run-command.con commit run-command: use the async-signal-safe execv instead of execvp (e3a4344)
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec_cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8
   9void child_process_init(struct child_process *child)
  10{
  11        memset(child, 0, sizeof(*child));
  12        argv_array_init(&child->args);
  13        argv_array_init(&child->env_array);
  14}
  15
  16void child_process_clear(struct child_process *child)
  17{
  18        argv_array_clear(&child->args);
  19        argv_array_clear(&child->env_array);
  20}
  21
  22struct child_to_clean {
  23        pid_t pid;
  24        struct child_process *process;
  25        struct child_to_clean *next;
  26};
  27static struct child_to_clean *children_to_clean;
  28static int installed_child_cleanup_handler;
  29
  30static void cleanup_children(int sig, int in_signal)
  31{
  32        struct child_to_clean *children_to_wait_for = NULL;
  33
  34        while (children_to_clean) {
  35                struct child_to_clean *p = children_to_clean;
  36                children_to_clean = p->next;
  37
  38                if (p->process && !in_signal) {
  39                        struct child_process *process = p->process;
  40                        if (process->clean_on_exit_handler) {
  41                                trace_printf(
  42                                        "trace: run_command: running exit handler for pid %"
  43                                        PRIuMAX, (uintmax_t)p->pid
  44                                );
  45                                process->clean_on_exit_handler(process);
  46                        }
  47                }
  48
  49                kill(p->pid, sig);
  50
  51                if (p->process && p->process->wait_after_clean) {
  52                        p->next = children_to_wait_for;
  53                        children_to_wait_for = p;
  54                } else {
  55                        if (!in_signal)
  56                                free(p);
  57                }
  58        }
  59
  60        while (children_to_wait_for) {
  61                struct child_to_clean *p = children_to_wait_for;
  62                children_to_wait_for = p->next;
  63
  64                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  65                        ; /* spin waiting for process exit or error */
  66
  67                if (!in_signal)
  68                        free(p);
  69        }
  70}
  71
  72static void cleanup_children_on_signal(int sig)
  73{
  74        cleanup_children(sig, 1);
  75        sigchain_pop(sig);
  76        raise(sig);
  77}
  78
  79static void cleanup_children_on_exit(void)
  80{
  81        cleanup_children(SIGTERM, 0);
  82}
  83
  84static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  85{
  86        struct child_to_clean *p = xmalloc(sizeof(*p));
  87        p->pid = pid;
  88        p->process = process;
  89        p->next = children_to_clean;
  90        children_to_clean = p;
  91
  92        if (!installed_child_cleanup_handler) {
  93                atexit(cleanup_children_on_exit);
  94                sigchain_push_common(cleanup_children_on_signal);
  95                installed_child_cleanup_handler = 1;
  96        }
  97}
  98
  99static void clear_child_for_cleanup(pid_t pid)
 100{
 101        struct child_to_clean **pp;
 102
 103        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 104                struct child_to_clean *clean_me = *pp;
 105
 106                if (clean_me->pid == pid) {
 107                        *pp = clean_me->next;
 108                        free(clean_me);
 109                        return;
 110                }
 111        }
 112}
 113
 114static inline void close_pair(int fd[2])
 115{
 116        close(fd[0]);
 117        close(fd[1]);
 118}
 119
 120#ifndef GIT_WINDOWS_NATIVE
 121static inline void dup_devnull(int to)
 122{
 123        int fd = open("/dev/null", O_RDWR);
 124        if (fd < 0)
 125                die_errno(_("open /dev/null failed"));
 126        if (dup2(fd, to) < 0)
 127                die_errno(_("dup2(%d,%d) failed"), fd, to);
 128        close(fd);
 129}
 130#endif
 131
 132static char *locate_in_PATH(const char *file)
 133{
 134        const char *p = getenv("PATH");
 135        struct strbuf buf = STRBUF_INIT;
 136
 137        if (!p || !*p)
 138                return NULL;
 139
 140        while (1) {
 141                const char *end = strchrnul(p, ':');
 142
 143                strbuf_reset(&buf);
 144
 145                /* POSIX specifies an empty entry as the current directory. */
 146                if (end != p) {
 147                        strbuf_add(&buf, p, end - p);
 148                        strbuf_addch(&buf, '/');
 149                }
 150                strbuf_addstr(&buf, file);
 151
 152                if (!access(buf.buf, F_OK))
 153                        return strbuf_detach(&buf, NULL);
 154
 155                if (!*end)
 156                        break;
 157                p = end + 1;
 158        }
 159
 160        strbuf_release(&buf);
 161        return NULL;
 162}
 163
 164static int exists_in_PATH(const char *file)
 165{
 166        char *r = locate_in_PATH(file);
 167        free(r);
 168        return r != NULL;
 169}
 170
 171int sane_execvp(const char *file, char * const argv[])
 172{
 173        if (!execvp(file, argv))
 174                return 0; /* cannot happen ;-) */
 175
 176        /*
 177         * When a command can't be found because one of the directories
 178         * listed in $PATH is unsearchable, execvp reports EACCES, but
 179         * careful usability testing (read: analysis of occasional bug
 180         * reports) reveals that "No such file or directory" is more
 181         * intuitive.
 182         *
 183         * We avoid commands with "/", because execvp will not do $PATH
 184         * lookups in that case.
 185         *
 186         * The reassignment of EACCES to errno looks like a no-op below,
 187         * but we need to protect against exists_in_PATH overwriting errno.
 188         */
 189        if (errno == EACCES && !strchr(file, '/'))
 190                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 191        else if (errno == ENOTDIR && !strchr(file, '/'))
 192                errno = ENOENT;
 193        return -1;
 194}
 195
 196static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 197{
 198        if (!argv[0])
 199                die("BUG: shell command is empty");
 200
 201        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 202#ifndef GIT_WINDOWS_NATIVE
 203                argv_array_push(out, SHELL_PATH);
 204#else
 205                argv_array_push(out, "sh");
 206#endif
 207                argv_array_push(out, "-c");
 208
 209                /*
 210                 * If we have no extra arguments, we do not even need to
 211                 * bother with the "$@" magic.
 212                 */
 213                if (!argv[1])
 214                        argv_array_push(out, argv[0]);
 215                else
 216                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 217        }
 218
 219        argv_array_pushv(out, argv);
 220        return out->argv;
 221}
 222
 223#ifndef GIT_WINDOWS_NATIVE
 224static int child_notifier = -1;
 225
 226static void notify_parent(void)
 227{
 228        /*
 229         * execvp failed.  If possible, we'd like to let start_command
 230         * know, so failures like ENOENT can be handled right away; but
 231         * otherwise, finish_command will still report the error.
 232         */
 233        xwrite(child_notifier, "", 1);
 234}
 235
 236static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 237{
 238        if (!cmd->argv[0])
 239                die("BUG: command is empty");
 240
 241        /*
 242         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 243         * attempt to interpret the command with 'sh'.
 244         */
 245        argv_array_push(out, SHELL_PATH);
 246
 247        if (cmd->git_cmd) {
 248                argv_array_push(out, "git");
 249                argv_array_pushv(out, cmd->argv);
 250        } else if (cmd->use_shell) {
 251                prepare_shell_cmd(out, cmd->argv);
 252        } else {
 253                argv_array_pushv(out, cmd->argv);
 254        }
 255
 256        /*
 257         * If there are no '/' characters in the command then perform a path
 258         * lookup and use the resolved path as the command to exec.  If there
 259         * are no '/' characters or if the command wasn't found in the path,
 260         * have exec attempt to invoke the command directly.
 261         */
 262        if (!strchr(out->argv[1], '/')) {
 263                char *program = locate_in_PATH(out->argv[1]);
 264                if (program) {
 265                        free((char *)out->argv[1]);
 266                        out->argv[1] = program;
 267                }
 268        }
 269}
 270#endif
 271
 272static inline void set_cloexec(int fd)
 273{
 274        int flags = fcntl(fd, F_GETFD);
 275        if (flags >= 0)
 276                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 277}
 278
 279static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 280{
 281        int status, code = -1;
 282        pid_t waiting;
 283        int failed_errno = 0;
 284
 285        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 286                ;       /* nothing */
 287        if (in_signal)
 288                return 0;
 289
 290        if (waiting < 0) {
 291                failed_errno = errno;
 292                error_errno("waitpid for %s failed", argv0);
 293        } else if (waiting != pid) {
 294                error("waitpid is confused (%s)", argv0);
 295        } else if (WIFSIGNALED(status)) {
 296                code = WTERMSIG(status);
 297                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 298                        error("%s died of signal %d", argv0, code);
 299                /*
 300                 * This return value is chosen so that code & 0xff
 301                 * mimics the exit code that a POSIX shell would report for
 302                 * a program that died from this signal.
 303                 */
 304                code += 128;
 305        } else if (WIFEXITED(status)) {
 306                code = WEXITSTATUS(status);
 307                /*
 308                 * Convert special exit code when execvp failed.
 309                 */
 310                if (code == 127) {
 311                        code = -1;
 312                        failed_errno = ENOENT;
 313                }
 314        } else {
 315                error("waitpid is confused (%s)", argv0);
 316        }
 317
 318        clear_child_for_cleanup(pid);
 319
 320        errno = failed_errno;
 321        return code;
 322}
 323
 324int start_command(struct child_process *cmd)
 325{
 326        int need_in, need_out, need_err;
 327        int fdin[2], fdout[2], fderr[2];
 328        int failed_errno;
 329        char *str;
 330
 331        if (!cmd->argv)
 332                cmd->argv = cmd->args.argv;
 333        if (!cmd->env)
 334                cmd->env = cmd->env_array.argv;
 335
 336        /*
 337         * In case of errors we must keep the promise to close FDs
 338         * that have been passed in via ->in and ->out.
 339         */
 340
 341        need_in = !cmd->no_stdin && cmd->in < 0;
 342        if (need_in) {
 343                if (pipe(fdin) < 0) {
 344                        failed_errno = errno;
 345                        if (cmd->out > 0)
 346                                close(cmd->out);
 347                        str = "standard input";
 348                        goto fail_pipe;
 349                }
 350                cmd->in = fdin[1];
 351        }
 352
 353        need_out = !cmd->no_stdout
 354                && !cmd->stdout_to_stderr
 355                && cmd->out < 0;
 356        if (need_out) {
 357                if (pipe(fdout) < 0) {
 358                        failed_errno = errno;
 359                        if (need_in)
 360                                close_pair(fdin);
 361                        else if (cmd->in)
 362                                close(cmd->in);
 363                        str = "standard output";
 364                        goto fail_pipe;
 365                }
 366                cmd->out = fdout[0];
 367        }
 368
 369        need_err = !cmd->no_stderr && cmd->err < 0;
 370        if (need_err) {
 371                if (pipe(fderr) < 0) {
 372                        failed_errno = errno;
 373                        if (need_in)
 374                                close_pair(fdin);
 375                        else if (cmd->in)
 376                                close(cmd->in);
 377                        if (need_out)
 378                                close_pair(fdout);
 379                        else if (cmd->out)
 380                                close(cmd->out);
 381                        str = "standard error";
 382fail_pipe:
 383                        error("cannot create %s pipe for %s: %s",
 384                                str, cmd->argv[0], strerror(failed_errno));
 385                        child_process_clear(cmd);
 386                        errno = failed_errno;
 387                        return -1;
 388                }
 389                cmd->err = fderr[0];
 390        }
 391
 392        trace_argv_printf(cmd->argv, "trace: run_command:");
 393        fflush(NULL);
 394
 395#ifndef GIT_WINDOWS_NATIVE
 396{
 397        int notify_pipe[2];
 398        struct argv_array argv = ARGV_ARRAY_INIT;
 399
 400        if (pipe(notify_pipe))
 401                notify_pipe[0] = notify_pipe[1] = -1;
 402
 403        prepare_cmd(&argv, cmd);
 404
 405        cmd->pid = fork();
 406        failed_errno = errno;
 407        if (!cmd->pid) {
 408                /*
 409                 * Redirect the channel to write syscall error messages to
 410                 * before redirecting the process's stderr so that all die()
 411                 * in subsequent call paths use the parent's stderr.
 412                 */
 413                if (cmd->no_stderr || need_err) {
 414                        int child_err = dup(2);
 415                        set_cloexec(child_err);
 416                        set_error_handle(fdopen(child_err, "w"));
 417                }
 418
 419                close(notify_pipe[0]);
 420                set_cloexec(notify_pipe[1]);
 421                child_notifier = notify_pipe[1];
 422                atexit(notify_parent);
 423
 424                if (cmd->no_stdin)
 425                        dup_devnull(0);
 426                else if (need_in) {
 427                        dup2(fdin[0], 0);
 428                        close_pair(fdin);
 429                } else if (cmd->in) {
 430                        dup2(cmd->in, 0);
 431                        close(cmd->in);
 432                }
 433
 434                if (cmd->no_stderr)
 435                        dup_devnull(2);
 436                else if (need_err) {
 437                        dup2(fderr[1], 2);
 438                        close_pair(fderr);
 439                } else if (cmd->err > 1) {
 440                        dup2(cmd->err, 2);
 441                        close(cmd->err);
 442                }
 443
 444                if (cmd->no_stdout)
 445                        dup_devnull(1);
 446                else if (cmd->stdout_to_stderr)
 447                        dup2(2, 1);
 448                else if (need_out) {
 449                        dup2(fdout[1], 1);
 450                        close_pair(fdout);
 451                } else if (cmd->out > 1) {
 452                        dup2(cmd->out, 1);
 453                        close(cmd->out);
 454                }
 455
 456                if (cmd->dir && chdir(cmd->dir))
 457                        die_errno("exec '%s': cd to '%s' failed", cmd->argv[0],
 458                            cmd->dir);
 459                if (cmd->env) {
 460                        for (; *cmd->env; cmd->env++) {
 461                                if (strchr(*cmd->env, '='))
 462                                        putenv((char *)*cmd->env);
 463                                else
 464                                        unsetenv(*cmd->env);
 465                        }
 466                }
 467
 468                /*
 469                 * Attempt to exec using the command and arguments starting at
 470                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 471                 * be used in the event exec failed with ENOEXEC at which point
 472                 * we will try to interpret the command using 'sh'.
 473                 */
 474                execv(argv.argv[1], (char *const *) argv.argv + 1);
 475                if (errno == ENOEXEC)
 476                        execv(argv.argv[0], (char *const *) argv.argv);
 477
 478                if (errno == ENOENT) {
 479                        if (!cmd->silent_exec_failure)
 480                                error("cannot run %s: %s", cmd->argv[0],
 481                                        strerror(ENOENT));
 482                        exit(127);
 483                } else {
 484                        die_errno("cannot exec '%s'", cmd->argv[0]);
 485                }
 486        }
 487        if (cmd->pid < 0)
 488                error_errno("cannot fork() for %s", cmd->argv[0]);
 489        else if (cmd->clean_on_exit)
 490                mark_child_for_cleanup(cmd->pid, cmd);
 491
 492        /*
 493         * Wait for child's exec. If the exec succeeds (or if fork()
 494         * failed), EOF is seen immediately by the parent. Otherwise, the
 495         * child process sends a single byte.
 496         * Note that use of this infrastructure is completely advisory,
 497         * therefore, we keep error checks minimal.
 498         */
 499        close(notify_pipe[1]);
 500        if (read(notify_pipe[0], &notify_pipe[1], 1) == 1) {
 501                /*
 502                 * At this point we know that fork() succeeded, but exec()
 503                 * failed. Errors have been reported to our stderr.
 504                 */
 505                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 506                failed_errno = errno;
 507                cmd->pid = -1;
 508        }
 509        close(notify_pipe[0]);
 510
 511        argv_array_clear(&argv);
 512}
 513#else
 514{
 515        int fhin = 0, fhout = 1, fherr = 2;
 516        const char **sargv = cmd->argv;
 517        struct argv_array nargv = ARGV_ARRAY_INIT;
 518
 519        if (cmd->no_stdin)
 520                fhin = open("/dev/null", O_RDWR);
 521        else if (need_in)
 522                fhin = dup(fdin[0]);
 523        else if (cmd->in)
 524                fhin = dup(cmd->in);
 525
 526        if (cmd->no_stderr)
 527                fherr = open("/dev/null", O_RDWR);
 528        else if (need_err)
 529                fherr = dup(fderr[1]);
 530        else if (cmd->err > 2)
 531                fherr = dup(cmd->err);
 532
 533        if (cmd->no_stdout)
 534                fhout = open("/dev/null", O_RDWR);
 535        else if (cmd->stdout_to_stderr)
 536                fhout = dup(fherr);
 537        else if (need_out)
 538                fhout = dup(fdout[1]);
 539        else if (cmd->out > 1)
 540                fhout = dup(cmd->out);
 541
 542        if (cmd->git_cmd)
 543                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 544        else if (cmd->use_shell)
 545                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 546
 547        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 548                        cmd->dir, fhin, fhout, fherr);
 549        failed_errno = errno;
 550        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 551                error_errno("cannot spawn %s", cmd->argv[0]);
 552        if (cmd->clean_on_exit && cmd->pid >= 0)
 553                mark_child_for_cleanup(cmd->pid, cmd);
 554
 555        argv_array_clear(&nargv);
 556        cmd->argv = sargv;
 557        if (fhin != 0)
 558                close(fhin);
 559        if (fhout != 1)
 560                close(fhout);
 561        if (fherr != 2)
 562                close(fherr);
 563}
 564#endif
 565
 566        if (cmd->pid < 0) {
 567                if (need_in)
 568                        close_pair(fdin);
 569                else if (cmd->in)
 570                        close(cmd->in);
 571                if (need_out)
 572                        close_pair(fdout);
 573                else if (cmd->out)
 574                        close(cmd->out);
 575                if (need_err)
 576                        close_pair(fderr);
 577                else if (cmd->err)
 578                        close(cmd->err);
 579                child_process_clear(cmd);
 580                errno = failed_errno;
 581                return -1;
 582        }
 583
 584        if (need_in)
 585                close(fdin[0]);
 586        else if (cmd->in)
 587                close(cmd->in);
 588
 589        if (need_out)
 590                close(fdout[1]);
 591        else if (cmd->out)
 592                close(cmd->out);
 593
 594        if (need_err)
 595                close(fderr[1]);
 596        else if (cmd->err)
 597                close(cmd->err);
 598
 599        return 0;
 600}
 601
 602int finish_command(struct child_process *cmd)
 603{
 604        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 605        child_process_clear(cmd);
 606        return ret;
 607}
 608
 609int finish_command_in_signal(struct child_process *cmd)
 610{
 611        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 612}
 613
 614
 615int run_command(struct child_process *cmd)
 616{
 617        int code;
 618
 619        if (cmd->out < 0 || cmd->err < 0)
 620                die("BUG: run_command with a pipe can cause deadlock");
 621
 622        code = start_command(cmd);
 623        if (code)
 624                return code;
 625        return finish_command(cmd);
 626}
 627
 628int run_command_v_opt(const char **argv, int opt)
 629{
 630        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 631}
 632
 633int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 634{
 635        struct child_process cmd = CHILD_PROCESS_INIT;
 636        cmd.argv = argv;
 637        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
 638        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
 639        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
 640        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
 641        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
 642        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
 643        cmd.dir = dir;
 644        cmd.env = env;
 645        return run_command(&cmd);
 646}
 647
 648#ifndef NO_PTHREADS
 649static pthread_t main_thread;
 650static int main_thread_set;
 651static pthread_key_t async_key;
 652static pthread_key_t async_die_counter;
 653
 654static void *run_thread(void *data)
 655{
 656        struct async *async = data;
 657        intptr_t ret;
 658
 659        if (async->isolate_sigpipe) {
 660                sigset_t mask;
 661                sigemptyset(&mask);
 662                sigaddset(&mask, SIGPIPE);
 663                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
 664                        ret = error("unable to block SIGPIPE in async thread");
 665                        return (void *)ret;
 666                }
 667        }
 668
 669        pthread_setspecific(async_key, async);
 670        ret = async->proc(async->proc_in, async->proc_out, async->data);
 671        return (void *)ret;
 672}
 673
 674static NORETURN void die_async(const char *err, va_list params)
 675{
 676        vreportf("fatal: ", err, params);
 677
 678        if (in_async()) {
 679                struct async *async = pthread_getspecific(async_key);
 680                if (async->proc_in >= 0)
 681                        close(async->proc_in);
 682                if (async->proc_out >= 0)
 683                        close(async->proc_out);
 684                pthread_exit((void *)128);
 685        }
 686
 687        exit(128);
 688}
 689
 690static int async_die_is_recursing(void)
 691{
 692        void *ret = pthread_getspecific(async_die_counter);
 693        pthread_setspecific(async_die_counter, (void *)1);
 694        return ret != NULL;
 695}
 696
 697int in_async(void)
 698{
 699        if (!main_thread_set)
 700                return 0; /* no asyncs started yet */
 701        return !pthread_equal(main_thread, pthread_self());
 702}
 703
 704static void NORETURN async_exit(int code)
 705{
 706        pthread_exit((void *)(intptr_t)code);
 707}
 708
 709#else
 710
 711static struct {
 712        void (**handlers)(void);
 713        size_t nr;
 714        size_t alloc;
 715} git_atexit_hdlrs;
 716
 717static int git_atexit_installed;
 718
 719static void git_atexit_dispatch(void)
 720{
 721        size_t i;
 722
 723        for (i=git_atexit_hdlrs.nr ; i ; i--)
 724                git_atexit_hdlrs.handlers[i-1]();
 725}
 726
 727static void git_atexit_clear(void)
 728{
 729        free(git_atexit_hdlrs.handlers);
 730        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
 731        git_atexit_installed = 0;
 732}
 733
 734#undef atexit
 735int git_atexit(void (*handler)(void))
 736{
 737        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
 738        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
 739        if (!git_atexit_installed) {
 740                if (atexit(&git_atexit_dispatch))
 741                        return -1;
 742                git_atexit_installed = 1;
 743        }
 744        return 0;
 745}
 746#define atexit git_atexit
 747
 748static int process_is_async;
 749int in_async(void)
 750{
 751        return process_is_async;
 752}
 753
 754static void NORETURN async_exit(int code)
 755{
 756        exit(code);
 757}
 758
 759#endif
 760
 761void check_pipe(int err)
 762{
 763        if (err == EPIPE) {
 764                if (in_async())
 765                        async_exit(141);
 766
 767                signal(SIGPIPE, SIG_DFL);
 768                raise(SIGPIPE);
 769                /* Should never happen, but just in case... */
 770                exit(141);
 771        }
 772}
 773
 774int start_async(struct async *async)
 775{
 776        int need_in, need_out;
 777        int fdin[2], fdout[2];
 778        int proc_in, proc_out;
 779
 780        need_in = async->in < 0;
 781        if (need_in) {
 782                if (pipe(fdin) < 0) {
 783                        if (async->out > 0)
 784                                close(async->out);
 785                        return error_errno("cannot create pipe");
 786                }
 787                async->in = fdin[1];
 788        }
 789
 790        need_out = async->out < 0;
 791        if (need_out) {
 792                if (pipe(fdout) < 0) {
 793                        if (need_in)
 794                                close_pair(fdin);
 795                        else if (async->in)
 796                                close(async->in);
 797                        return error_errno("cannot create pipe");
 798                }
 799                async->out = fdout[0];
 800        }
 801
 802        if (need_in)
 803                proc_in = fdin[0];
 804        else if (async->in)
 805                proc_in = async->in;
 806        else
 807                proc_in = -1;
 808
 809        if (need_out)
 810                proc_out = fdout[1];
 811        else if (async->out)
 812                proc_out = async->out;
 813        else
 814                proc_out = -1;
 815
 816#ifdef NO_PTHREADS
 817        /* Flush stdio before fork() to avoid cloning buffers */
 818        fflush(NULL);
 819
 820        async->pid = fork();
 821        if (async->pid < 0) {
 822                error_errno("fork (async) failed");
 823                goto error;
 824        }
 825        if (!async->pid) {
 826                if (need_in)
 827                        close(fdin[1]);
 828                if (need_out)
 829                        close(fdout[0]);
 830                git_atexit_clear();
 831                process_is_async = 1;
 832                exit(!!async->proc(proc_in, proc_out, async->data));
 833        }
 834
 835        mark_child_for_cleanup(async->pid, NULL);
 836
 837        if (need_in)
 838                close(fdin[0]);
 839        else if (async->in)
 840                close(async->in);
 841
 842        if (need_out)
 843                close(fdout[1]);
 844        else if (async->out)
 845                close(async->out);
 846#else
 847        if (!main_thread_set) {
 848                /*
 849                 * We assume that the first time that start_async is called
 850                 * it is from the main thread.
 851                 */
 852                main_thread_set = 1;
 853                main_thread = pthread_self();
 854                pthread_key_create(&async_key, NULL);
 855                pthread_key_create(&async_die_counter, NULL);
 856                set_die_routine(die_async);
 857                set_die_is_recursing_routine(async_die_is_recursing);
 858        }
 859
 860        if (proc_in >= 0)
 861                set_cloexec(proc_in);
 862        if (proc_out >= 0)
 863                set_cloexec(proc_out);
 864        async->proc_in = proc_in;
 865        async->proc_out = proc_out;
 866        {
 867                int err = pthread_create(&async->tid, NULL, run_thread, async);
 868                if (err) {
 869                        error_errno("cannot create thread");
 870                        goto error;
 871                }
 872        }
 873#endif
 874        return 0;
 875
 876error:
 877        if (need_in)
 878                close_pair(fdin);
 879        else if (async->in)
 880                close(async->in);
 881
 882        if (need_out)
 883                close_pair(fdout);
 884        else if (async->out)
 885                close(async->out);
 886        return -1;
 887}
 888
 889int finish_async(struct async *async)
 890{
 891#ifdef NO_PTHREADS
 892        return wait_or_whine(async->pid, "child process", 0);
 893#else
 894        void *ret = (void *)(intptr_t)(-1);
 895
 896        if (pthread_join(async->tid, &ret))
 897                error("pthread_join failed");
 898        return (int)(intptr_t)ret;
 899#endif
 900}
 901
 902const char *find_hook(const char *name)
 903{
 904        static struct strbuf path = STRBUF_INIT;
 905
 906        strbuf_reset(&path);
 907        strbuf_git_path(&path, "hooks/%s", name);
 908        if (access(path.buf, X_OK) < 0) {
 909#ifdef STRIP_EXTENSION
 910                strbuf_addstr(&path, STRIP_EXTENSION);
 911                if (access(path.buf, X_OK) >= 0)
 912                        return path.buf;
 913#endif
 914                return NULL;
 915        }
 916        return path.buf;
 917}
 918
 919int run_hook_ve(const char *const *env, const char *name, va_list args)
 920{
 921        struct child_process hook = CHILD_PROCESS_INIT;
 922        const char *p;
 923
 924        p = find_hook(name);
 925        if (!p)
 926                return 0;
 927
 928        argv_array_push(&hook.args, p);
 929        while ((p = va_arg(args, const char *)))
 930                argv_array_push(&hook.args, p);
 931        hook.env = env;
 932        hook.no_stdin = 1;
 933        hook.stdout_to_stderr = 1;
 934
 935        return run_command(&hook);
 936}
 937
 938int run_hook_le(const char *const *env, const char *name, ...)
 939{
 940        va_list args;
 941        int ret;
 942
 943        va_start(args, name);
 944        ret = run_hook_ve(env, name, args);
 945        va_end(args);
 946
 947        return ret;
 948}
 949
 950struct io_pump {
 951        /* initialized by caller */
 952        int fd;
 953        int type; /* POLLOUT or POLLIN */
 954        union {
 955                struct {
 956                        const char *buf;
 957                        size_t len;
 958                } out;
 959                struct {
 960                        struct strbuf *buf;
 961                        size_t hint;
 962                } in;
 963        } u;
 964
 965        /* returned by pump_io */
 966        int error; /* 0 for success, otherwise errno */
 967
 968        /* internal use */
 969        struct pollfd *pfd;
 970};
 971
 972static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
 973{
 974        int pollsize = 0;
 975        int i;
 976
 977        for (i = 0; i < nr; i++) {
 978                struct io_pump *io = &slots[i];
 979                if (io->fd < 0)
 980                        continue;
 981                pfd[pollsize].fd = io->fd;
 982                pfd[pollsize].events = io->type;
 983                io->pfd = &pfd[pollsize++];
 984        }
 985
 986        if (!pollsize)
 987                return 0;
 988
 989        if (poll(pfd, pollsize, -1) < 0) {
 990                if (errno == EINTR)
 991                        return 1;
 992                die_errno("poll failed");
 993        }
 994
 995        for (i = 0; i < nr; i++) {
 996                struct io_pump *io = &slots[i];
 997
 998                if (io->fd < 0)
 999                        continue;
1000
1001                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1002                        continue;
1003
1004                if (io->type == POLLOUT) {
1005                        ssize_t len = xwrite(io->fd,
1006                                             io->u.out.buf, io->u.out.len);
1007                        if (len < 0) {
1008                                io->error = errno;
1009                                close(io->fd);
1010                                io->fd = -1;
1011                        } else {
1012                                io->u.out.buf += len;
1013                                io->u.out.len -= len;
1014                                if (!io->u.out.len) {
1015                                        close(io->fd);
1016                                        io->fd = -1;
1017                                }
1018                        }
1019                }
1020
1021                if (io->type == POLLIN) {
1022                        ssize_t len = strbuf_read_once(io->u.in.buf,
1023                                                       io->fd, io->u.in.hint);
1024                        if (len < 0)
1025                                io->error = errno;
1026                        if (len <= 0) {
1027                                close(io->fd);
1028                                io->fd = -1;
1029                        }
1030                }
1031        }
1032
1033        return 1;
1034}
1035
1036static int pump_io(struct io_pump *slots, int nr)
1037{
1038        struct pollfd *pfd;
1039        int i;
1040
1041        for (i = 0; i < nr; i++)
1042                slots[i].error = 0;
1043
1044        ALLOC_ARRAY(pfd, nr);
1045        while (pump_io_round(slots, nr, pfd))
1046                ; /* nothing */
1047        free(pfd);
1048
1049        /* There may be multiple errno values, so just pick the first. */
1050        for (i = 0; i < nr; i++) {
1051                if (slots[i].error) {
1052                        errno = slots[i].error;
1053                        return -1;
1054                }
1055        }
1056        return 0;
1057}
1058
1059
1060int pipe_command(struct child_process *cmd,
1061                 const char *in, size_t in_len,
1062                 struct strbuf *out, size_t out_hint,
1063                 struct strbuf *err, size_t err_hint)
1064{
1065        struct io_pump io[3];
1066        int nr = 0;
1067
1068        if (in)
1069                cmd->in = -1;
1070        if (out)
1071                cmd->out = -1;
1072        if (err)
1073                cmd->err = -1;
1074
1075        if (start_command(cmd) < 0)
1076                return -1;
1077
1078        if (in) {
1079                io[nr].fd = cmd->in;
1080                io[nr].type = POLLOUT;
1081                io[nr].u.out.buf = in;
1082                io[nr].u.out.len = in_len;
1083                nr++;
1084        }
1085        if (out) {
1086                io[nr].fd = cmd->out;
1087                io[nr].type = POLLIN;
1088                io[nr].u.in.buf = out;
1089                io[nr].u.in.hint = out_hint;
1090                nr++;
1091        }
1092        if (err) {
1093                io[nr].fd = cmd->err;
1094                io[nr].type = POLLIN;
1095                io[nr].u.in.buf = err;
1096                io[nr].u.in.hint = err_hint;
1097                nr++;
1098        }
1099
1100        if (pump_io(io, nr) < 0) {
1101                finish_command(cmd); /* throw away exit code */
1102                return -1;
1103        }
1104
1105        return finish_command(cmd);
1106}
1107
1108enum child_state {
1109        GIT_CP_FREE,
1110        GIT_CP_WORKING,
1111        GIT_CP_WAIT_CLEANUP,
1112};
1113
1114struct parallel_processes {
1115        void *data;
1116
1117        int max_processes;
1118        int nr_processes;
1119
1120        get_next_task_fn get_next_task;
1121        start_failure_fn start_failure;
1122        task_finished_fn task_finished;
1123
1124        struct {
1125                enum child_state state;
1126                struct child_process process;
1127                struct strbuf err;
1128                void *data;
1129        } *children;
1130        /*
1131         * The struct pollfd is logically part of *children,
1132         * but the system call expects it as its own array.
1133         */
1134        struct pollfd *pfd;
1135
1136        unsigned shutdown : 1;
1137
1138        int output_owner;
1139        struct strbuf buffered_output; /* of finished children */
1140};
1141
1142static int default_start_failure(struct strbuf *out,
1143                                 void *pp_cb,
1144                                 void *pp_task_cb)
1145{
1146        return 0;
1147}
1148
1149static int default_task_finished(int result,
1150                                 struct strbuf *out,
1151                                 void *pp_cb,
1152                                 void *pp_task_cb)
1153{
1154        return 0;
1155}
1156
1157static void kill_children(struct parallel_processes *pp, int signo)
1158{
1159        int i, n = pp->max_processes;
1160
1161        for (i = 0; i < n; i++)
1162                if (pp->children[i].state == GIT_CP_WORKING)
1163                        kill(pp->children[i].process.pid, signo);
1164}
1165
1166static struct parallel_processes *pp_for_signal;
1167
1168static void handle_children_on_signal(int signo)
1169{
1170        kill_children(pp_for_signal, signo);
1171        sigchain_pop(signo);
1172        raise(signo);
1173}
1174
1175static void pp_init(struct parallel_processes *pp,
1176                    int n,
1177                    get_next_task_fn get_next_task,
1178                    start_failure_fn start_failure,
1179                    task_finished_fn task_finished,
1180                    void *data)
1181{
1182        int i;
1183
1184        if (n < 1)
1185                n = online_cpus();
1186
1187        pp->max_processes = n;
1188
1189        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1190
1191        pp->data = data;
1192        if (!get_next_task)
1193                die("BUG: you need to specify a get_next_task function");
1194        pp->get_next_task = get_next_task;
1195
1196        pp->start_failure = start_failure ? start_failure : default_start_failure;
1197        pp->task_finished = task_finished ? task_finished : default_task_finished;
1198
1199        pp->nr_processes = 0;
1200        pp->output_owner = 0;
1201        pp->shutdown = 0;
1202        pp->children = xcalloc(n, sizeof(*pp->children));
1203        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1204        strbuf_init(&pp->buffered_output, 0);
1205
1206        for (i = 0; i < n; i++) {
1207                strbuf_init(&pp->children[i].err, 0);
1208                child_process_init(&pp->children[i].process);
1209                pp->pfd[i].events = POLLIN | POLLHUP;
1210                pp->pfd[i].fd = -1;
1211        }
1212
1213        pp_for_signal = pp;
1214        sigchain_push_common(handle_children_on_signal);
1215}
1216
1217static void pp_cleanup(struct parallel_processes *pp)
1218{
1219        int i;
1220
1221        trace_printf("run_processes_parallel: done");
1222        for (i = 0; i < pp->max_processes; i++) {
1223                strbuf_release(&pp->children[i].err);
1224                child_process_clear(&pp->children[i].process);
1225        }
1226
1227        free(pp->children);
1228        free(pp->pfd);
1229
1230        /*
1231         * When get_next_task added messages to the buffer in its last
1232         * iteration, the buffered output is non empty.
1233         */
1234        strbuf_write(&pp->buffered_output, stderr);
1235        strbuf_release(&pp->buffered_output);
1236
1237        sigchain_pop_common();
1238}
1239
1240/* returns
1241 *  0 if a new task was started.
1242 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1243 *    problem with starting a new command)
1244 * <0 no new job was started, user wishes to shutdown early. Use negative code
1245 *    to signal the children.
1246 */
1247static int pp_start_one(struct parallel_processes *pp)
1248{
1249        int i, code;
1250
1251        for (i = 0; i < pp->max_processes; i++)
1252                if (pp->children[i].state == GIT_CP_FREE)
1253                        break;
1254        if (i == pp->max_processes)
1255                die("BUG: bookkeeping is hard");
1256
1257        code = pp->get_next_task(&pp->children[i].process,
1258                                 &pp->children[i].err,
1259                                 pp->data,
1260                                 &pp->children[i].data);
1261        if (!code) {
1262                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1263                strbuf_reset(&pp->children[i].err);
1264                return 1;
1265        }
1266        pp->children[i].process.err = -1;
1267        pp->children[i].process.stdout_to_stderr = 1;
1268        pp->children[i].process.no_stdin = 1;
1269
1270        if (start_command(&pp->children[i].process)) {
1271                code = pp->start_failure(&pp->children[i].err,
1272                                         pp->data,
1273                                         &pp->children[i].data);
1274                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1275                strbuf_reset(&pp->children[i].err);
1276                if (code)
1277                        pp->shutdown = 1;
1278                return code;
1279        }
1280
1281        pp->nr_processes++;
1282        pp->children[i].state = GIT_CP_WORKING;
1283        pp->pfd[i].fd = pp->children[i].process.err;
1284        return 0;
1285}
1286
1287static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1288{
1289        int i;
1290
1291        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1292                if (errno == EINTR)
1293                        continue;
1294                pp_cleanup(pp);
1295                die_errno("poll");
1296        }
1297
1298        /* Buffer output from all pipes. */
1299        for (i = 0; i < pp->max_processes; i++) {
1300                if (pp->children[i].state == GIT_CP_WORKING &&
1301                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1302                        int n = strbuf_read_once(&pp->children[i].err,
1303                                                 pp->children[i].process.err, 0);
1304                        if (n == 0) {
1305                                close(pp->children[i].process.err);
1306                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1307                        } else if (n < 0)
1308                                if (errno != EAGAIN)
1309                                        die_errno("read");
1310                }
1311        }
1312}
1313
1314static void pp_output(struct parallel_processes *pp)
1315{
1316        int i = pp->output_owner;
1317        if (pp->children[i].state == GIT_CP_WORKING &&
1318            pp->children[i].err.len) {
1319                strbuf_write(&pp->children[i].err, stderr);
1320                strbuf_reset(&pp->children[i].err);
1321        }
1322}
1323
1324static int pp_collect_finished(struct parallel_processes *pp)
1325{
1326        int i, code;
1327        int n = pp->max_processes;
1328        int result = 0;
1329
1330        while (pp->nr_processes > 0) {
1331                for (i = 0; i < pp->max_processes; i++)
1332                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1333                                break;
1334                if (i == pp->max_processes)
1335                        break;
1336
1337                code = finish_command(&pp->children[i].process);
1338
1339                code = pp->task_finished(code,
1340                                         &pp->children[i].err, pp->data,
1341                                         &pp->children[i].data);
1342
1343                if (code)
1344                        result = code;
1345                if (code < 0)
1346                        break;
1347
1348                pp->nr_processes--;
1349                pp->children[i].state = GIT_CP_FREE;
1350                pp->pfd[i].fd = -1;
1351                child_process_init(&pp->children[i].process);
1352
1353                if (i != pp->output_owner) {
1354                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1355                        strbuf_reset(&pp->children[i].err);
1356                } else {
1357                        strbuf_write(&pp->children[i].err, stderr);
1358                        strbuf_reset(&pp->children[i].err);
1359
1360                        /* Output all other finished child processes */
1361                        strbuf_write(&pp->buffered_output, stderr);
1362                        strbuf_reset(&pp->buffered_output);
1363
1364                        /*
1365                         * Pick next process to output live.
1366                         * NEEDSWORK:
1367                         * For now we pick it randomly by doing a round
1368                         * robin. Later we may want to pick the one with
1369                         * the most output or the longest or shortest
1370                         * running process time.
1371                         */
1372                        for (i = 0; i < n; i++)
1373                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1374                                        break;
1375                        pp->output_owner = (pp->output_owner + i) % n;
1376                }
1377        }
1378        return result;
1379}
1380
1381int run_processes_parallel(int n,
1382                           get_next_task_fn get_next_task,
1383                           start_failure_fn start_failure,
1384                           task_finished_fn task_finished,
1385                           void *pp_cb)
1386{
1387        int i, code;
1388        int output_timeout = 100;
1389        int spawn_cap = 4;
1390        struct parallel_processes pp;
1391
1392        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1393        while (1) {
1394                for (i = 0;
1395                    i < spawn_cap && !pp.shutdown &&
1396                    pp.nr_processes < pp.max_processes;
1397                    i++) {
1398                        code = pp_start_one(&pp);
1399                        if (!code)
1400                                continue;
1401                        if (code < 0) {
1402                                pp.shutdown = 1;
1403                                kill_children(&pp, -code);
1404                        }
1405                        break;
1406                }
1407                if (!pp.nr_processes)
1408                        break;
1409                pp_buffer_stderr(&pp, output_timeout);
1410                pp_output(&pp);
1411                code = pp_collect_finished(&pp);
1412                if (code) {
1413                        pp.shutdown = 1;
1414                        if (code < 0)
1415                                kill_children(&pp, -code);
1416                }
1417        }
1418
1419        pp_cleanup(&pp);
1420        return 0;
1421}