refs / refs-internal.hon commit log_ref_setup(): pass the open file descriptor back to the caller (e404f45)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Return true iff refname is minimally safe. "Safe" here means that
  60 * deleting a loose reference by this name will not do any damage, for
  61 * example by causing a file that is not a reference to be deleted.
  62 * This function does not check that the reference name is legal; for
  63 * that, use check_refname_format().
  64 *
  65 * A refname that starts with "refs/" is considered safe iff it
  66 * doesn't contain any "." or ".." components or consecutive '/'
  67 * characters, end with '/', or (on Windows) contain any '\'
  68 * characters. Names that do not start with "refs/" are considered
  69 * safe iff they consist entirely of upper case characters and '_'
  70 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  71 */
  72int refname_is_safe(const char *refname);
  73
  74enum peel_status {
  75        /* object was peeled successfully: */
  76        PEEL_PEELED = 0,
  77
  78        /*
  79         * object cannot be peeled because the named object (or an
  80         * object referred to by a tag in the peel chain), does not
  81         * exist.
  82         */
  83        PEEL_INVALID = -1,
  84
  85        /* object cannot be peeled because it is not a tag: */
  86        PEEL_NON_TAG = -2,
  87
  88        /* ref_entry contains no peeled value because it is a symref: */
  89        PEEL_IS_SYMREF = -3,
  90
  91        /*
  92         * ref_entry cannot be peeled because it is broken (i.e., the
  93         * symbolic reference cannot even be resolved to an object
  94         * name):
  95         */
  96        PEEL_BROKEN = -4
  97};
  98
  99/*
 100 * Peel the named object; i.e., if the object is a tag, resolve the
 101 * tag recursively until a non-tag is found.  If successful, store the
 102 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 103 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 104 * and leave sha1 unchanged.
 105 */
 106enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 107
 108/*
 109 * Return 0 if a reference named refname could be created without
 110 * conflicting with the name of an existing reference. Otherwise,
 111 * return a negative value and write an explanation to err. If extras
 112 * is non-NULL, it is a list of additional refnames with which refname
 113 * is not allowed to conflict. If skip is non-NULL, ignore potential
 114 * conflicts with refs in skip (e.g., because they are scheduled for
 115 * deletion in the same operation). Behavior is undefined if the same
 116 * name is listed in both extras and skip.
 117 *
 118 * Two reference names conflict if one of them exactly matches the
 119 * leading components of the other; e.g., "foo/bar" conflicts with
 120 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
 121 * "foo/barbados".
 122 *
 123 * extras and skip must be sorted.
 124 */
 125int verify_refname_available(const char *newname,
 126                             const struct string_list *extras,
 127                             const struct string_list *skip,
 128                             struct strbuf *err);
 129
 130/*
 131 * Copy the reflog message msg to buf, which has been allocated sufficiently
 132 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 133 * because reflog file is one line per entry.
 134 */
 135int copy_reflog_msg(char *buf, const char *msg);
 136
 137int should_autocreate_reflog(const char *refname);
 138
 139/**
 140 * Information needed for a single ref update. Set new_sha1 to the new
 141 * value or to null_sha1 to delete the ref. To check the old value
 142 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 143 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 144 * not exist before update.
 145 */
 146struct ref_update {
 147
 148        /*
 149         * If (flags & REF_HAVE_NEW), set the reference to this value:
 150         */
 151        unsigned char new_sha1[20];
 152
 153        /*
 154         * If (flags & REF_HAVE_OLD), check that the reference
 155         * previously had this value:
 156         */
 157        unsigned char old_sha1[20];
 158
 159        /*
 160         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 161         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, and
 162         * REF_UPDATE_VIA_HEAD:
 163         */
 164        unsigned int flags;
 165
 166        void *backend_data;
 167        unsigned int type;
 168        char *msg;
 169
 170        /*
 171         * If this ref_update was split off of a symref update via
 172         * split_symref_update(), then this member points at that
 173         * update. This is used for two purposes:
 174         * 1. When reporting errors, we report the refname under which
 175         *    the update was originally requested.
 176         * 2. When we read the old value of this reference, we
 177         *    propagate it back to its parent update for recording in
 178         *    the latter's reflog.
 179         */
 180        struct ref_update *parent_update;
 181
 182        const char refname[FLEX_ARRAY];
 183};
 184
 185/*
 186 * Add a ref_update with the specified properties to transaction, and
 187 * return a pointer to the new object. This function does not verify
 188 * that refname is well-formed. new_sha1 and old_sha1 are only
 189 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 190 * respectively, are set in flags.
 191 */
 192struct ref_update *ref_transaction_add_update(
 193                struct ref_transaction *transaction,
 194                const char *refname, unsigned int flags,
 195                const unsigned char *new_sha1,
 196                const unsigned char *old_sha1,
 197                const char *msg);
 198
 199/*
 200 * Transaction states.
 201 * OPEN:   The transaction is in a valid state and can accept new updates.
 202 *         An OPEN transaction can be committed.
 203 * CLOSED: A closed transaction is no longer active and no other operations
 204 *         than free can be used on it in this state.
 205 *         A transaction can either become closed by successfully committing
 206 *         an active transaction or if there is a failure while building
 207 *         the transaction thus rendering it failed/inactive.
 208 */
 209enum ref_transaction_state {
 210        REF_TRANSACTION_OPEN   = 0,
 211        REF_TRANSACTION_CLOSED = 1
 212};
 213
 214/*
 215 * Data structure for holding a reference transaction, which can
 216 * consist of checks and updates to multiple references, carried out
 217 * as atomically as possible.  This structure is opaque to callers.
 218 */
 219struct ref_transaction {
 220        struct ref_update **updates;
 221        size_t alloc;
 222        size_t nr;
 223        enum ref_transaction_state state;
 224};
 225
 226int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
 227                        const unsigned char *new_sha1, const char *msg,
 228                        int flags, struct strbuf *err);
 229
 230/*
 231 * Check for entries in extras that are within the specified
 232 * directory, where dirname is a reference directory name including
 233 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 234 * conflicting references that are found in skip. If there is a
 235 * conflicting reference, return its name.
 236 *
 237 * extras and skip must be sorted lists of reference names. Either one
 238 * can be NULL, signifying the empty list.
 239 */
 240const char *find_descendant_ref(const char *dirname,
 241                                const struct string_list *extras,
 242                                const struct string_list *skip);
 243
 244/*
 245 * Check whether an attempt to rename old_refname to new_refname would
 246 * cause a D/F conflict with any existing reference (other than
 247 * possibly old_refname). If there would be a conflict, emit an error
 248 * message and return false; otherwise, return true.
 249 *
 250 * Note that this function is not safe against all races with other
 251 * processes (though rename_ref() catches some races that might get by
 252 * this check).
 253 */
 254int rename_ref_available(const char *old_refname, const char *new_refname);
 255
 256/* We allow "recursive" symbolic refs. Only within reason, though */
 257#define SYMREF_MAXDEPTH 5
 258
 259/* Include broken references in a do_for_each_ref*() iteration: */
 260#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 261
 262/*
 263 * Reference iterators
 264 *
 265 * A reference iterator encapsulates the state of an in-progress
 266 * iteration over references. Create an instance of `struct
 267 * ref_iterator` via one of the functions in this module.
 268 *
 269 * A freshly-created ref_iterator doesn't yet point at a reference. To
 270 * advance the iterator, call ref_iterator_advance(). If successful,
 271 * this sets the iterator's refname, oid, and flags fields to describe
 272 * the next reference and returns ITER_OK. The data pointed at by
 273 * refname and oid belong to the iterator; if you want to retain them
 274 * after calling ref_iterator_advance() again or calling
 275 * ref_iterator_abort(), you must make a copy. When the iteration has
 276 * been exhausted, ref_iterator_advance() releases any resources
 277 * assocated with the iteration, frees the ref_iterator object, and
 278 * returns ITER_DONE. If you want to abort the iteration early, call
 279 * ref_iterator_abort(), which also frees the ref_iterator object and
 280 * any associated resources. If there was an internal error advancing
 281 * to the next entry, ref_iterator_advance() aborts the iteration,
 282 * frees the ref_iterator, and returns ITER_ERROR.
 283 *
 284 * The reference currently being looked at can be peeled by calling
 285 * ref_iterator_peel(). This function is often faster than peel_ref(),
 286 * so it should be preferred when iterating over references.
 287 *
 288 * Putting it all together, a typical iteration looks like this:
 289 *
 290 *     int ok;
 291 *     struct ref_iterator *iter = ...;
 292 *
 293 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 294 *             if (want_to_stop_iteration()) {
 295 *                     ok = ref_iterator_abort(iter);
 296 *                     break;
 297 *             }
 298 *
 299 *             // Access information about the current reference:
 300 *             if (!(iter->flags & REF_ISSYMREF))
 301 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 302 *
 303 *             // If you need to peel the reference:
 304 *             ref_iterator_peel(iter, &oid);
 305 *     }
 306 *
 307 *     if (ok != ITER_DONE)
 308 *             handle_error();
 309 */
 310struct ref_iterator {
 311        struct ref_iterator_vtable *vtable;
 312        const char *refname;
 313        const struct object_id *oid;
 314        unsigned int flags;
 315};
 316
 317/*
 318 * Advance the iterator to the first or next item and return ITER_OK.
 319 * If the iteration is exhausted, free the resources associated with
 320 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 321 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 322 * call this function again after it has returned ITER_DONE or
 323 * ITER_ERROR.
 324 */
 325int ref_iterator_advance(struct ref_iterator *ref_iterator);
 326
 327/*
 328 * If possible, peel the reference currently being viewed by the
 329 * iterator. Return 0 on success.
 330 */
 331int ref_iterator_peel(struct ref_iterator *ref_iterator,
 332                      struct object_id *peeled);
 333
 334/*
 335 * End the iteration before it has been exhausted, freeing the
 336 * reference iterator and any associated resources and returning
 337 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 338 */
 339int ref_iterator_abort(struct ref_iterator *ref_iterator);
 340
 341/*
 342 * An iterator over nothing (its first ref_iterator_advance() call
 343 * returns ITER_DONE).
 344 */
 345struct ref_iterator *empty_ref_iterator_begin(void);
 346
 347/*
 348 * Return true iff ref_iterator is an empty_ref_iterator.
 349 */
 350int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 351
 352/*
 353 * A callback function used to instruct merge_ref_iterator how to
 354 * interleave the entries from iter0 and iter1. The function should
 355 * return one of the constants defined in enum iterator_selection. It
 356 * must not advance either of the iterators itself.
 357 *
 358 * The function must be prepared to handle the case that iter0 and/or
 359 * iter1 is NULL, which indicates that the corresponding sub-iterator
 360 * has been exhausted. Its return value must be consistent with the
 361 * current states of the iterators; e.g., it must not return
 362 * ITER_SKIP_1 if iter1 has already been exhausted.
 363 */
 364typedef enum iterator_selection ref_iterator_select_fn(
 365                struct ref_iterator *iter0, struct ref_iterator *iter1,
 366                void *cb_data);
 367
 368/*
 369 * Iterate over the entries from iter0 and iter1, with the values
 370 * interleaved as directed by the select function. The iterator takes
 371 * ownership of iter0 and iter1 and frees them when the iteration is
 372 * over.
 373 */
 374struct ref_iterator *merge_ref_iterator_begin(
 375                struct ref_iterator *iter0, struct ref_iterator *iter1,
 376                ref_iterator_select_fn *select, void *cb_data);
 377
 378/*
 379 * An iterator consisting of the union of the entries from front and
 380 * back. If there are entries common to the two sub-iterators, use the
 381 * one from front. Each iterator must iterate over its entries in
 382 * strcmp() order by refname for this to work.
 383 *
 384 * The new iterator takes ownership of its arguments and frees them
 385 * when the iteration is over. As a convenience to callers, if front
 386 * or back is an empty_ref_iterator, then abort that one immediately
 387 * and return the other iterator directly, without wrapping it.
 388 */
 389struct ref_iterator *overlay_ref_iterator_begin(
 390                struct ref_iterator *front, struct ref_iterator *back);
 391
 392/*
 393 * Wrap iter0, only letting through the references whose names start
 394 * with prefix. If trim is set, set iter->refname to the name of the
 395 * reference with that many characters trimmed off the front;
 396 * otherwise set it to the full refname. The new iterator takes over
 397 * ownership of iter0 and frees it when iteration is over. It makes
 398 * its own copy of prefix.
 399 *
 400 * As an convenience to callers, if prefix is the empty string and
 401 * trim is zero, this function returns iter0 directly, without
 402 * wrapping it.
 403 */
 404struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 405                                               const char *prefix,
 406                                               int trim);
 407
 408/* Internal implementation of reference iteration: */
 409
 410/*
 411 * Base class constructor for ref_iterators. Initialize the
 412 * ref_iterator part of iter, setting its vtable pointer as specified.
 413 * This is meant to be called only by the initializers of derived
 414 * classes.
 415 */
 416void base_ref_iterator_init(struct ref_iterator *iter,
 417                            struct ref_iterator_vtable *vtable);
 418
 419/*
 420 * Base class destructor for ref_iterators. Destroy the ref_iterator
 421 * part of iter and shallow-free the object. This is meant to be
 422 * called only by the destructors of derived classes.
 423 */
 424void base_ref_iterator_free(struct ref_iterator *iter);
 425
 426/* Virtual function declarations for ref_iterators: */
 427
 428typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 429
 430typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 431                                 struct object_id *peeled);
 432
 433/*
 434 * Implementations of this function should free any resources specific
 435 * to the derived class, then call base_ref_iterator_free() to clean
 436 * up and free the ref_iterator object.
 437 */
 438typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 439
 440struct ref_iterator_vtable {
 441        ref_iterator_advance_fn *advance;
 442        ref_iterator_peel_fn *peel;
 443        ref_iterator_abort_fn *abort;
 444};
 445
 446/*
 447 * current_ref_iter is a performance hack: when iterating over
 448 * references using the for_each_ref*() functions, current_ref_iter is
 449 * set to the reference iterator before calling the callback function.
 450 * If the callback function calls peel_ref(), then peel_ref() first
 451 * checks whether the reference to be peeled is the one referred to by
 452 * the iterator (it usually is) and if so, asks the iterator for the
 453 * peeled version of the reference if it is available. This avoids a
 454 * refname lookup in a common case. current_ref_iter is set to NULL
 455 * when the iteration is over.
 456 */
 457extern struct ref_iterator *current_ref_iter;
 458
 459/*
 460 * The common backend for the for_each_*ref* functions. Call fn for
 461 * each reference in iter. If the iterator itself ever returns
 462 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 463 * the iteration and return that value. Otherwise, return 0. In any
 464 * case, free the iterator when done. This function is basically an
 465 * adapter between the callback style of reference iteration and the
 466 * iterator style.
 467 */
 468int do_for_each_ref_iterator(struct ref_iterator *iter,
 469                             each_ref_fn fn, void *cb_data);
 470
 471/*
 472 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 473 * Normally this will be used with a files ref_store, since that's
 474 * where all reference backends will presumably store their
 475 * per-worktree refs.
 476 */
 477#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 478
 479struct ref_store;
 480
 481/* refs backends */
 482
 483/*
 484 * Initialize the ref_store for the specified submodule, or for the
 485 * main repository if submodule == NULL. These functions should call
 486 * base_ref_store_init() to initialize the shared part of the
 487 * ref_store and to record the ref_store for later lookup.
 488 */
 489typedef struct ref_store *ref_store_init_fn(const char *submodule);
 490
 491typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 492
 493typedef int ref_transaction_commit_fn(struct ref_store *refs,
 494                                      struct ref_transaction *transaction,
 495                                      struct strbuf *err);
 496
 497typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 498typedef int peel_ref_fn(struct ref_store *ref_store,
 499                        const char *refname, unsigned char *sha1);
 500typedef int create_symref_fn(struct ref_store *ref_store,
 501                             const char *ref_target,
 502                             const char *refs_heads_master,
 503                             const char *logmsg);
 504typedef int delete_refs_fn(struct ref_store *ref_store,
 505                           struct string_list *refnames, unsigned int flags);
 506typedef int rename_ref_fn(struct ref_store *ref_store,
 507                          const char *oldref, const char *newref,
 508                          const char *logmsg);
 509
 510/*
 511 * Iterate over the references in the specified ref_store that are
 512 * within find_containing_dir(prefix). If prefix is NULL or the empty
 513 * string, iterate over all references in the submodule.
 514 */
 515typedef struct ref_iterator *ref_iterator_begin_fn(
 516                struct ref_store *ref_store,
 517                const char *prefix, unsigned int flags);
 518
 519/* reflog functions */
 520
 521/*
 522 * Iterate over the references in the specified ref_store that have a
 523 * reflog. The refs are iterated over in arbitrary order.
 524 */
 525typedef struct ref_iterator *reflog_iterator_begin_fn(
 526                struct ref_store *ref_store);
 527
 528typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 529                                   const char *refname,
 530                                   each_reflog_ent_fn fn,
 531                                   void *cb_data);
 532typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 533                                           const char *refname,
 534                                           each_reflog_ent_fn fn,
 535                                           void *cb_data);
 536typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 537typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 538                             int force_create, struct strbuf *err);
 539typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 540typedef int reflog_expire_fn(struct ref_store *ref_store,
 541                             const char *refname, const unsigned char *sha1,
 542                             unsigned int flags,
 543                             reflog_expiry_prepare_fn prepare_fn,
 544                             reflog_expiry_should_prune_fn should_prune_fn,
 545                             reflog_expiry_cleanup_fn cleanup_fn,
 546                             void *policy_cb_data);
 547
 548/*
 549 * Read a reference from the specified reference store, non-recursively.
 550 * Set type to describe the reference, and:
 551 *
 552 * - If refname is the name of a normal reference, fill in sha1
 553 *   (leaving referent unchanged).
 554 *
 555 * - If refname is the name of a symbolic reference, write the full
 556 *   name of the reference to which it refers (e.g.
 557 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 558 *   type (leaving sha1 unchanged). The caller is responsible for
 559 *   validating that referent is a valid reference name.
 560 *
 561 * WARNING: refname might be used as part of a filename, so it is
 562 * important from a security standpoint that it be safe in the sense
 563 * of refname_is_safe(). Moreover, for symrefs this function sets
 564 * referent to whatever the repository says, which might not be a
 565 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 566 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 567 *
 568 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 569 * and return -1. If the ref exists but is neither a symbolic ref nor
 570 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 571 * EINVAL, and return -1. If there is another error reading the ref,
 572 * set errno appropriately and return -1.
 573 *
 574 * Backend-specific flags might be set in type as well, regardless of
 575 * outcome.
 576 *
 577 * It is OK for refname to point into referent. If so:
 578 *
 579 * - if the function succeeds with REF_ISSYMREF, referent will be
 580 *   overwritten and the memory formerly pointed to by it might be
 581 *   changed or even freed.
 582 *
 583 * - in all other cases, referent will be untouched, and therefore
 584 *   refname will still be valid and unchanged.
 585 */
 586typedef int read_raw_ref_fn(struct ref_store *ref_store,
 587                            const char *refname, unsigned char *sha1,
 588                            struct strbuf *referent, unsigned int *type);
 589
 590typedef int verify_refname_available_fn(struct ref_store *ref_store,
 591                                        const char *newname,
 592                                        const struct string_list *extras,
 593                                        const struct string_list *skip,
 594                                        struct strbuf *err);
 595
 596struct ref_storage_be {
 597        struct ref_storage_be *next;
 598        const char *name;
 599        ref_store_init_fn *init;
 600        ref_init_db_fn *init_db;
 601        ref_transaction_commit_fn *transaction_commit;
 602        ref_transaction_commit_fn *initial_transaction_commit;
 603
 604        pack_refs_fn *pack_refs;
 605        peel_ref_fn *peel_ref;
 606        create_symref_fn *create_symref;
 607        delete_refs_fn *delete_refs;
 608        rename_ref_fn *rename_ref;
 609
 610        ref_iterator_begin_fn *iterator_begin;
 611        read_raw_ref_fn *read_raw_ref;
 612        verify_refname_available_fn *verify_refname_available;
 613
 614        reflog_iterator_begin_fn *reflog_iterator_begin;
 615        for_each_reflog_ent_fn *for_each_reflog_ent;
 616        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 617        reflog_exists_fn *reflog_exists;
 618        create_reflog_fn *create_reflog;
 619        delete_reflog_fn *delete_reflog;
 620        reflog_expire_fn *reflog_expire;
 621};
 622
 623extern struct ref_storage_be refs_be_files;
 624
 625/*
 626 * A representation of the reference store for the main repository or
 627 * a submodule. The ref_store instances for submodules are kept in a
 628 * linked list.
 629 */
 630struct ref_store {
 631        /* The backend describing this ref_store's storage scheme: */
 632        const struct ref_storage_be *be;
 633
 634        /*
 635         * The name of the submodule represented by this object, or
 636         * the empty string if it represents the main repository's
 637         * reference store:
 638         */
 639        const char *submodule;
 640
 641        /*
 642         * Submodule reference store instances are stored in a linked
 643         * list using this pointer.
 644         */
 645        struct ref_store *next;
 646};
 647
 648/*
 649 * Fill in the generic part of refs for the specified submodule and
 650 * add it to our collection of reference stores.
 651 */
 652void base_ref_store_init(struct ref_store *refs,
 653                         const struct ref_storage_be *be,
 654                         const char *submodule);
 655
 656/*
 657 * Create, record, and return a ref_store instance for the specified
 658 * submodule (or the main repository if submodule is NULL).
 659 *
 660 * For backwards compatibility, submodule=="" is treated the same as
 661 * submodule==NULL.
 662 */
 663struct ref_store *ref_store_init(const char *submodule);
 664
 665/*
 666 * Return the ref_store instance for the specified submodule (or the
 667 * main repository if submodule is NULL). If that ref_store hasn't
 668 * been initialized yet, return NULL.
 669 *
 670 * For backwards compatibility, submodule=="" is treated the same as
 671 * submodule==NULL.
 672 */
 673struct ref_store *lookup_ref_store(const char *submodule);
 674
 675/*
 676 * Return the ref_store instance for the specified submodule. For the
 677 * main repository, use submodule==NULL; such a call cannot fail. For
 678 * a submodule, the submodule must exist and be a nonbare repository,
 679 * otherwise return NULL. If the requested reference store has not yet
 680 * been initialized, initialize it first.
 681 *
 682 * For backwards compatibility, submodule=="" is treated the same as
 683 * submodule==NULL.
 684 */
 685struct ref_store *get_ref_store(const char *submodule);
 686
 687/*
 688 * Die if refs is for a submodule (i.e., not for the main repository).
 689 * caller is used in any necessary error messages.
 690 */
 691void assert_main_repository(struct ref_store *refs, const char *caller);
 692
 693#endif /* REFS_REFS_INTERNAL_H */