refs / refs-internal.hon commit Merge branch 'nd/worktree-add-lock' (e311597)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return true iff refname is minimally safe. "Safe" here means that
  66 * deleting a loose reference by this name will not do any damage, for
  67 * example by causing a file that is not a reference to be deleted.
  68 * This function does not check that the reference name is legal; for
  69 * that, use check_refname_format().
  70 *
  71 * A refname that starts with "refs/" is considered safe iff it
  72 * doesn't contain any "." or ".." components or consecutive '/'
  73 * characters, end with '/', or (on Windows) contain any '\'
  74 * characters. Names that do not start with "refs/" are considered
  75 * safe iff they consist entirely of upper case characters and '_'
  76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  77 */
  78int refname_is_safe(const char *refname);
  79
  80enum peel_status {
  81        /* object was peeled successfully: */
  82        PEEL_PEELED = 0,
  83
  84        /*
  85         * object cannot be peeled because the named object (or an
  86         * object referred to by a tag in the peel chain), does not
  87         * exist.
  88         */
  89        PEEL_INVALID = -1,
  90
  91        /* object cannot be peeled because it is not a tag: */
  92        PEEL_NON_TAG = -2,
  93
  94        /* ref_entry contains no peeled value because it is a symref: */
  95        PEEL_IS_SYMREF = -3,
  96
  97        /*
  98         * ref_entry cannot be peeled because it is broken (i.e., the
  99         * symbolic reference cannot even be resolved to an object
 100         * name):
 101         */
 102        PEEL_BROKEN = -4
 103};
 104
 105/*
 106 * Peel the named object; i.e., if the object is a tag, resolve the
 107 * tag recursively until a non-tag is found.  If successful, store the
 108 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 110 * and leave sha1 unchanged.
 111 */
 112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 113
 114/*
 115 * Copy the reflog message msg to buf, which has been allocated sufficiently
 116 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 117 * because reflog file is one line per entry.
 118 */
 119int copy_reflog_msg(char *buf, const char *msg);
 120
 121/**
 122 * Information needed for a single ref update. Set new_sha1 to the new
 123 * value or to null_sha1 to delete the ref. To check the old value
 124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 126 * not exist before update.
 127 */
 128struct ref_update {
 129
 130        /*
 131         * If (flags & REF_HAVE_NEW), set the reference to this value:
 132         */
 133        unsigned char new_sha1[20];
 134
 135        /*
 136         * If (flags & REF_HAVE_OLD), check that the reference
 137         * previously had this value:
 138         */
 139        unsigned char old_sha1[20];
 140
 141        /*
 142         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 143         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 144         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 145         * REF_DELETED_LOOSE:
 146         */
 147        unsigned int flags;
 148
 149        void *backend_data;
 150        unsigned int type;
 151        char *msg;
 152
 153        /*
 154         * If this ref_update was split off of a symref update via
 155         * split_symref_update(), then this member points at that
 156         * update. This is used for two purposes:
 157         * 1. When reporting errors, we report the refname under which
 158         *    the update was originally requested.
 159         * 2. When we read the old value of this reference, we
 160         *    propagate it back to its parent update for recording in
 161         *    the latter's reflog.
 162         */
 163        struct ref_update *parent_update;
 164
 165        const char refname[FLEX_ARRAY];
 166};
 167
 168/*
 169 * Add a ref_update with the specified properties to transaction, and
 170 * return a pointer to the new object. This function does not verify
 171 * that refname is well-formed. new_sha1 and old_sha1 are only
 172 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 173 * respectively, are set in flags.
 174 */
 175struct ref_update *ref_transaction_add_update(
 176                struct ref_transaction *transaction,
 177                const char *refname, unsigned int flags,
 178                const unsigned char *new_sha1,
 179                const unsigned char *old_sha1,
 180                const char *msg);
 181
 182/*
 183 * Transaction states.
 184 * OPEN:   The transaction is in a valid state and can accept new updates.
 185 *         An OPEN transaction can be committed.
 186 * CLOSED: A closed transaction is no longer active and no other operations
 187 *         than free can be used on it in this state.
 188 *         A transaction can either become closed by successfully committing
 189 *         an active transaction or if there is a failure while building
 190 *         the transaction thus rendering it failed/inactive.
 191 */
 192enum ref_transaction_state {
 193        REF_TRANSACTION_OPEN   = 0,
 194        REF_TRANSACTION_CLOSED = 1
 195};
 196
 197/*
 198 * Data structure for holding a reference transaction, which can
 199 * consist of checks and updates to multiple references, carried out
 200 * as atomically as possible.  This structure is opaque to callers.
 201 */
 202struct ref_transaction {
 203        struct ref_store *ref_store;
 204        struct ref_update **updates;
 205        size_t alloc;
 206        size_t nr;
 207        enum ref_transaction_state state;
 208};
 209
 210/*
 211 * Check for entries in extras that are within the specified
 212 * directory, where dirname is a reference directory name including
 213 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 214 * conflicting references that are found in skip. If there is a
 215 * conflicting reference, return its name.
 216 *
 217 * extras and skip must be sorted lists of reference names. Either one
 218 * can be NULL, signifying the empty list.
 219 */
 220const char *find_descendant_ref(const char *dirname,
 221                                const struct string_list *extras,
 222                                const struct string_list *skip);
 223
 224/*
 225 * Check whether an attempt to rename old_refname to new_refname would
 226 * cause a D/F conflict with any existing reference (other than
 227 * possibly old_refname). If there would be a conflict, emit an error
 228 * message and return false; otherwise, return true.
 229 *
 230 * Note that this function is not safe against all races with other
 231 * processes (though rename_ref() catches some races that might get by
 232 * this check).
 233 */
 234int refs_rename_ref_available(struct ref_store *refs,
 235                              const char *old_refname,
 236                              const char *new_refname);
 237
 238/* We allow "recursive" symbolic refs. Only within reason, though */
 239#define SYMREF_MAXDEPTH 5
 240
 241/* Include broken references in a do_for_each_ref*() iteration: */
 242#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 243
 244/*
 245 * Reference iterators
 246 *
 247 * A reference iterator encapsulates the state of an in-progress
 248 * iteration over references. Create an instance of `struct
 249 * ref_iterator` via one of the functions in this module.
 250 *
 251 * A freshly-created ref_iterator doesn't yet point at a reference. To
 252 * advance the iterator, call ref_iterator_advance(). If successful,
 253 * this sets the iterator's refname, oid, and flags fields to describe
 254 * the next reference and returns ITER_OK. The data pointed at by
 255 * refname and oid belong to the iterator; if you want to retain them
 256 * after calling ref_iterator_advance() again or calling
 257 * ref_iterator_abort(), you must make a copy. When the iteration has
 258 * been exhausted, ref_iterator_advance() releases any resources
 259 * assocated with the iteration, frees the ref_iterator object, and
 260 * returns ITER_DONE. If you want to abort the iteration early, call
 261 * ref_iterator_abort(), which also frees the ref_iterator object and
 262 * any associated resources. If there was an internal error advancing
 263 * to the next entry, ref_iterator_advance() aborts the iteration,
 264 * frees the ref_iterator, and returns ITER_ERROR.
 265 *
 266 * The reference currently being looked at can be peeled by calling
 267 * ref_iterator_peel(). This function is often faster than peel_ref(),
 268 * so it should be preferred when iterating over references.
 269 *
 270 * Putting it all together, a typical iteration looks like this:
 271 *
 272 *     int ok;
 273 *     struct ref_iterator *iter = ...;
 274 *
 275 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 276 *             if (want_to_stop_iteration()) {
 277 *                     ok = ref_iterator_abort(iter);
 278 *                     break;
 279 *             }
 280 *
 281 *             // Access information about the current reference:
 282 *             if (!(iter->flags & REF_ISSYMREF))
 283 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 284 *
 285 *             // If you need to peel the reference:
 286 *             ref_iterator_peel(iter, &oid);
 287 *     }
 288 *
 289 *     if (ok != ITER_DONE)
 290 *             handle_error();
 291 */
 292struct ref_iterator {
 293        struct ref_iterator_vtable *vtable;
 294        const char *refname;
 295        const struct object_id *oid;
 296        unsigned int flags;
 297};
 298
 299/*
 300 * Advance the iterator to the first or next item and return ITER_OK.
 301 * If the iteration is exhausted, free the resources associated with
 302 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 303 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 304 * call this function again after it has returned ITER_DONE or
 305 * ITER_ERROR.
 306 */
 307int ref_iterator_advance(struct ref_iterator *ref_iterator);
 308
 309/*
 310 * If possible, peel the reference currently being viewed by the
 311 * iterator. Return 0 on success.
 312 */
 313int ref_iterator_peel(struct ref_iterator *ref_iterator,
 314                      struct object_id *peeled);
 315
 316/*
 317 * End the iteration before it has been exhausted, freeing the
 318 * reference iterator and any associated resources and returning
 319 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 320 */
 321int ref_iterator_abort(struct ref_iterator *ref_iterator);
 322
 323/*
 324 * An iterator over nothing (its first ref_iterator_advance() call
 325 * returns ITER_DONE).
 326 */
 327struct ref_iterator *empty_ref_iterator_begin(void);
 328
 329/*
 330 * Return true iff ref_iterator is an empty_ref_iterator.
 331 */
 332int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 333
 334/*
 335 * A callback function used to instruct merge_ref_iterator how to
 336 * interleave the entries from iter0 and iter1. The function should
 337 * return one of the constants defined in enum iterator_selection. It
 338 * must not advance either of the iterators itself.
 339 *
 340 * The function must be prepared to handle the case that iter0 and/or
 341 * iter1 is NULL, which indicates that the corresponding sub-iterator
 342 * has been exhausted. Its return value must be consistent with the
 343 * current states of the iterators; e.g., it must not return
 344 * ITER_SKIP_1 if iter1 has already been exhausted.
 345 */
 346typedef enum iterator_selection ref_iterator_select_fn(
 347                struct ref_iterator *iter0, struct ref_iterator *iter1,
 348                void *cb_data);
 349
 350/*
 351 * Iterate over the entries from iter0 and iter1, with the values
 352 * interleaved as directed by the select function. The iterator takes
 353 * ownership of iter0 and iter1 and frees them when the iteration is
 354 * over.
 355 */
 356struct ref_iterator *merge_ref_iterator_begin(
 357                struct ref_iterator *iter0, struct ref_iterator *iter1,
 358                ref_iterator_select_fn *select, void *cb_data);
 359
 360/*
 361 * An iterator consisting of the union of the entries from front and
 362 * back. If there are entries common to the two sub-iterators, use the
 363 * one from front. Each iterator must iterate over its entries in
 364 * strcmp() order by refname for this to work.
 365 *
 366 * The new iterator takes ownership of its arguments and frees them
 367 * when the iteration is over. As a convenience to callers, if front
 368 * or back is an empty_ref_iterator, then abort that one immediately
 369 * and return the other iterator directly, without wrapping it.
 370 */
 371struct ref_iterator *overlay_ref_iterator_begin(
 372                struct ref_iterator *front, struct ref_iterator *back);
 373
 374/*
 375 * Wrap iter0, only letting through the references whose names start
 376 * with prefix. If trim is set, set iter->refname to the name of the
 377 * reference with that many characters trimmed off the front;
 378 * otherwise set it to the full refname. The new iterator takes over
 379 * ownership of iter0 and frees it when iteration is over. It makes
 380 * its own copy of prefix.
 381 *
 382 * As an convenience to callers, if prefix is the empty string and
 383 * trim is zero, this function returns iter0 directly, without
 384 * wrapping it.
 385 */
 386struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 387                                               const char *prefix,
 388                                               int trim);
 389
 390/* Internal implementation of reference iteration: */
 391
 392/*
 393 * Base class constructor for ref_iterators. Initialize the
 394 * ref_iterator part of iter, setting its vtable pointer as specified.
 395 * This is meant to be called only by the initializers of derived
 396 * classes.
 397 */
 398void base_ref_iterator_init(struct ref_iterator *iter,
 399                            struct ref_iterator_vtable *vtable);
 400
 401/*
 402 * Base class destructor for ref_iterators. Destroy the ref_iterator
 403 * part of iter and shallow-free the object. This is meant to be
 404 * called only by the destructors of derived classes.
 405 */
 406void base_ref_iterator_free(struct ref_iterator *iter);
 407
 408/* Virtual function declarations for ref_iterators: */
 409
 410typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 411
 412typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 413                                 struct object_id *peeled);
 414
 415/*
 416 * Implementations of this function should free any resources specific
 417 * to the derived class, then call base_ref_iterator_free() to clean
 418 * up and free the ref_iterator object.
 419 */
 420typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 421
 422struct ref_iterator_vtable {
 423        ref_iterator_advance_fn *advance;
 424        ref_iterator_peel_fn *peel;
 425        ref_iterator_abort_fn *abort;
 426};
 427
 428/*
 429 * current_ref_iter is a performance hack: when iterating over
 430 * references using the for_each_ref*() functions, current_ref_iter is
 431 * set to the reference iterator before calling the callback function.
 432 * If the callback function calls peel_ref(), then peel_ref() first
 433 * checks whether the reference to be peeled is the one referred to by
 434 * the iterator (it usually is) and if so, asks the iterator for the
 435 * peeled version of the reference if it is available. This avoids a
 436 * refname lookup in a common case. current_ref_iter is set to NULL
 437 * when the iteration is over.
 438 */
 439extern struct ref_iterator *current_ref_iter;
 440
 441/*
 442 * The common backend for the for_each_*ref* functions. Call fn for
 443 * each reference in iter. If the iterator itself ever returns
 444 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 445 * the iteration and return that value. Otherwise, return 0. In any
 446 * case, free the iterator when done. This function is basically an
 447 * adapter between the callback style of reference iteration and the
 448 * iterator style.
 449 */
 450int do_for_each_ref_iterator(struct ref_iterator *iter,
 451                             each_ref_fn fn, void *cb_data);
 452
 453/*
 454 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 455 * Normally this will be used with a files ref_store, since that's
 456 * where all reference backends will presumably store their
 457 * per-worktree refs.
 458 */
 459#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 460
 461struct ref_store;
 462
 463/* refs backends */
 464
 465/* ref_store_init flags */
 466#define REF_STORE_READ          (1 << 0)
 467#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 468#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 469#define REF_STORE_MAIN          (1 << 3)
 470
 471/*
 472 * Initialize the ref_store for the specified gitdir. These functions
 473 * should call base_ref_store_init() to initialize the shared part of
 474 * the ref_store and to record the ref_store for later lookup.
 475 */
 476typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 477                                            unsigned int flags);
 478
 479typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 480
 481typedef int ref_transaction_commit_fn(struct ref_store *refs,
 482                                      struct ref_transaction *transaction,
 483                                      struct strbuf *err);
 484
 485typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 486typedef int peel_ref_fn(struct ref_store *ref_store,
 487                        const char *refname, unsigned char *sha1);
 488typedef int create_symref_fn(struct ref_store *ref_store,
 489                             const char *ref_target,
 490                             const char *refs_heads_master,
 491                             const char *logmsg);
 492typedef int delete_refs_fn(struct ref_store *ref_store,
 493                           struct string_list *refnames, unsigned int flags);
 494typedef int rename_ref_fn(struct ref_store *ref_store,
 495                          const char *oldref, const char *newref,
 496                          const char *logmsg);
 497
 498/*
 499 * Iterate over the references in the specified ref_store that are
 500 * within find_containing_dir(prefix). If prefix is NULL or the empty
 501 * string, iterate over all references in the submodule.
 502 */
 503typedef struct ref_iterator *ref_iterator_begin_fn(
 504                struct ref_store *ref_store,
 505                const char *prefix, unsigned int flags);
 506
 507/* reflog functions */
 508
 509/*
 510 * Iterate over the references in the specified ref_store that have a
 511 * reflog. The refs are iterated over in arbitrary order.
 512 */
 513typedef struct ref_iterator *reflog_iterator_begin_fn(
 514                struct ref_store *ref_store);
 515
 516typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 517                                   const char *refname,
 518                                   each_reflog_ent_fn fn,
 519                                   void *cb_data);
 520typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 521                                           const char *refname,
 522                                           each_reflog_ent_fn fn,
 523                                           void *cb_data);
 524typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 525typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 526                             int force_create, struct strbuf *err);
 527typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 528typedef int reflog_expire_fn(struct ref_store *ref_store,
 529                             const char *refname, const unsigned char *sha1,
 530                             unsigned int flags,
 531                             reflog_expiry_prepare_fn prepare_fn,
 532                             reflog_expiry_should_prune_fn should_prune_fn,
 533                             reflog_expiry_cleanup_fn cleanup_fn,
 534                             void *policy_cb_data);
 535
 536/*
 537 * Read a reference from the specified reference store, non-recursively.
 538 * Set type to describe the reference, and:
 539 *
 540 * - If refname is the name of a normal reference, fill in sha1
 541 *   (leaving referent unchanged).
 542 *
 543 * - If refname is the name of a symbolic reference, write the full
 544 *   name of the reference to which it refers (e.g.
 545 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 546 *   type (leaving sha1 unchanged). The caller is responsible for
 547 *   validating that referent is a valid reference name.
 548 *
 549 * WARNING: refname might be used as part of a filename, so it is
 550 * important from a security standpoint that it be safe in the sense
 551 * of refname_is_safe(). Moreover, for symrefs this function sets
 552 * referent to whatever the repository says, which might not be a
 553 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 554 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 555 *
 556 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 557 * and return -1. If the ref exists but is neither a symbolic ref nor
 558 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 559 * EINVAL, and return -1. If there is another error reading the ref,
 560 * set errno appropriately and return -1.
 561 *
 562 * Backend-specific flags might be set in type as well, regardless of
 563 * outcome.
 564 *
 565 * It is OK for refname to point into referent. If so:
 566 *
 567 * - if the function succeeds with REF_ISSYMREF, referent will be
 568 *   overwritten and the memory formerly pointed to by it might be
 569 *   changed or even freed.
 570 *
 571 * - in all other cases, referent will be untouched, and therefore
 572 *   refname will still be valid and unchanged.
 573 */
 574typedef int read_raw_ref_fn(struct ref_store *ref_store,
 575                            const char *refname, unsigned char *sha1,
 576                            struct strbuf *referent, unsigned int *type);
 577
 578typedef int verify_refname_available_fn(struct ref_store *ref_store,
 579                                        const char *newname,
 580                                        const struct string_list *extras,
 581                                        const struct string_list *skip,
 582                                        struct strbuf *err);
 583
 584struct ref_storage_be {
 585        struct ref_storage_be *next;
 586        const char *name;
 587        ref_store_init_fn *init;
 588        ref_init_db_fn *init_db;
 589        ref_transaction_commit_fn *transaction_commit;
 590        ref_transaction_commit_fn *initial_transaction_commit;
 591
 592        pack_refs_fn *pack_refs;
 593        peel_ref_fn *peel_ref;
 594        create_symref_fn *create_symref;
 595        delete_refs_fn *delete_refs;
 596        rename_ref_fn *rename_ref;
 597
 598        ref_iterator_begin_fn *iterator_begin;
 599        read_raw_ref_fn *read_raw_ref;
 600        verify_refname_available_fn *verify_refname_available;
 601
 602        reflog_iterator_begin_fn *reflog_iterator_begin;
 603        for_each_reflog_ent_fn *for_each_reflog_ent;
 604        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 605        reflog_exists_fn *reflog_exists;
 606        create_reflog_fn *create_reflog;
 607        delete_reflog_fn *delete_reflog;
 608        reflog_expire_fn *reflog_expire;
 609};
 610
 611extern struct ref_storage_be refs_be_files;
 612
 613/*
 614 * A representation of the reference store for the main repository or
 615 * a submodule. The ref_store instances for submodules are kept in a
 616 * linked list.
 617 */
 618struct ref_store {
 619        /* The backend describing this ref_store's storage scheme: */
 620        const struct ref_storage_be *be;
 621};
 622
 623/*
 624 * Fill in the generic part of refs and add it to our collection of
 625 * reference stores.
 626 */
 627void base_ref_store_init(struct ref_store *refs,
 628                         const struct ref_storage_be *be);
 629
 630#endif /* REFS_REFS_INTERNAL_H */