refs / refs-internal.hon commit fetch: do not list refs if fetching only hashes (e70a303)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4#include "iterator.h"
   5
   6/*
   7 * Data structures and functions for the internal use of the refs
   8 * module. Code outside of the refs module should use only the public
   9 * functions defined in "refs.h", and should *not* include this file.
  10 */
  11
  12/*
  13 * The following flags can appear in `ref_update::flags`. Their
  14 * numerical values must not conflict with those of REF_NO_DEREF and
  15 * REF_FORCE_CREATE_REFLOG, which are also stored in
  16 * `ref_update::flags`.
  17 */
  18
  19/*
  20 * The reference should be updated to new_oid.
  21 */
  22#define REF_HAVE_NEW (1 << 2)
  23
  24/*
  25 * The current reference's value should be checked to make sure that
  26 * it agrees with old_oid.
  27 */
  28#define REF_HAVE_OLD (1 << 3)
  29
  30/*
  31 * Return the length of time to retry acquiring a loose reference lock
  32 * before giving up, in milliseconds:
  33 */
  34long get_files_ref_lock_timeout_ms(void);
  35
  36/*
  37 * Return true iff refname is minimally safe. "Safe" here means that
  38 * deleting a loose reference by this name will not do any damage, for
  39 * example by causing a file that is not a reference to be deleted.
  40 * This function does not check that the reference name is legal; for
  41 * that, use check_refname_format().
  42 *
  43 * A refname that starts with "refs/" is considered safe iff it
  44 * doesn't contain any "." or ".." components or consecutive '/'
  45 * characters, end with '/', or (on Windows) contain any '\'
  46 * characters. Names that do not start with "refs/" are considered
  47 * safe iff they consist entirely of upper case characters and '_'
  48 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  49 */
  50int refname_is_safe(const char *refname);
  51
  52/*
  53 * Helper function: return true if refname, which has the specified
  54 * oid and flags, can be resolved to an object in the database. If the
  55 * referred-to object does not exist, emit a warning and return false.
  56 */
  57int ref_resolves_to_object(const char *refname,
  58                           const struct object_id *oid,
  59                           unsigned int flags);
  60
  61enum peel_status {
  62        /* object was peeled successfully: */
  63        PEEL_PEELED = 0,
  64
  65        /*
  66         * object cannot be peeled because the named object (or an
  67         * object referred to by a tag in the peel chain), does not
  68         * exist.
  69         */
  70        PEEL_INVALID = -1,
  71
  72        /* object cannot be peeled because it is not a tag: */
  73        PEEL_NON_TAG = -2,
  74
  75        /* ref_entry contains no peeled value because it is a symref: */
  76        PEEL_IS_SYMREF = -3,
  77
  78        /*
  79         * ref_entry cannot be peeled because it is broken (i.e., the
  80         * symbolic reference cannot even be resolved to an object
  81         * name):
  82         */
  83        PEEL_BROKEN = -4
  84};
  85
  86/*
  87 * Peel the named object; i.e., if the object is a tag, resolve the
  88 * tag recursively until a non-tag is found.  If successful, store the
  89 * result to oid and return PEEL_PEELED.  If the object is not a tag
  90 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
  91 * and leave oid unchanged.
  92 */
  93enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
  94
  95/*
  96 * Copy the reflog message msg to sb while cleaning up the whitespaces.
  97 * Especially, convert LF to space, because reflog file is one line per entry.
  98 */
  99void copy_reflog_msg(struct strbuf *sb, const char *msg);
 100
 101/**
 102 * Information needed for a single ref update. Set new_oid to the new
 103 * value or to null_oid to delete the ref. To check the old value
 104 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
 105 * to the old value, or to null_oid to ensure the ref does not exist
 106 * before update.
 107 */
 108struct ref_update {
 109        /*
 110         * If (flags & REF_HAVE_NEW), set the reference to this value
 111         * (or delete it, if `new_oid` is `null_oid`).
 112         */
 113        struct object_id new_oid;
 114
 115        /*
 116         * If (flags & REF_HAVE_OLD), check that the reference
 117         * previously had this value (or didn't previously exist, if
 118         * `old_oid` is `null_oid`).
 119         */
 120        struct object_id old_oid;
 121
 122        /*
 123         * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
 124         * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
 125         */
 126        unsigned int flags;
 127
 128        void *backend_data;
 129        unsigned int type;
 130        char *msg;
 131
 132        /*
 133         * If this ref_update was split off of a symref update via
 134         * split_symref_update(), then this member points at that
 135         * update. This is used for two purposes:
 136         * 1. When reporting errors, we report the refname under which
 137         *    the update was originally requested.
 138         * 2. When we read the old value of this reference, we
 139         *    propagate it back to its parent update for recording in
 140         *    the latter's reflog.
 141         */
 142        struct ref_update *parent_update;
 143
 144        const char refname[FLEX_ARRAY];
 145};
 146
 147int refs_read_raw_ref(struct ref_store *ref_store,
 148                      const char *refname, struct object_id *oid,
 149                      struct strbuf *referent, unsigned int *type);
 150
 151/*
 152 * Write an error to `err` and return a nonzero value iff the same
 153 * refname appears multiple times in `refnames`. `refnames` must be
 154 * sorted on entry to this function.
 155 */
 156int ref_update_reject_duplicates(struct string_list *refnames,
 157                                 struct strbuf *err);
 158
 159/*
 160 * Add a ref_update with the specified properties to transaction, and
 161 * return a pointer to the new object. This function does not verify
 162 * that refname is well-formed. new_oid and old_oid are only
 163 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 164 * respectively, are set in flags.
 165 */
 166struct ref_update *ref_transaction_add_update(
 167                struct ref_transaction *transaction,
 168                const char *refname, unsigned int flags,
 169                const struct object_id *new_oid,
 170                const struct object_id *old_oid,
 171                const char *msg);
 172
 173/*
 174 * Transaction states.
 175 *
 176 * OPEN:   The transaction is initialized and new updates can still be
 177 *         added to it. An OPEN transaction can be prepared,
 178 *         committed, freed, or aborted (freeing and aborting an open
 179 *         transaction are equivalent).
 180 *
 181 * PREPARED: ref_transaction_prepare(), which locks all of the
 182 *         references involved in the update and checks that the
 183 *         update has no errors, has been called successfully for the
 184 *         transaction. A PREPARED transaction can be committed or
 185 *         aborted.
 186 *
 187 * CLOSED: The transaction is no longer active. A transaction becomes
 188 *         CLOSED if there is a failure while building the transaction
 189 *         or if a transaction is committed or aborted. A CLOSED
 190 *         transaction can only be freed.
 191 */
 192enum ref_transaction_state {
 193        REF_TRANSACTION_OPEN     = 0,
 194        REF_TRANSACTION_PREPARED = 1,
 195        REF_TRANSACTION_CLOSED   = 2
 196};
 197
 198/*
 199 * Data structure for holding a reference transaction, which can
 200 * consist of checks and updates to multiple references, carried out
 201 * as atomically as possible.  This structure is opaque to callers.
 202 */
 203struct ref_transaction {
 204        struct ref_store *ref_store;
 205        struct ref_update **updates;
 206        size_t alloc;
 207        size_t nr;
 208        enum ref_transaction_state state;
 209        void *backend_data;
 210};
 211
 212/*
 213 * Check for entries in extras that are within the specified
 214 * directory, where dirname is a reference directory name including
 215 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 216 * conflicting references that are found in skip. If there is a
 217 * conflicting reference, return its name.
 218 *
 219 * extras and skip must be sorted lists of reference names. Either one
 220 * can be NULL, signifying the empty list.
 221 */
 222const char *find_descendant_ref(const char *dirname,
 223                                const struct string_list *extras,
 224                                const struct string_list *skip);
 225
 226/*
 227 * Check whether an attempt to rename old_refname to new_refname would
 228 * cause a D/F conflict with any existing reference (other than
 229 * possibly old_refname). If there would be a conflict, emit an error
 230 * message and return false; otherwise, return true.
 231 *
 232 * Note that this function is not safe against all races with other
 233 * processes (though rename_ref() catches some races that might get by
 234 * this check).
 235 */
 236int refs_rename_ref_available(struct ref_store *refs,
 237                              const char *old_refname,
 238                              const char *new_refname);
 239
 240/* We allow "recursive" symbolic refs. Only within reason, though */
 241#define SYMREF_MAXDEPTH 5
 242
 243/* Include broken references in a do_for_each_ref*() iteration: */
 244#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 245
 246/*
 247 * Reference iterators
 248 *
 249 * A reference iterator encapsulates the state of an in-progress
 250 * iteration over references. Create an instance of `struct
 251 * ref_iterator` via one of the functions in this module.
 252 *
 253 * A freshly-created ref_iterator doesn't yet point at a reference. To
 254 * advance the iterator, call ref_iterator_advance(). If successful,
 255 * this sets the iterator's refname, oid, and flags fields to describe
 256 * the next reference and returns ITER_OK. The data pointed at by
 257 * refname and oid belong to the iterator; if you want to retain them
 258 * after calling ref_iterator_advance() again or calling
 259 * ref_iterator_abort(), you must make a copy. When the iteration has
 260 * been exhausted, ref_iterator_advance() releases any resources
 261 * assocated with the iteration, frees the ref_iterator object, and
 262 * returns ITER_DONE. If you want to abort the iteration early, call
 263 * ref_iterator_abort(), which also frees the ref_iterator object and
 264 * any associated resources. If there was an internal error advancing
 265 * to the next entry, ref_iterator_advance() aborts the iteration,
 266 * frees the ref_iterator, and returns ITER_ERROR.
 267 *
 268 * The reference currently being looked at can be peeled by calling
 269 * ref_iterator_peel(). This function is often faster than peel_ref(),
 270 * so it should be preferred when iterating over references.
 271 *
 272 * Putting it all together, a typical iteration looks like this:
 273 *
 274 *     int ok;
 275 *     struct ref_iterator *iter = ...;
 276 *
 277 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 278 *             if (want_to_stop_iteration()) {
 279 *                     ok = ref_iterator_abort(iter);
 280 *                     break;
 281 *             }
 282 *
 283 *             // Access information about the current reference:
 284 *             if (!(iter->flags & REF_ISSYMREF))
 285 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 286 *
 287 *             // If you need to peel the reference:
 288 *             ref_iterator_peel(iter, &oid);
 289 *     }
 290 *
 291 *     if (ok != ITER_DONE)
 292 *             handle_error();
 293 */
 294struct ref_iterator {
 295        struct ref_iterator_vtable *vtable;
 296
 297        /*
 298         * Does this `ref_iterator` iterate over references in order
 299         * by refname?
 300         */
 301        unsigned int ordered : 1;
 302
 303        const char *refname;
 304        const struct object_id *oid;
 305        unsigned int flags;
 306};
 307
 308/*
 309 * Advance the iterator to the first or next item and return ITER_OK.
 310 * If the iteration is exhausted, free the resources associated with
 311 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 312 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 313 * call this function again after it has returned ITER_DONE or
 314 * ITER_ERROR.
 315 */
 316int ref_iterator_advance(struct ref_iterator *ref_iterator);
 317
 318/*
 319 * If possible, peel the reference currently being viewed by the
 320 * iterator. Return 0 on success.
 321 */
 322int ref_iterator_peel(struct ref_iterator *ref_iterator,
 323                      struct object_id *peeled);
 324
 325/*
 326 * End the iteration before it has been exhausted, freeing the
 327 * reference iterator and any associated resources and returning
 328 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 329 */
 330int ref_iterator_abort(struct ref_iterator *ref_iterator);
 331
 332/*
 333 * An iterator over nothing (its first ref_iterator_advance() call
 334 * returns ITER_DONE).
 335 */
 336struct ref_iterator *empty_ref_iterator_begin(void);
 337
 338/*
 339 * Return true iff ref_iterator is an empty_ref_iterator.
 340 */
 341int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 342
 343/*
 344 * Return an iterator that goes over each reference in `refs` for
 345 * which the refname begins with prefix. If trim is non-zero, then
 346 * trim that many characters off the beginning of each refname. flags
 347 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 348 * the iteration. The output is ordered by refname.
 349 */
 350struct ref_iterator *refs_ref_iterator_begin(
 351                struct ref_store *refs,
 352                const char *prefix, int trim, int flags);
 353
 354/*
 355 * A callback function used to instruct merge_ref_iterator how to
 356 * interleave the entries from iter0 and iter1. The function should
 357 * return one of the constants defined in enum iterator_selection. It
 358 * must not advance either of the iterators itself.
 359 *
 360 * The function must be prepared to handle the case that iter0 and/or
 361 * iter1 is NULL, which indicates that the corresponding sub-iterator
 362 * has been exhausted. Its return value must be consistent with the
 363 * current states of the iterators; e.g., it must not return
 364 * ITER_SKIP_1 if iter1 has already been exhausted.
 365 */
 366typedef enum iterator_selection ref_iterator_select_fn(
 367                struct ref_iterator *iter0, struct ref_iterator *iter1,
 368                void *cb_data);
 369
 370/*
 371 * Iterate over the entries from iter0 and iter1, with the values
 372 * interleaved as directed by the select function. The iterator takes
 373 * ownership of iter0 and iter1 and frees them when the iteration is
 374 * over. A derived class should set `ordered` to 1 or 0 based on
 375 * whether it generates its output in order by reference name.
 376 */
 377struct ref_iterator *merge_ref_iterator_begin(
 378                int ordered,
 379                struct ref_iterator *iter0, struct ref_iterator *iter1,
 380                ref_iterator_select_fn *select, void *cb_data);
 381
 382/*
 383 * An iterator consisting of the union of the entries from front and
 384 * back. If there are entries common to the two sub-iterators, use the
 385 * one from front. Each iterator must iterate over its entries in
 386 * strcmp() order by refname for this to work.
 387 *
 388 * The new iterator takes ownership of its arguments and frees them
 389 * when the iteration is over. As a convenience to callers, if front
 390 * or back is an empty_ref_iterator, then abort that one immediately
 391 * and return the other iterator directly, without wrapping it.
 392 */
 393struct ref_iterator *overlay_ref_iterator_begin(
 394                struct ref_iterator *front, struct ref_iterator *back);
 395
 396/*
 397 * Wrap iter0, only letting through the references whose names start
 398 * with prefix. If trim is set, set iter->refname to the name of the
 399 * reference with that many characters trimmed off the front;
 400 * otherwise set it to the full refname. The new iterator takes over
 401 * ownership of iter0 and frees it when iteration is over. It makes
 402 * its own copy of prefix.
 403 *
 404 * As an convenience to callers, if prefix is the empty string and
 405 * trim is zero, this function returns iter0 directly, without
 406 * wrapping it.
 407 *
 408 * The resulting ref_iterator is ordered if iter0 is.
 409 */
 410struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 411                                               const char *prefix,
 412                                               int trim);
 413
 414/* Internal implementation of reference iteration: */
 415
 416/*
 417 * Base class constructor for ref_iterators. Initialize the
 418 * ref_iterator part of iter, setting its vtable pointer as specified.
 419 * `ordered` should be set to 1 if the iterator will iterate over
 420 * references in order by refname; otherwise it should be set to 0.
 421 * This is meant to be called only by the initializers of derived
 422 * classes.
 423 */
 424void base_ref_iterator_init(struct ref_iterator *iter,
 425                            struct ref_iterator_vtable *vtable,
 426                            int ordered);
 427
 428/*
 429 * Base class destructor for ref_iterators. Destroy the ref_iterator
 430 * part of iter and shallow-free the object. This is meant to be
 431 * called only by the destructors of derived classes.
 432 */
 433void base_ref_iterator_free(struct ref_iterator *iter);
 434
 435/* Virtual function declarations for ref_iterators: */
 436
 437typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 438
 439typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 440                                 struct object_id *peeled);
 441
 442/*
 443 * Implementations of this function should free any resources specific
 444 * to the derived class, then call base_ref_iterator_free() to clean
 445 * up and free the ref_iterator object.
 446 */
 447typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 448
 449struct ref_iterator_vtable {
 450        ref_iterator_advance_fn *advance;
 451        ref_iterator_peel_fn *peel;
 452        ref_iterator_abort_fn *abort;
 453};
 454
 455/*
 456 * current_ref_iter is a performance hack: when iterating over
 457 * references using the for_each_ref*() functions, current_ref_iter is
 458 * set to the reference iterator before calling the callback function.
 459 * If the callback function calls peel_ref(), then peel_ref() first
 460 * checks whether the reference to be peeled is the one referred to by
 461 * the iterator (it usually is) and if so, asks the iterator for the
 462 * peeled version of the reference if it is available. This avoids a
 463 * refname lookup in a common case. current_ref_iter is set to NULL
 464 * when the iteration is over.
 465 */
 466extern struct ref_iterator *current_ref_iter;
 467
 468/*
 469 * The common backend for the for_each_*ref* functions. Call fn for
 470 * each reference in iter. If the iterator itself ever returns
 471 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 472 * the iteration and return that value. Otherwise, return 0. In any
 473 * case, free the iterator when done. This function is basically an
 474 * adapter between the callback style of reference iteration and the
 475 * iterator style.
 476 */
 477int do_for_each_ref_iterator(struct ref_iterator *iter,
 478                             each_ref_fn fn, void *cb_data);
 479
 480/*
 481 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 482 * Normally this will be used with a files ref_store, since that's
 483 * where all reference backends will presumably store their
 484 * per-worktree refs.
 485 */
 486#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 487
 488struct ref_store;
 489
 490/* refs backends */
 491
 492/* ref_store_init flags */
 493#define REF_STORE_READ          (1 << 0)
 494#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 495#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 496#define REF_STORE_MAIN          (1 << 3)
 497#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 498                                 REF_STORE_WRITE | \
 499                                 REF_STORE_ODB | \
 500                                 REF_STORE_MAIN)
 501
 502/*
 503 * Initialize the ref_store for the specified gitdir. These functions
 504 * should call base_ref_store_init() to initialize the shared part of
 505 * the ref_store and to record the ref_store for later lookup.
 506 */
 507typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 508                                            unsigned int flags);
 509
 510typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 511
 512typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 513                                       struct ref_transaction *transaction,
 514                                       struct strbuf *err);
 515
 516typedef int ref_transaction_finish_fn(struct ref_store *refs,
 517                                      struct ref_transaction *transaction,
 518                                      struct strbuf *err);
 519
 520typedef int ref_transaction_abort_fn(struct ref_store *refs,
 521                                     struct ref_transaction *transaction,
 522                                     struct strbuf *err);
 523
 524typedef int ref_transaction_commit_fn(struct ref_store *refs,
 525                                      struct ref_transaction *transaction,
 526                                      struct strbuf *err);
 527
 528typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 529typedef int create_symref_fn(struct ref_store *ref_store,
 530                             const char *ref_target,
 531                             const char *refs_heads_master,
 532                             const char *logmsg);
 533typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 534                           struct string_list *refnames, unsigned int flags);
 535typedef int rename_ref_fn(struct ref_store *ref_store,
 536                          const char *oldref, const char *newref,
 537                          const char *logmsg);
 538typedef int copy_ref_fn(struct ref_store *ref_store,
 539                          const char *oldref, const char *newref,
 540                          const char *logmsg);
 541
 542/*
 543 * Iterate over the references in `ref_store` whose names start with
 544 * `prefix`. `prefix` is matched as a literal string, without regard
 545 * for path separators. If prefix is NULL or the empty string, iterate
 546 * over all references in `ref_store`. The output is ordered by
 547 * refname.
 548 */
 549typedef struct ref_iterator *ref_iterator_begin_fn(
 550                struct ref_store *ref_store,
 551                const char *prefix, unsigned int flags);
 552
 553/* reflog functions */
 554
 555/*
 556 * Iterate over the references in the specified ref_store that have a
 557 * reflog. The refs are iterated over in arbitrary order.
 558 */
 559typedef struct ref_iterator *reflog_iterator_begin_fn(
 560                struct ref_store *ref_store);
 561
 562typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 563                                   const char *refname,
 564                                   each_reflog_ent_fn fn,
 565                                   void *cb_data);
 566typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 567                                           const char *refname,
 568                                           each_reflog_ent_fn fn,
 569                                           void *cb_data);
 570typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 571typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 572                             int force_create, struct strbuf *err);
 573typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 574typedef int reflog_expire_fn(struct ref_store *ref_store,
 575                             const char *refname, const struct object_id *oid,
 576                             unsigned int flags,
 577                             reflog_expiry_prepare_fn prepare_fn,
 578                             reflog_expiry_should_prune_fn should_prune_fn,
 579                             reflog_expiry_cleanup_fn cleanup_fn,
 580                             void *policy_cb_data);
 581
 582/*
 583 * Read a reference from the specified reference store, non-recursively.
 584 * Set type to describe the reference, and:
 585 *
 586 * - If refname is the name of a normal reference, fill in oid
 587 *   (leaving referent unchanged).
 588 *
 589 * - If refname is the name of a symbolic reference, write the full
 590 *   name of the reference to which it refers (e.g.
 591 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 592 *   type (leaving oid unchanged). The caller is responsible for
 593 *   validating that referent is a valid reference name.
 594 *
 595 * WARNING: refname might be used as part of a filename, so it is
 596 * important from a security standpoint that it be safe in the sense
 597 * of refname_is_safe(). Moreover, for symrefs this function sets
 598 * referent to whatever the repository says, which might not be a
 599 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 600 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 601 *
 602 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 603 * and return -1. If the ref exists but is neither a symbolic ref nor
 604 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
 605 * EINVAL, and return -1. If there is another error reading the ref,
 606 * set errno appropriately and return -1.
 607 *
 608 * Backend-specific flags might be set in type as well, regardless of
 609 * outcome.
 610 *
 611 * It is OK for refname to point into referent. If so:
 612 *
 613 * - if the function succeeds with REF_ISSYMREF, referent will be
 614 *   overwritten and the memory formerly pointed to by it might be
 615 *   changed or even freed.
 616 *
 617 * - in all other cases, referent will be untouched, and therefore
 618 *   refname will still be valid and unchanged.
 619 */
 620typedef int read_raw_ref_fn(struct ref_store *ref_store,
 621                            const char *refname, struct object_id *oid,
 622                            struct strbuf *referent, unsigned int *type);
 623
 624struct ref_storage_be {
 625        struct ref_storage_be *next;
 626        const char *name;
 627        ref_store_init_fn *init;
 628        ref_init_db_fn *init_db;
 629
 630        ref_transaction_prepare_fn *transaction_prepare;
 631        ref_transaction_finish_fn *transaction_finish;
 632        ref_transaction_abort_fn *transaction_abort;
 633        ref_transaction_commit_fn *initial_transaction_commit;
 634
 635        pack_refs_fn *pack_refs;
 636        create_symref_fn *create_symref;
 637        delete_refs_fn *delete_refs;
 638        rename_ref_fn *rename_ref;
 639        copy_ref_fn *copy_ref;
 640
 641        ref_iterator_begin_fn *iterator_begin;
 642        read_raw_ref_fn *read_raw_ref;
 643
 644        reflog_iterator_begin_fn *reflog_iterator_begin;
 645        for_each_reflog_ent_fn *for_each_reflog_ent;
 646        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 647        reflog_exists_fn *reflog_exists;
 648        create_reflog_fn *create_reflog;
 649        delete_reflog_fn *delete_reflog;
 650        reflog_expire_fn *reflog_expire;
 651};
 652
 653extern struct ref_storage_be refs_be_files;
 654extern struct ref_storage_be refs_be_packed;
 655
 656/*
 657 * A representation of the reference store for the main repository or
 658 * a submodule. The ref_store instances for submodules are kept in a
 659 * linked list.
 660 */
 661struct ref_store {
 662        /* The backend describing this ref_store's storage scheme: */
 663        const struct ref_storage_be *be;
 664};
 665
 666/*
 667 * Fill in the generic part of refs and add it to our collection of
 668 * reference stores.
 669 */
 670void base_ref_store_init(struct ref_store *refs,
 671                         const struct ref_storage_be *be);
 672
 673#endif /* REFS_REFS_INTERNAL_H */