIP_EXTENSION);
1047 if (access(path.buf, X_OK) >= 0)
1048 return path.buf;
1049#endif
1050 return NULL;
1051 }
1052 return path.buf;
1053}
1054
1055int run_hook_ve(const char *const *env, const char *name, va_list args)
1056{
1057 struct child_process hook = CHILD_PROCESS_INIT;
1058 const char *p;
1059
1060 p = find_hook(name);
1061 if (!p)
1062 return 0;
1063
1064 argv_array_push(&hook.args, p);
1065 while ((p = va_arg(args, const char *)))
1066 argv_array_push(&hook.args, p);
1067 hook.env = env;
1068 hook.no_stdin = 1;
1069 hook.stdout_to_stderr = 1;
1070
1071 return run_command(&hook);
1072}
1073
1074int run_hook_le(const char *const *env, const char *name, ...)
1075{
1076 va_list args;
1077 int ret;
1078
1079 va_start(args, name);
1080 ret = run_hook_ve(env, name, args);
1081 va_end(args);
1082
1083 return ret;
1084}
1085
1086struct io_pump {
1087 /* initialized by caller */
1088 int fd;
1089 int type; /* POLLOUT or POLLIN */
1090 union {
1091 struct {
1092 const char *buf;
1093 size_t len;
1094 } out;
1095 struct {
1096 struct strbuf *buf;
1097 size_t hint;
1098 } in;
1099 } u;
1100
1101 /* returned by pump_io */
1102 int error; /* 0 for success, otherwise errno */
1103
1104 /* internal use */
1105 struct pollfd *pfd;
1106};
1107
1108static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1109{
1110 int pollsize = 0;
1111 int i;
1112
1113 for (i = 0; i < nr; i++) {
1114 struct io_pump *io = &slots[i];
1115 if (io->fd < 0)
1116 continue;
1117 pfd[pollsize].fd = io->fd;
1118 pfd[pollsize].events = io->type;
1119 io->pfd = &pfd[pollsize++];
1120 }
1121
1122 if (!pollsize)
1123 return 0;
1124
1125 if (poll(pfd, pollsize, -1) < 0) {
1126 if (errno == EINTR)
1127 return 1;
1128 die_errno("poll failed");
1129 }
1130
1131 for (i = 0; i < nr; i++) {
1132 struct io_pump *io = &slots[i];
1133
1134 if (io->fd < 0)
1135 continue;
1136
1137 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1138 continue;
1139
1140 if (io->type == POLLOUT) {
1141 ssize_t len = xwrite(io->fd,
1142 io->u.out.buf, io->u.out.len);
1143 if (len < 0) {
1144 io->error = errno;
1145 close(io->fd);
1146 io->fd = -1;
1147 } else {
1148 io->u.out.buf += len;
1149 io->u.out.len -= len;
1150 if (!io->u.out.len) {
1151 close(io->fd);
1152 io->fd = -1;
1153 }
1154 }
1155 }
1156
1157 if (io->type == POLLIN) {
1158 ssize_t len = strbuf_read_once(io->u.in.buf,
1159 io->fd, io->u.in.hint);
1160 if (len < 0)
1161 io->error = errno;
1162 if (len <= 0) {
1163 close(io->fd);
1164 io->fd = -1;
1165 }
1166 }
1167 }
1168
1169 return 1;
1170}
1171
1172static int pump_io(struct io_pump *slots, int nr)
1173{
1174 struct pollfd *pfd;
1175 int i;
1176
1177 for (i = 0; i < nr; i++)
1178 slots[i].error = 0;
1179
1180 ALLOC_ARRAY(pfd, nr);
1181 while (pump_io_round(slots, nr, pfd))
1182 ; /* nothing */
1183 free(pfd);
1184
1185 /* There may be multiple errno values, so just pick the first. */
1186 for (i = 0; i < nr; i++) {
1187 if (slots[i].error) {
1188 errno = slots[i].error;
1189 return -1;
1190 }
1191 }
1192 return 0;
1193}
1194
1195
1196int pipe_command(struct child_process *cmd,
1197 const char *in, size_t in_len,
1198 struct strbuf *out, size_t out_hint,
1199 struct strbuf *err, size_t err_hint)
1200{
1201 struct io_pump io[3];
1202 int nr = 0;
1203
1204 if (in)
1205 cmd->in = -1;
1206 if (out)
1207 cmd->out = -1;
1208 if (err)
1209 cmd->err = -1;
1210
1211 if (start_command(cmd) < 0)
1212 return -1;
1213
1214 if (in) {
1215 io[nr].fd = cmd->in;
1216 io[nr].type = POLLOUT;
1217 io[nr].u.out.buf = in;
1218 io[nr].u.out.len = in_len;
1219 nr++;
1220 }
1221 if (out) {
1222 io[nr].fd = cmd->out;
1223 io[nr].type = POLLIN;
1224 io[nr].u.in.buf = out;
1225 io[nr].u.in.hint = out_hint;
1226 nr++;
1227 }
1228 if (err) {
1229 io[nr].fd = cmd->err;
1230 io[nr].type = POLLIN;
1231 io[nr].u.in.buf = err;
1232 io[nr].u.in.hint = err_hint;
1233 nr++;
1234 }
1235
1236 if (pump_io(io, nr) < 0) {
1237 finish_command(cmd); /* throw away exit code */
1238 return -1;
1239 }
1240
1241 return finish_command(cmd);
1242}
1243
1244enum child_state {
1245 GIT_CP_FREE,
1246 GIT_CP_WORKING,
1247 GIT_CP_WAIT_CLEANUP,
1248};
1249
1250struct parallel_processes {
1251 void *data;
1252
1253 int max_processes;
1254 int nr_processes;
1255
1256 get_next_task_fn get_next_task;
1257 start_failure_fn start_failure;
1258 task_finished_fn task_finished;
1259
1260 struct {
1261 enum child_state state;
1262 struct child_process process;
1263 struct strbuf err;
1264 void *data;
1265 } *children;
1266 /*
1267 * The struct pollfd is logically part of *children,
1268 * but the system call expects it as its own array.
1269 */
1270 struct pollfd *pfd;
1271
1272 unsigned shutdown : 1;
1273
1274 int output_owner;
1275 struct strbuf buffered_output; /* of finished children */
1276};
1277
1278static int default_start_failure(struct strbuf *out,
1279 void *pp_cb,
1280 void *pp_task_cb)
1281{
1282 return 0;
1283}
1284
1285static int default_task_finished(int result,
1286 struct strbuf *out,
1287 void *pp_cb,
1288 void *pp_task_cb)
1289{
1290 return 0;
1291}
1292
1293static void kill_children(struct parallel_processes *pp, int signo)
1294{
1295 int i, n = pp->max_processes;
1296
1297 for (i = 0; i < n; i++)
1298 if (pp->children[i].state == GIT_CP_WORKING)
1299 kill(pp->children[i].process.pid, signo);
1300}
1301
1302static struct parallel_processes *pp_for_signal;
1303
1304static void handle_children_on_signal(int signo)
1305{
1306 kill_children(pp_for_signal, signo);
1307 sigchain_pop(signo);
1308 raise(signo);
1309}
1310
1311static void pp_init(struct parallel_processes *pp,
1312 int n,
1313 get_next_task_fn get_next_task,
1314 start_failure_fn start_failure,
1315 task_finished_fn task_finished,
1316 void *data)
1317{
1318 int i;
1319
1320 if (n < 1)
1321 n = online_cpus();
1322
1323 pp->max_processes = n;
1324
1325 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1326
1327 pp->data = data;
1328 if (!get_next_task)
1329 die("BUG: you need to specify a get_next_task function");
1330 pp->get_next_task = get_next_task;
1331
1332 pp->start_failure = start_failure ? start_failure : default_start_failure;
1333 pp->task_finished = task_finished ? task_finished : default_task_finished;
1334
1335 pp->nr_processes = 0;
1336 pp->output_owner = 0;
1337 pp->shutdown = 0;
1338 pp->children = xcalloc(n, sizeof(*pp->children));
1339 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1340 strbuf_init(&pp->buffered_output, 0);
1341
1342 for (i = 0; i < n; i++) {
1343 strbuf_init(&pp->children[i].err, 0);
1344 child_process_init(&pp->children[i].process);
1345 pp->pfd[i].events = POLLIN | POLLHUP;
1346 pp->pfd[i].fd = -1;
1347 }
1348
1349 pp_for_signal = pp;
1350 sigchain_push_common(handle_children_on_signal);
1351}
1352
1353static void pp_cleanup(struct parallel_processes *pp)
1354{
1355 int i;
1356
1357 trace_printf("run_processes_parallel: done");
1358 for (i = 0; i < pp->max_processes; i++) {
1359 strbuf_release(&pp->children[i].err);
1360 child_process_clear(&pp->children[i].process);
1361 }
1362
1363 free(pp->children);
1364 free(pp->pfd);
1365
1366 /*
1367 * When get_next_task added messages to the buffer in its last
1368 * iteration, the buffered output is non empty.
1369 */
1370 strbuf_write(&pp->buffered_output, stderr);
1371 strbuf_release(&pp->buffered_output);
1372
1373 sigchain_pop_common();
1374}
1375
1376/* returns
1377 * 0 if a new task was started.
1378 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1379 * problem with starting a new command)
1380 * <0 no new job was started, user wishes to shutdown early. Use negative code
1381 * to signal the children.
1382 */
1383static int pp_start_one(struct parallel_processes *pp)
1384{
1385 int i, code;
1386
1387 for (i = 0; i < pp->max_processes; i++)
1388 if (pp->children[i].state == GIT_CP_FREE)
1389 break;
1390 if (i == pp->max_processes)
1391 die("BUG: bookkeeping is hard");
1392
1393 code = pp->get_next_task(&pp->children[i].process,
1394 &pp->children[i].err,
1395 pp->data,
1396 &pp->children[i].data);
1397 if (!code) {
1398 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1399 strbuf_reset(&pp->children[i].err);
1400 return 1;
1401 }
1402 pp->children[i].process.err = -1;
1403 pp->children[i].process.stdout_to_stderr = 1;
1404 pp->children[i].process.no_stdin = 1;
1405
1406 if (start_command(&pp->children[i].process)) {
1407 code = pp->start_failure(&pp->children[i].err,
1408 pp->data,
1409 &pp->children[i].data);
1410 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1411 strbuf_reset(&pp->children[i].err);
1412 if (code)
1413 pp->shutdown = 1;
1414 return code;
1415 }
1416
1417 pp->nr_processes++;
1418 pp->children[i].state = GIT_CP_WORKING;
1419 pp->pfd[i].fd = pp->children[i].process.err;
1420 return 0;
1421}
1422
1423static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1424{
1425 int i;
1426
1427 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1428 if (errno == EINTR)
1429 continue;
1430 pp_cleanup(pp);
1431 die_errno("poll");
1432 }
1433
1434 /* Buffer output from all pipes. */
1435 for (i = 0; i < pp->max_processes; i++) {
1436 if (pp->children[i].state == GIT_CP_WORKING &&
1437 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1438 int n = strbuf_read_once(&pp->children[i].err,
1439 pp->children[i].process.err, 0);
1440 if (n == 0) {
1441 close(pp->children[i].process.err);
1442 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1443 } else if (n < 0)
1444 if (errno != EAGAIN)
1445 die_errno("read");
1446 }
1447 }
1448}
1449
1450static void pp_output(struct parallel_processes *pp)
1451{
1452 int i = pp->output_owner;
1453 if (pp->children[i].state == GIT_CP_WORKING &&
1454 pp->children[i].err.len) {
1455 strbuf_write(&pp->children[i].err, stderr);
1456 strbuf_reset(&pp->children[i].err);
1457 }
1458}
1459
1460static int pp_collect_finished(struct parallel_processes *pp)
1461{
1462 int i, code;
1463 int n = pp->max_processes;
1464 int result = 0;
1465
1466 while (pp->nr_processes > 0) {
1467 for (i = 0; i < pp->max_processes; i++)
1468 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1469 break;
1470 if (i == pp->max_processes)
1471 break;
1472
1473 code = finish_command(&pp->children[i].process);
1474
1475 code = pp->task_finished(code,
1476 &pp->children[i].err, pp->data,
1477 &pp->children[i].data);
1478
1479 if (code)
1480 result = code;
1481 if (code < 0)
1482 break;
1483
1484 pp->nr_processes--;
1485 pp->children[i].state = GIT_CP_FREE;
1486 pp->pfd[i].fd = -1;
1487 child_process_init(&pp->children[i].process);
1488
1489 if (i != pp->output_owner) {
1490 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1491 strbuf_reset(&pp->children[i].err);
1492 } else {
1493 strbuf_write(&pp->children[i].err, stderr);
1494 strbuf_reset(&pp->children[i].err);
1495
1496 /* Output all other finished child processes */
1497 strbuf_write(&pp->buffered_output, stderr);
1498 strbuf_reset(&pp->buffered_output);
1499
1500 /*
1501 * Pick next process to output live.
1502 * NEEDSWORK:
1503 * For now we pick it randomly by doing a round
1504 * robin. Later we may want to pick the one with
1505 * the most output or the longest or shortest
1506 * running process time.
1507 */
1508 for (i = 0; i < n; i++)
1509 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1510 break;
1511 pp->output_owner = (pp->output_owner + i) % n;
1512 }
1513 }
1514 return result;
1515}
1516
1517int run_processes_parallel(int n,
1518 get_next_task_fn get_next_task,
1519 start_failure_fn start_failure,
1520 task_finished_fn task_finished,
1521 void *pp_cb)
1522{
1523 int i, code;
1524 int output_timeout = 100;
1525 int spawn_cap = 4;
1526 struct parallel_processes pp;
1527
1528 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1529 while (1) {
1530 for (i = 0;
1531 i < spawn_cap && !pp.shutdown &&
1532 pp.nr_processes < pp.max_processes;
1533 i++) {
1534 code = pp_start_one(&pp);
1535 if (!code)
1536 continue;
1537 if (code < 0) {
1538 pp.shutdown = 1;
1539 kill_children(&pp, -code);
1540 }
1541 break;
1542 }
1543 if (!pp.nr_processes)
1544 break;
1545 pp_buffer_stderr(&pp, output_timeout);
1546 pp_output(&pp);
1547 code = pp_collect_finished(&pp);
1548 if (code) {
1549 pp.shutdown = 1;
1550 if (code < 0)
1551 kill_children(&pp, -code);
1552 }
1553 }
1554
1555 pp_cleanup(&pp);
1556 return 0;
1557}