1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Return true iff refname is minimally safe. "Safe" here means that 60 * deleting a loose reference by this name will not do any damage, for 61 * example by causing a file that is not a reference to be deleted. 62 * This function does not check that the reference name is legal; for 63 * that, use check_refname_format(). 64 * 65 * A refname that starts with "refs/" is considered safe iff it 66 * doesn't contain any "." or ".." components or consecutive '/' 67 * characters, end with '/', or (on Windows) contain any '\' 68 * characters. Names that do not start with "refs/" are considered 69 * safe iff they consist entirely of upper case characters and '_' 70 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 71 */ 72intrefname_is_safe(const char*refname); 73 74enum peel_status { 75/* object was peeled successfully: */ 76 PEEL_PEELED =0, 77 78/* 79 * object cannot be peeled because the named object (or an 80 * object referred to by a tag in the peel chain), does not 81 * exist. 82 */ 83 PEEL_INVALID = -1, 84 85/* object cannot be peeled because it is not a tag: */ 86 PEEL_NON_TAG = -2, 87 88/* ref_entry contains no peeled value because it is a symref: */ 89 PEEL_IS_SYMREF = -3, 90 91/* 92 * ref_entry cannot be peeled because it is broken (i.e., the 93 * symbolic reference cannot even be resolved to an object 94 * name): 95 */ 96 PEEL_BROKEN = -4 97}; 98 99/* 100 * Peel the named object; i.e., if the object is a tag, resolve the 101 * tag recursively until a non-tag is found. If successful, store the 102 * result to sha1 and return PEEL_PEELED. If the object is not a tag 103 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 104 * and leave sha1 unchanged. 105 */ 106enum peel_status peel_object(const unsigned char*name,unsigned char*sha1); 107 108/* 109 * Return 0 if a reference named refname could be created without 110 * conflicting with the name of an existing reference. Otherwise, 111 * return a negative value and write an explanation to err. If extras 112 * is non-NULL, it is a list of additional refnames with which refname 113 * is not allowed to conflict. If skip is non-NULL, ignore potential 114 * conflicts with refs in skip (e.g., because they are scheduled for 115 * deletion in the same operation). Behavior is undefined if the same 116 * name is listed in both extras and skip. 117 * 118 * Two reference names conflict if one of them exactly matches the 119 * leading components of the other; e.g., "foo/bar" conflicts with 120 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or 121 * "foo/barbados". 122 * 123 * extras and skip must be sorted. 124 */ 125intverify_refname_available(const char*newname, 126const struct string_list *extras, 127const struct string_list *skip, 128struct strbuf *err); 129 130/* 131 * Copy the reflog message msg to buf, which has been allocated sufficiently 132 * large, while cleaning up the whitespaces. Especially, convert LF to space, 133 * because reflog file is one line per entry. 134 */ 135intcopy_reflog_msg(char*buf,const char*msg); 136 137intshould_autocreate_reflog(const char*refname); 138 139/** 140 * Information needed for a single ref update. Set new_sha1 to the new 141 * value or to null_sha1 to delete the ref. To check the old value 142 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 143 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 144 * not exist before update. 145 */ 146struct ref_update { 147 148/* 149 * If (flags & REF_HAVE_NEW), set the reference to this value: 150 */ 151unsigned char new_sha1[20]; 152 153/* 154 * If (flags & REF_HAVE_OLD), check that the reference 155 * previously had this value: 156 */ 157unsigned char old_sha1[20]; 158 159/* 160 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 161 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, and 162 * REF_UPDATE_VIA_HEAD: 163 */ 164unsigned int flags; 165 166void*backend_data; 167unsigned int type; 168char*msg; 169 170/* 171 * If this ref_update was split off of a symref update via 172 * split_symref_update(), then this member points at that 173 * update. This is used for two purposes: 174 * 1. When reporting errors, we report the refname under which 175 * the update was originally requested. 176 * 2. When we read the old value of this reference, we 177 * propagate it back to its parent update for recording in 178 * the latter's reflog. 179 */ 180struct ref_update *parent_update; 181 182const char refname[FLEX_ARRAY]; 183}; 184 185/* 186 * Add a ref_update with the specified properties to transaction, and 187 * return a pointer to the new object. This function does not verify 188 * that refname is well-formed. new_sha1 and old_sha1 are only 189 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 190 * respectively, are set in flags. 191 */ 192struct ref_update *ref_transaction_add_update( 193struct ref_transaction *transaction, 194const char*refname,unsigned int flags, 195const unsigned char*new_sha1, 196const unsigned char*old_sha1, 197const char*msg); 198 199/* 200 * Transaction states. 201 * OPEN: The transaction is in a valid state and can accept new updates. 202 * An OPEN transaction can be committed. 203 * CLOSED: A closed transaction is no longer active and no other operations 204 * than free can be used on it in this state. 205 * A transaction can either become closed by successfully committing 206 * an active transaction or if there is a failure while building 207 * the transaction thus rendering it failed/inactive. 208 */ 209enum ref_transaction_state { 210 REF_TRANSACTION_OPEN =0, 211 REF_TRANSACTION_CLOSED =1 212}; 213 214/* 215 * Data structure for holding a reference transaction, which can 216 * consist of checks and updates to multiple references, carried out 217 * as atomically as possible. This structure is opaque to callers. 218 */ 219struct ref_transaction { 220struct ref_update **updates; 221size_t alloc; 222size_t nr; 223enum ref_transaction_state state; 224}; 225 226intfiles_log_ref_write(const char*refname,const unsigned char*old_sha1, 227const unsigned char*new_sha1,const char*msg, 228int flags,struct strbuf *err); 229 230/* 231 * Check for entries in extras that are within the specified 232 * directory, where dirname is a reference directory name including 233 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 234 * conflicting references that are found in skip. If there is a 235 * conflicting reference, return its name. 236 * 237 * extras and skip must be sorted lists of reference names. Either one 238 * can be NULL, signifying the empty list. 239 */ 240const char*find_descendant_ref(const char*dirname, 241const struct string_list *extras, 242const struct string_list *skip); 243 244/* 245 * Check whether an attempt to rename old_refname to new_refname would 246 * cause a D/F conflict with any existing reference (other than 247 * possibly old_refname). If there would be a conflict, emit an error 248 * message and return false; otherwise, return true. 249 * 250 * Note that this function is not safe against all races with other 251 * processes (though rename_ref() catches some races that might get by 252 * this check). 253 */ 254intrename_ref_available(const char*old_refname,const char*new_refname); 255 256/* We allow "recursive" symbolic refs. Only within reason, though */ 257#define SYMREF_MAXDEPTH 5 258 259/* Include broken references in a do_for_each_ref*() iteration: */ 260#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 261 262/* 263 * Reference iterators 264 * 265 * A reference iterator encapsulates the state of an in-progress 266 * iteration over references. Create an instance of `struct 267 * ref_iterator` via one of the functions in this module. 268 * 269 * A freshly-created ref_iterator doesn't yet point at a reference. To 270 * advance the iterator, call ref_iterator_advance(). If successful, 271 * this sets the iterator's refname, oid, and flags fields to describe 272 * the next reference and returns ITER_OK. The data pointed at by 273 * refname and oid belong to the iterator; if you want to retain them 274 * after calling ref_iterator_advance() again or calling 275 * ref_iterator_abort(), you must make a copy. When the iteration has 276 * been exhausted, ref_iterator_advance() releases any resources 277 * assocated with the iteration, frees the ref_iterator object, and 278 * returns ITER_DONE. If you want to abort the iteration early, call 279 * ref_iterator_abort(), which also frees the ref_iterator object and 280 * any associated resources. If there was an internal error advancing 281 * to the next entry, ref_iterator_advance() aborts the iteration, 282 * frees the ref_iterator, and returns ITER_ERROR. 283 * 284 * The reference currently being looked at can be peeled by calling 285 * ref_iterator_peel(). This function is often faster than peel_ref(), 286 * so it should be preferred when iterating over references. 287 * 288 * Putting it all together, a typical iteration looks like this: 289 * 290 * int ok; 291 * struct ref_iterator *iter = ...; 292 * 293 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 294 * if (want_to_stop_iteration()) { 295 * ok = ref_iterator_abort(iter); 296 * break; 297 * } 298 * 299 * // Access information about the current reference: 300 * if (!(iter->flags & REF_ISSYMREF)) 301 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 302 * 303 * // If you need to peel the reference: 304 * ref_iterator_peel(iter, &oid); 305 * } 306 * 307 * if (ok != ITER_DONE) 308 * handle_error(); 309 */ 310struct ref_iterator { 311struct ref_iterator_vtable *vtable; 312const char*refname; 313const struct object_id *oid; 314unsigned int flags; 315}; 316 317/* 318 * Advance the iterator to the first or next item and return ITER_OK. 319 * If the iteration is exhausted, free the resources associated with 320 * the ref_iterator and return ITER_DONE. On errors, free the iterator 321 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 322 * call this function again after it has returned ITER_DONE or 323 * ITER_ERROR. 324 */ 325intref_iterator_advance(struct ref_iterator *ref_iterator); 326 327/* 328 * If possible, peel the reference currently being viewed by the 329 * iterator. Return 0 on success. 330 */ 331intref_iterator_peel(struct ref_iterator *ref_iterator, 332struct object_id *peeled); 333 334/* 335 * End the iteration before it has been exhausted, freeing the 336 * reference iterator and any associated resources and returning 337 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 338 */ 339intref_iterator_abort(struct ref_iterator *ref_iterator); 340 341/* 342 * An iterator over nothing (its first ref_iterator_advance() call 343 * returns ITER_DONE). 344 */ 345struct ref_iterator *empty_ref_iterator_begin(void); 346 347/* 348 * Return true iff ref_iterator is an empty_ref_iterator. 349 */ 350intis_empty_ref_iterator(struct ref_iterator *ref_iterator); 351 352/* 353 * A callback function used to instruct merge_ref_iterator how to 354 * interleave the entries from iter0 and iter1. The function should 355 * return one of the constants defined in enum iterator_selection. It 356 * must not advance either of the iterators itself. 357 * 358 * The function must be prepared to handle the case that iter0 and/or 359 * iter1 is NULL, which indicates that the corresponding sub-iterator 360 * has been exhausted. Its return value must be consistent with the 361 * current states of the iterators; e.g., it must not return 362 * ITER_SKIP_1 if iter1 has already been exhausted. 363 */ 364typedefenum iterator_selection ref_iterator_select_fn( 365struct ref_iterator *iter0,struct ref_iterator *iter1, 366void*cb_data); 367 368/* 369 * Iterate over the entries from iter0 and iter1, with the values 370 * interleaved as directed by the select function. The iterator takes 371 * ownership of iter0 and iter1 and frees them when the iteration is 372 * over. 373 */ 374struct ref_iterator *merge_ref_iterator_begin( 375struct ref_iterator *iter0,struct ref_iterator *iter1, 376 ref_iterator_select_fn *select,void*cb_data); 377 378/* 379 * An iterator consisting of the union of the entries from front and 380 * back. If there are entries common to the two sub-iterators, use the 381 * one from front. Each iterator must iterate over its entries in 382 * strcmp() order by refname for this to work. 383 * 384 * The new iterator takes ownership of its arguments and frees them 385 * when the iteration is over. As a convenience to callers, if front 386 * or back is an empty_ref_iterator, then abort that one immediately 387 * and return the other iterator directly, without wrapping it. 388 */ 389struct ref_iterator *overlay_ref_iterator_begin( 390struct ref_iterator *front,struct ref_iterator *back); 391 392/* 393 * Wrap iter0, only letting through the references whose names start 394 * with prefix. If trim is set, set iter->refname to the name of the 395 * reference with that many characters trimmed off the front; 396 * otherwise set it to the full refname. The new iterator takes over 397 * ownership of iter0 and frees it when iteration is over. It makes 398 * its own copy of prefix. 399 * 400 * As an convenience to callers, if prefix is the empty string and 401 * trim is zero, this function returns iter0 directly, without 402 * wrapping it. 403 */ 404struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 405const char*prefix, 406int trim); 407 408/* Internal implementation of reference iteration: */ 409 410/* 411 * Base class constructor for ref_iterators. Initialize the 412 * ref_iterator part of iter, setting its vtable pointer as specified. 413 * This is meant to be called only by the initializers of derived 414 * classes. 415 */ 416voidbase_ref_iterator_init(struct ref_iterator *iter, 417struct ref_iterator_vtable *vtable); 418 419/* 420 * Base class destructor for ref_iterators. Destroy the ref_iterator 421 * part of iter and shallow-free the object. This is meant to be 422 * called only by the destructors of derived classes. 423 */ 424voidbase_ref_iterator_free(struct ref_iterator *iter); 425 426/* Virtual function declarations for ref_iterators: */ 427 428typedefintref_iterator_advance_fn(struct ref_iterator *ref_iterator); 429 430typedefintref_iterator_peel_fn(struct ref_iterator *ref_iterator, 431struct object_id *peeled); 432 433/* 434 * Implementations of this function should free any resources specific 435 * to the derived class, then call base_ref_iterator_free() to clean 436 * up and free the ref_iterator object. 437 */ 438typedefintref_iterator_abort_fn(struct ref_iterator *ref_iterator); 439 440struct ref_iterator_vtable { 441 ref_iterator_advance_fn *advance; 442 ref_iterator_peel_fn *peel; 443 ref_iterator_abort_fn *abort; 444}; 445 446/* 447 * current_ref_iter is a performance hack: when iterating over 448 * references using the for_each_ref*() functions, current_ref_iter is 449 * set to the reference iterator before calling the callback function. 450 * If the callback function calls peel_ref(), then peel_ref() first 451 * checks whether the reference to be peeled is the one referred to by 452 * the iterator (it usually is) and if so, asks the iterator for the 453 * peeled version of the reference if it is available. This avoids a 454 * refname lookup in a common case. current_ref_iter is set to NULL 455 * when the iteration is over. 456 */ 457externstruct ref_iterator *current_ref_iter; 458 459/* 460 * The common backend for the for_each_*ref* functions. Call fn for 461 * each reference in iter. If the iterator itself ever returns 462 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 463 * the iteration and return that value. Otherwise, return 0. In any 464 * case, free the iterator when done. This function is basically an 465 * adapter between the callback style of reference iteration and the 466 * iterator style. 467 */ 468intdo_for_each_ref_iterator(struct ref_iterator *iter, 469 each_ref_fn fn,void*cb_data); 470 471/* 472 * Only include per-worktree refs in a do_for_each_ref*() iteration. 473 * Normally this will be used with a files ref_store, since that's 474 * where all reference backends will presumably store their 475 * per-worktree refs. 476 */ 477#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 478 479struct ref_store; 480 481/* refs backends */ 482 483/* 484 * Initialize the ref_store for the specified submodule, or for the 485 * main repository if submodule == NULL. These functions should call 486 * base_ref_store_init() to initialize the shared part of the 487 * ref_store and to record the ref_store for later lookup. 488 */ 489typedefstruct ref_store *ref_store_init_fn(const char*submodule); 490 491typedefintref_init_db_fn(struct ref_store *refs,struct strbuf *err); 492 493typedefintref_transaction_commit_fn(struct ref_store *refs, 494struct ref_transaction *transaction, 495struct strbuf *err); 496 497typedefintpack_refs_fn(struct ref_store *ref_store,unsigned int flags); 498typedefintpeel_ref_fn(struct ref_store *ref_store, 499const char*refname,unsigned char*sha1); 500typedefintcreate_symref_fn(struct ref_store *ref_store, 501const char*ref_target, 502const char*refs_heads_master, 503const char*logmsg); 504typedefintdelete_refs_fn(struct ref_store *ref_store, 505struct string_list *refnames,unsigned int flags); 506typedefintrename_ref_fn(struct ref_store *ref_store, 507const char*oldref,const char*newref, 508const char*logmsg); 509 510/* 511 * Iterate over the references in the specified ref_store that are 512 * within find_containing_dir(prefix). If prefix is NULL or the empty 513 * string, iterate over all references in the submodule. 514 */ 515typedefstruct ref_iterator *ref_iterator_begin_fn( 516struct ref_store *ref_store, 517const char*prefix,unsigned int flags); 518 519/* reflog functions */ 520 521/* 522 * Iterate over the references in the specified ref_store that have a 523 * reflog. The refs are iterated over in arbitrary order. 524 */ 525typedefstruct ref_iterator *reflog_iterator_begin_fn( 526struct ref_store *ref_store); 527 528typedefintfor_each_reflog_ent_fn(struct ref_store *ref_store, 529const char*refname, 530 each_reflog_ent_fn fn, 531void*cb_data); 532typedefintfor_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 533const char*refname, 534 each_reflog_ent_fn fn, 535void*cb_data); 536typedefintreflog_exists_fn(struct ref_store *ref_store,const char*refname); 537typedefintcreate_reflog_fn(struct ref_store *ref_store,const char*refname, 538int force_create,struct strbuf *err); 539typedefintdelete_reflog_fn(struct ref_store *ref_store,const char*refname); 540typedefintreflog_expire_fn(struct ref_store *ref_store, 541const char*refname,const unsigned char*sha1, 542unsigned int flags, 543 reflog_expiry_prepare_fn prepare_fn, 544 reflog_expiry_should_prune_fn should_prune_fn, 545 reflog_expiry_cleanup_fn cleanup_fn, 546void*policy_cb_data); 547 548/* 549 * Read a reference from the specified reference store, non-recursively. 550 * Set type to describe the reference, and: 551 * 552 * - If refname is the name of a normal reference, fill in sha1 553 * (leaving referent unchanged). 554 * 555 * - If refname is the name of a symbolic reference, write the full 556 * name of the reference to which it refers (e.g. 557 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 558 * type (leaving sha1 unchanged). The caller is responsible for 559 * validating that referent is a valid reference name. 560 * 561 * WARNING: refname might be used as part of a filename, so it is 562 * important from a security standpoint that it be safe in the sense 563 * of refname_is_safe(). Moreover, for symrefs this function sets 564 * referent to whatever the repository says, which might not be a 565 * properly-formatted or even safe reference name. NEITHER INPUT NOR 566 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 567 * 568 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 569 * and return -1. If the ref exists but is neither a symbolic ref nor 570 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 571 * EINVAL, and return -1. If there is another error reading the ref, 572 * set errno appropriately and return -1. 573 * 574 * Backend-specific flags might be set in type as well, regardless of 575 * outcome. 576 * 577 * It is OK for refname to point into referent. If so: 578 * 579 * - if the function succeeds with REF_ISSYMREF, referent will be 580 * overwritten and the memory formerly pointed to by it might be 581 * changed or even freed. 582 * 583 * - in all other cases, referent will be untouched, and therefore 584 * refname will still be valid and unchanged. 585 */ 586typedefintread_raw_ref_fn(struct ref_store *ref_store, 587const char*refname,unsigned char*sha1, 588struct strbuf *referent,unsigned int*type); 589 590typedefintverify_refname_available_fn(struct ref_store *ref_store, 591const char*newname, 592const struct string_list *extras, 593const struct string_list *skip, 594struct strbuf *err); 595 596struct ref_storage_be { 597struct ref_storage_be *next; 598const char*name; 599 ref_store_init_fn *init; 600 ref_init_db_fn *init_db; 601 ref_transaction_commit_fn *transaction_commit; 602 ref_transaction_commit_fn *initial_transaction_commit; 603 604 pack_refs_fn *pack_refs; 605 peel_ref_fn *peel_ref; 606 create_symref_fn *create_symref; 607 delete_refs_fn *delete_refs; 608 rename_ref_fn *rename_ref; 609 610 ref_iterator_begin_fn *iterator_begin; 611 read_raw_ref_fn *read_raw_ref; 612 verify_refname_available_fn *verify_refname_available; 613 614 reflog_iterator_begin_fn *reflog_iterator_begin; 615 for_each_reflog_ent_fn *for_each_reflog_ent; 616 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 617 reflog_exists_fn *reflog_exists; 618 create_reflog_fn *create_reflog; 619 delete_reflog_fn *delete_reflog; 620 reflog_expire_fn *reflog_expire; 621}; 622 623externstruct ref_storage_be refs_be_files; 624 625/* 626 * A representation of the reference store for the main repository or 627 * a submodule. The ref_store instances for submodules are kept in a 628 * linked list. 629 */ 630struct ref_store { 631/* The backend describing this ref_store's storage scheme: */ 632const struct ref_storage_be *be; 633 634/* 635 * The name of the submodule represented by this object, or 636 * the empty string if it represents the main repository's 637 * reference store: 638 */ 639const char*submodule; 640 641/* 642 * Submodule reference store instances are stored in a linked 643 * list using this pointer. 644 */ 645struct ref_store *next; 646}; 647 648/* 649 * Fill in the generic part of refs for the specified submodule and 650 * add it to our collection of reference stores. 651 */ 652voidbase_ref_store_init(struct ref_store *refs, 653const struct ref_storage_be *be, 654const char*submodule); 655 656/* 657 * Create, record, and return a ref_store instance for the specified 658 * submodule (or the main repository if submodule is NULL). 659 * 660 * For backwards compatibility, submodule=="" is treated the same as 661 * submodule==NULL. 662 */ 663struct ref_store *ref_store_init(const char*submodule); 664 665/* 666 * Return the ref_store instance for the specified submodule (or the 667 * main repository if submodule is NULL). If that ref_store hasn't 668 * been initialized yet, return NULL. 669 * 670 * For backwards compatibility, submodule=="" is treated the same as 671 * submodule==NULL. 672 */ 673struct ref_store *lookup_ref_store(const char*submodule); 674 675/* 676 * Return the ref_store instance for the specified submodule. For the 677 * main repository, use submodule==NULL; such a call cannot fail. For 678 * a submodule, the submodule must exist and be a nonbare repository, 679 * otherwise return NULL. If the requested reference store has not yet 680 * been initialized, initialize it first. 681 * 682 * For backwards compatibility, submodule=="" is treated the same as 683 * submodule==NULL. 684 */ 685struct ref_store *get_ref_store(const char*submodule); 686 687/* 688 * Die if refs is for a submodule (i.e., not for the main repository). 689 * caller is used in any necessary error messages. 690 */ 691voidassert_main_repository(struct ref_store *refs,const char*caller); 692 693#endif/* REFS_REFS_INTERNAL_H */