e83f5e81363a9eadef850a89ada36551ad29b797
   1#include "cache.h"
   2#include "config.h"
   3#include "notes.h"
   4#include "blob.h"
   5#include "tree.h"
   6#include "utf8.h"
   7#include "strbuf.h"
   8#include "tree-walk.h"
   9#include "string-list.h"
  10#include "refs.h"
  11
  12/*
  13 * Use a non-balancing simple 16-tree structure with struct int_node as
  14 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
  15 * 16-array of pointers to its children.
  16 * The bottom 2 bits of each pointer is used to identify the pointer type
  17 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
  18 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
  19 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
  20 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
  21 *
  22 * The root node is a statically allocated struct int_node.
  23 */
  24struct int_node {
  25        void *a[16];
  26};
  27
  28/*
  29 * Leaf nodes come in two variants, note entries and subtree entries,
  30 * distinguished by the LSb of the leaf node pointer (see above).
  31 * As a note entry, the key is the SHA1 of the referenced object, and the
  32 * value is the SHA1 of the note object.
  33 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
  34 * referenced object, using the last byte of the key to store the length of
  35 * the prefix. The value is the SHA1 of the tree object containing the notes
  36 * subtree.
  37 */
  38struct leaf_node {
  39        struct object_id key_oid;
  40        struct object_id val_oid;
  41};
  42
  43/*
  44 * A notes tree may contain entries that are not notes, and that do not follow
  45 * the naming conventions of notes. There are typically none/few of these, but
  46 * we still need to keep track of them. Keep a simple linked list sorted alpha-
  47 * betically on the non-note path. The list is populated when parsing tree
  48 * objects in load_subtree(), and the non-notes are correctly written back into
  49 * the tree objects produced by write_notes_tree().
  50 */
  51struct non_note {
  52        struct non_note *next; /* grounded (last->next == NULL) */
  53        char *path;
  54        unsigned int mode;
  55        struct object_id oid;
  56};
  57
  58#define PTR_TYPE_NULL     0
  59#define PTR_TYPE_INTERNAL 1
  60#define PTR_TYPE_NOTE     2
  61#define PTR_TYPE_SUBTREE  3
  62
  63#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
  64#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
  65#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
  66
  67#define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
  68
  69#define KEY_INDEX (GIT_SHA1_RAWSZ - 1)
  70#define FANOUT_PATH_SEPARATORS ((GIT_SHA1_HEXSZ / 2) - 1)
  71#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
  72        (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
  73
  74struct notes_tree default_notes_tree;
  75
  76static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
  77static struct notes_tree **display_notes_trees;
  78
  79static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
  80                struct int_node *node, unsigned int n);
  81
  82/*
  83 * Search the tree until the appropriate location for the given key is found:
  84 * 1. Start at the root node, with n = 0
  85 * 2. If a[0] at the current level is a matching subtree entry, unpack that
  86 *    subtree entry and remove it; restart search at the current level.
  87 * 3. Use the nth nibble of the key as an index into a:
  88 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
  89 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
  90 *      restart search at the current level.
  91 *    - Otherwise, we have found one of the following:
  92 *      - a subtree entry which does not match the key
  93 *      - a note entry which may or may not match the key
  94 *      - an unused leaf node (NULL)
  95 *      In any case, set *tree and *n, and return pointer to the tree location.
  96 */
  97static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
  98                unsigned char *n, const unsigned char *key_sha1)
  99{
 100        struct leaf_node *l;
 101        unsigned char i;
 102        void *p = (*tree)->a[0];
 103
 104        if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
 105                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 106                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
 107                        /* unpack tree and resume search */
 108                        (*tree)->a[0] = NULL;
 109                        load_subtree(t, l, *tree, *n);
 110                        free(l);
 111                        return note_tree_search(t, tree, n, key_sha1);
 112                }
 113        }
 114
 115        i = GET_NIBBLE(*n, key_sha1);
 116        p = (*tree)->a[i];
 117        switch (GET_PTR_TYPE(p)) {
 118        case PTR_TYPE_INTERNAL:
 119                *tree = CLR_PTR_TYPE(p);
 120                (*n)++;
 121                return note_tree_search(t, tree, n, key_sha1);
 122        case PTR_TYPE_SUBTREE:
 123                l = (struct leaf_node *) CLR_PTR_TYPE(p);
 124                if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
 125                        /* unpack tree and resume search */
 126                        (*tree)->a[i] = NULL;
 127                        load_subtree(t, l, *tree, *n);
 128                        free(l);
 129                        return note_tree_search(t, tree, n, key_sha1);
 130                }
 131                /* fall through */
 132        default:
 133                return &((*tree)->a[i]);
 134        }
 135}
 136
 137/*
 138 * To find a leaf_node:
 139 * Search to the tree location appropriate for the given key:
 140 * If a note entry with matching key, return the note entry, else return NULL.
 141 */
 142static struct leaf_node *note_tree_find(struct notes_tree *t,
 143                struct int_node *tree, unsigned char n,
 144                const unsigned char *key_sha1)
 145{
 146        void **p = note_tree_search(t, &tree, &n, key_sha1);
 147        if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 148                struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 149                if (!hashcmp(key_sha1, l->key_oid.hash))
 150                        return l;
 151        }
 152        return NULL;
 153}
 154
 155/*
 156 * How to consolidate an int_node:
 157 * If there are > 1 non-NULL entries, give up and return non-zero.
 158 * Otherwise replace the int_node at the given index in the given parent node
 159 * with the only NOTE entry (or a NULL entry if no entries) from the given
 160 * tree, and return 0.
 161 */
 162static int note_tree_consolidate(struct int_node *tree,
 163        struct int_node *parent, unsigned char index)
 164{
 165        unsigned int i;
 166        void *p = NULL;
 167
 168        assert(tree && parent);
 169        assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 170
 171        for (i = 0; i < 16; i++) {
 172                if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 173                        if (p) /* more than one entry */
 174                                return -2;
 175                        p = tree->a[i];
 176                }
 177        }
 178
 179        if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
 180                return -2;
 181        /* replace tree with p in parent[index] */
 182        parent->a[index] = p;
 183        free(tree);
 184        return 0;
 185}
 186
 187/*
 188 * To remove a leaf_node:
 189 * Search to the tree location appropriate for the given leaf_node's key:
 190 * - If location does not hold a matching entry, abort and do nothing.
 191 * - Copy the matching entry's value into the given entry.
 192 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 193 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 194 */
 195static void note_tree_remove(struct notes_tree *t,
 196                struct int_node *tree, unsigned char n,
 197                struct leaf_node *entry)
 198{
 199        struct leaf_node *l;
 200        struct int_node *parent_stack[GIT_SHA1_RAWSZ];
 201        unsigned char i, j;
 202        void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
 203
 204        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 205        if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 206                return; /* type mismatch, nothing to remove */
 207        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 208        if (oidcmp(&l->key_oid, &entry->key_oid))
 209                return; /* key mismatch, nothing to remove */
 210
 211        /* we have found a matching entry */
 212        oidcpy(&entry->val_oid, &l->val_oid);
 213        free(l);
 214        *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 215
 216        /* consolidate this tree level, and parent levels, if possible */
 217        if (!n)
 218                return; /* cannot consolidate top level */
 219        /* first, build stack of ancestors between root and current node */
 220        parent_stack[0] = t->root;
 221        for (i = 0; i < n; i++) {
 222                j = GET_NIBBLE(i, entry->key_oid.hash);
 223                parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 224        }
 225        assert(i == n && parent_stack[i] == tree);
 226        /* next, unwind stack until note_tree_consolidate() is done */
 227        while (i > 0 &&
 228               !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 229                                      GET_NIBBLE(i - 1, entry->key_oid.hash)))
 230                i--;
 231}
 232
 233/*
 234 * To insert a leaf_node:
 235 * Search to the tree location appropriate for the given leaf_node's key:
 236 * - If location is unused (NULL), store the tweaked pointer directly there
 237 * - If location holds a note entry that matches the note-to-be-inserted, then
 238 *   combine the two notes (by calling the given combine_notes function).
 239 * - If location holds a note entry that matches the subtree-to-be-inserted,
 240 *   then unpack the subtree-to-be-inserted into the location.
 241 * - If location holds a matching subtree entry, unpack the subtree at that
 242 *   location, and restart the insert operation from that level.
 243 * - Else, create a new int_node, holding both the node-at-location and the
 244 *   node-to-be-inserted, and store the new int_node into the location.
 245 */
 246static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
 247                unsigned char n, struct leaf_node *entry, unsigned char type,
 248                combine_notes_fn combine_notes)
 249{
 250        struct int_node *new_node;
 251        struct leaf_node *l;
 252        void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
 253        int ret = 0;
 254
 255        assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 256        l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 257        switch (GET_PTR_TYPE(*p)) {
 258        case PTR_TYPE_NULL:
 259                assert(!*p);
 260                if (is_null_oid(&entry->val_oid))
 261                        free(entry);
 262                else
 263                        *p = SET_PTR_TYPE(entry, type);
 264                return 0;
 265        case PTR_TYPE_NOTE:
 266                switch (type) {
 267                case PTR_TYPE_NOTE:
 268                        if (!oidcmp(&l->key_oid, &entry->key_oid)) {
 269                                /* skip concatenation if l == entry */
 270                                if (!oidcmp(&l->val_oid, &entry->val_oid))
 271                                        return 0;
 272
 273                                ret = combine_notes(l->val_oid.hash,
 274                                                    entry->val_oid.hash);
 275                                if (!ret && is_null_oid(&l->val_oid))
 276                                        note_tree_remove(t, tree, n, entry);
 277                                free(entry);
 278                                return ret;
 279                        }
 280                        break;
 281                case PTR_TYPE_SUBTREE:
 282                        if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
 283                                                    entry->key_oid.hash)) {
 284                                /* unpack 'entry' */
 285                                load_subtree(t, entry, tree, n);
 286                                free(entry);
 287                                return 0;
 288                        }
 289                        break;
 290                }
 291                break;
 292        case PTR_TYPE_SUBTREE:
 293                if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
 294                        /* unpack 'l' and restart insert */
 295                        *p = NULL;
 296                        load_subtree(t, l, tree, n);
 297                        free(l);
 298                        return note_tree_insert(t, tree, n, entry, type,
 299                                                combine_notes);
 300                }
 301                break;
 302        }
 303
 304        /* non-matching leaf_node */
 305        assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 306               GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 307        if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
 308                free(entry);
 309                return 0;
 310        }
 311        new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
 312        ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
 313                               combine_notes);
 314        if (ret)
 315                return ret;
 316        *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 317        return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
 318}
 319
 320/* Free the entire notes data contained in the given tree */
 321static void note_tree_free(struct int_node *tree)
 322{
 323        unsigned int i;
 324        for (i = 0; i < 16; i++) {
 325                void *p = tree->a[i];
 326                switch (GET_PTR_TYPE(p)) {
 327                case PTR_TYPE_INTERNAL:
 328                        note_tree_free(CLR_PTR_TYPE(p));
 329                        /* fall through */
 330                case PTR_TYPE_NOTE:
 331                case PTR_TYPE_SUBTREE:
 332                        free(CLR_PTR_TYPE(p));
 333                }
 334        }
 335}
 336
 337/*
 338 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 339 * - hex      - Partial SHA1 segment in ASCII hex format
 340 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 341 * - oid      - Partial SHA1 value is written here
 342 * Return 0 on success or -1 on error (invalid arguments or input not
 343 * in hex format).
 344 */
 345static int get_oid_hex_segment(const char *hex, unsigned int hex_len,
 346                unsigned char *oid)
 347{
 348        unsigned int i, len = hex_len >> 1;
 349        if (hex_len % 2 != 0)
 350                return -1;
 351        for (i = 0; i < len; i++) {
 352                unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 353                if (val & ~0xff)
 354                        return -1;
 355                *oid++ = val;
 356                hex += 2;
 357        }
 358        return 0;
 359}
 360
 361static int non_note_cmp(const struct non_note *a, const struct non_note *b)
 362{
 363        return strcmp(a->path, b->path);
 364}
 365
 366/* note: takes ownership of path string */
 367static void add_non_note(struct notes_tree *t, char *path,
 368                unsigned int mode, const unsigned char *sha1)
 369{
 370        struct non_note *p = t->prev_non_note, *n;
 371        n = (struct non_note *) xmalloc(sizeof(struct non_note));
 372        n->next = NULL;
 373        n->path = path;
 374        n->mode = mode;
 375        hashcpy(n->oid.hash, sha1);
 376        t->prev_non_note = n;
 377
 378        if (!t->first_non_note) {
 379                t->first_non_note = n;
 380                return;
 381        }
 382
 383        if (non_note_cmp(p, n) < 0)
 384                ; /* do nothing  */
 385        else if (non_note_cmp(t->first_non_note, n) <= 0)
 386                p = t->first_non_note;
 387        else {
 388                /* n sorts before t->first_non_note */
 389                n->next = t->first_non_note;
 390                t->first_non_note = n;
 391                return;
 392        }
 393
 394        /* n sorts equal or after p */
 395        while (p->next && non_note_cmp(p->next, n) <= 0)
 396                p = p->next;
 397
 398        if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
 399                assert(strcmp(p->path, n->path) == 0);
 400                p->mode = n->mode;
 401                oidcpy(&p->oid, &n->oid);
 402                free(n);
 403                t->prev_non_note = p;
 404                return;
 405        }
 406
 407        /* n sorts between p and p->next */
 408        n->next = p->next;
 409        p->next = n;
 410}
 411
 412static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 413                struct int_node *node, unsigned int n)
 414{
 415        struct object_id object_oid;
 416        unsigned int prefix_len;
 417        void *buf;
 418        struct tree_desc desc;
 419        struct name_entry entry;
 420
 421        buf = fill_tree_descriptor(&desc, subtree->val_oid.hash);
 422        if (!buf)
 423                die("Could not read %s for notes-index",
 424                     oid_to_hex(&subtree->val_oid));
 425
 426        prefix_len = subtree->key_oid.hash[KEY_INDEX];
 427        assert(prefix_len * 2 >= n);
 428        memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
 429        while (tree_entry(&desc, &entry)) {
 430                unsigned char type;
 431                struct leaf_node *l;
 432                int path_len = strlen(entry.path);
 433
 434                if (path_len == 2 * (GIT_SHA1_RAWSZ - prefix_len)) {
 435                        /* This is potentially the remainder of the SHA-1 */
 436
 437                        if (!S_ISREG(entry.mode))
 438                                /* notes must be blobs */
 439                                goto handle_non_note;
 440
 441                        if (get_oid_hex_segment(entry.path, path_len,
 442                                                object_oid.hash + prefix_len))
 443                                goto handle_non_note; /* entry.path is not a SHA1 */
 444
 445                        type = PTR_TYPE_NOTE;
 446                } else if (path_len == 2) {
 447                        /* This is potentially an internal node */
 448                        size_t len = prefix_len;
 449
 450                        if (!S_ISDIR(entry.mode))
 451                                /* internal nodes must be trees */
 452                                goto handle_non_note;
 453
 454                        if (get_oid_hex_segment(entry.path, 2,
 455                                                object_oid.hash + len++))
 456                                goto handle_non_note; /* entry.path is not a SHA1 */
 457
 458                        /*
 459                         * Pad the rest of the SHA-1 with zeros,
 460                         * except for the last byte, where we write
 461                         * the length:
 462                         */
 463                        memset(object_oid.hash + len, 0, GIT_SHA1_RAWSZ - len - 1);
 464                        object_oid.hash[KEY_INDEX] = (unsigned char)len;
 465
 466                        type = PTR_TYPE_SUBTREE;
 467                } else {
 468                        /* This can't be part of a note */
 469                        goto handle_non_note;
 470                }
 471
 472                l = xcalloc(1, sizeof(*l));
 473                oidcpy(&l->key_oid, &object_oid);
 474                oidcpy(&l->val_oid, entry.oid);
 475                if (note_tree_insert(t, node, n, l, type,
 476                                     combine_notes_concatenate))
 477                        die("Failed to load %s %s into notes tree "
 478                            "from %s",
 479                            type == PTR_TYPE_NOTE ? "note" : "subtree",
 480                            oid_to_hex(&l->key_oid), t->ref);
 481
 482                continue;
 483
 484handle_non_note:
 485                /*
 486                 * Determine full path for this non-note entry. The
 487                 * filename is already found in entry.path, but the
 488                 * directory part of the path must be deduced from the
 489                 * subtree containing this entry based on our
 490                 * knowledge that the overall notes tree follows a
 491                 * strict byte-based progressive fanout structure
 492                 * (i.e. using 2/38, 2/2/36, etc. fanouts).
 493                 */
 494                {
 495                        struct strbuf non_note_path = STRBUF_INIT;
 496                        const char *q = oid_to_hex(&subtree->key_oid);
 497                        int i;
 498                        for (i = 0; i < prefix_len; i++) {
 499                                strbuf_addch(&non_note_path, *q++);
 500                                strbuf_addch(&non_note_path, *q++);
 501                                strbuf_addch(&non_note_path, '/');
 502                        }
 503                        strbuf_addstr(&non_note_path, entry.path);
 504                        add_non_note(t, strbuf_detach(&non_note_path, NULL),
 505                                     entry.mode, entry.oid->hash);
 506                }
 507        }
 508        free(buf);
 509}
 510
 511/*
 512 * Determine optimal on-disk fanout for this part of the notes tree
 513 *
 514 * Given a (sub)tree and the level in the internal tree structure, determine
 515 * whether or not the given existing fanout should be expanded for this
 516 * (sub)tree.
 517 *
 518 * Values of the 'fanout' variable:
 519 * - 0: No fanout (all notes are stored directly in the root notes tree)
 520 * - 1: 2/38 fanout
 521 * - 2: 2/2/36 fanout
 522 * - 3: 2/2/2/34 fanout
 523 * etc.
 524 */
 525static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 526                unsigned char fanout)
 527{
 528        /*
 529         * The following is a simple heuristic that works well in practice:
 530         * For each even-numbered 16-tree level (remember that each on-disk
 531         * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 532         * entries at that tree level. If all of them are either int_nodes or
 533         * subtree entries, then there are likely plenty of notes below this
 534         * level, so we return an incremented fanout.
 535         */
 536        unsigned int i;
 537        if ((n % 2) || (n > 2 * fanout))
 538                return fanout;
 539        for (i = 0; i < 16; i++) {
 540                switch (GET_PTR_TYPE(tree->a[i])) {
 541                case PTR_TYPE_SUBTREE:
 542                case PTR_TYPE_INTERNAL:
 543                        continue;
 544                default:
 545                        return fanout;
 546                }
 547        }
 548        return fanout + 1;
 549}
 550
 551/* hex SHA1 + 19 * '/' + NUL */
 552#define FANOUT_PATH_MAX GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS + 1
 553
 554static void construct_path_with_fanout(const unsigned char *sha1,
 555                unsigned char fanout, char *path)
 556{
 557        unsigned int i = 0, j = 0;
 558        const char *hex_sha1 = sha1_to_hex(sha1);
 559        assert(fanout < GIT_SHA1_RAWSZ);
 560        while (fanout) {
 561                path[i++] = hex_sha1[j++];
 562                path[i++] = hex_sha1[j++];
 563                path[i++] = '/';
 564                fanout--;
 565        }
 566        xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
 567}
 568
 569static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
 570                unsigned char n, unsigned char fanout, int flags,
 571                each_note_fn fn, void *cb_data)
 572{
 573        unsigned int i;
 574        void *p;
 575        int ret = 0;
 576        struct leaf_node *l;
 577        static char path[FANOUT_PATH_MAX];
 578
 579        fanout = determine_fanout(tree, n, fanout);
 580        for (i = 0; i < 16; i++) {
 581redo:
 582                p = tree->a[i];
 583                switch (GET_PTR_TYPE(p)) {
 584                case PTR_TYPE_INTERNAL:
 585                        /* recurse into int_node */
 586                        ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
 587                                fanout, flags, fn, cb_data);
 588                        break;
 589                case PTR_TYPE_SUBTREE:
 590                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 591                        /*
 592                         * Subtree entries in the note tree represent parts of
 593                         * the note tree that have not yet been explored. There
 594                         * is a direct relationship between subtree entries at
 595                         * level 'n' in the tree, and the 'fanout' variable:
 596                         * Subtree entries at level 'n <= 2 * fanout' should be
 597                         * preserved, since they correspond exactly to a fanout
 598                         * directory in the on-disk structure. However, subtree
 599                         * entries at level 'n > 2 * fanout' should NOT be
 600                         * preserved, but rather consolidated into the above
 601                         * notes tree level. We achieve this by unconditionally
 602                         * unpacking subtree entries that exist below the
 603                         * threshold level at 'n = 2 * fanout'.
 604                         */
 605                        if (n <= 2 * fanout &&
 606                            flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 607                                /* invoke callback with subtree */
 608                                unsigned int path_len =
 609                                        l->key_oid.hash[KEY_INDEX] * 2 + fanout;
 610                                assert(path_len < FANOUT_PATH_MAX - 1);
 611                                construct_path_with_fanout(l->key_oid.hash,
 612                                                           fanout,
 613                                                           path);
 614                                /* Create trailing slash, if needed */
 615                                if (path[path_len - 1] != '/')
 616                                        path[path_len++] = '/';
 617                                path[path_len] = '\0';
 618                                ret = fn(&l->key_oid, &l->val_oid,
 619                                         path,
 620                                         cb_data);
 621                        }
 622                        if (n > fanout * 2 ||
 623                            !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 624                                /* unpack subtree and resume traversal */
 625                                tree->a[i] = NULL;
 626                                load_subtree(t, l, tree, n);
 627                                free(l);
 628                                goto redo;
 629                        }
 630                        break;
 631                case PTR_TYPE_NOTE:
 632                        l = (struct leaf_node *) CLR_PTR_TYPE(p);
 633                        construct_path_with_fanout(l->key_oid.hash, fanout,
 634                                                   path);
 635                        ret = fn(&l->key_oid, &l->val_oid, path,
 636                                 cb_data);
 637                        break;
 638                }
 639                if (ret)
 640                        return ret;
 641        }
 642        return 0;
 643}
 644
 645struct tree_write_stack {
 646        struct tree_write_stack *next;
 647        struct strbuf buf;
 648        char path[2]; /* path to subtree in next, if any */
 649};
 650
 651static inline int matches_tree_write_stack(struct tree_write_stack *tws,
 652                const char *full_path)
 653{
 654        return  full_path[0] == tws->path[0] &&
 655                full_path[1] == tws->path[1] &&
 656                full_path[2] == '/';
 657}
 658
 659static void write_tree_entry(struct strbuf *buf, unsigned int mode,
 660                const char *path, unsigned int path_len, const
 661                unsigned char *sha1)
 662{
 663        strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
 664        strbuf_add(buf, sha1, GIT_SHA1_RAWSZ);
 665}
 666
 667static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
 668                const char *path)
 669{
 670        struct tree_write_stack *n;
 671        assert(!tws->next);
 672        assert(tws->path[0] == '\0' && tws->path[1] == '\0');
 673        n = (struct tree_write_stack *)
 674                xmalloc(sizeof(struct tree_write_stack));
 675        n->next = NULL;
 676        strbuf_init(&n->buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries per tree */
 677        n->path[0] = n->path[1] = '\0';
 678        tws->next = n;
 679        tws->path[0] = path[0];
 680        tws->path[1] = path[1];
 681}
 682
 683static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
 684{
 685        int ret;
 686        struct tree_write_stack *n = tws->next;
 687        struct object_id s;
 688        if (n) {
 689                ret = tree_write_stack_finish_subtree(n);
 690                if (ret)
 691                        return ret;
 692                ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s.hash);
 693                if (ret)
 694                        return ret;
 695                strbuf_release(&n->buf);
 696                free(n);
 697                tws->next = NULL;
 698                write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
 699                tws->path[0] = tws->path[1] = '\0';
 700        }
 701        return 0;
 702}
 703
 704static int write_each_note_helper(struct tree_write_stack *tws,
 705                const char *path, unsigned int mode,
 706                const struct object_id *oid)
 707{
 708        size_t path_len = strlen(path);
 709        unsigned int n = 0;
 710        int ret;
 711
 712        /* Determine common part of tree write stack */
 713        while (tws && 3 * n < path_len &&
 714               matches_tree_write_stack(tws, path + 3 * n)) {
 715                n++;
 716                tws = tws->next;
 717        }
 718
 719        /* tws point to last matching tree_write_stack entry */
 720        ret = tree_write_stack_finish_subtree(tws);
 721        if (ret)
 722                return ret;
 723
 724        /* Start subtrees needed to satisfy path */
 725        while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
 726                tree_write_stack_init_subtree(tws, path + 3 * n);
 727                n++;
 728                tws = tws->next;
 729        }
 730
 731        /* There should be no more directory components in the given path */
 732        assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 733
 734        /* Finally add given entry to the current tree object */
 735        write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
 736                         oid->hash);
 737
 738        return 0;
 739}
 740
 741struct write_each_note_data {
 742        struct tree_write_stack *root;
 743        struct non_note *next_non_note;
 744};
 745
 746static int write_each_non_note_until(const char *note_path,
 747                struct write_each_note_data *d)
 748{
 749        struct non_note *n = d->next_non_note;
 750        int cmp = 0, ret;
 751        while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
 752                if (note_path && cmp == 0)
 753                        ; /* do nothing, prefer note to non-note */
 754                else {
 755                        ret = write_each_note_helper(d->root, n->path, n->mode,
 756                                                     &n->oid);
 757                        if (ret)
 758                                return ret;
 759                }
 760                n = n->next;
 761        }
 762        d->next_non_note = n;
 763        return 0;
 764}
 765
 766static int write_each_note(const struct object_id *object_oid,
 767                const struct object_id *note_oid, char *note_path,
 768                void *cb_data)
 769{
 770        struct write_each_note_data *d =
 771                (struct write_each_note_data *) cb_data;
 772        size_t note_path_len = strlen(note_path);
 773        unsigned int mode = 0100644;
 774
 775        if (note_path[note_path_len - 1] == '/') {
 776                /* subtree entry */
 777                note_path_len--;
 778                note_path[note_path_len] = '\0';
 779                mode = 040000;
 780        }
 781        assert(note_path_len <= GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS);
 782
 783        /* Weave non-note entries into note entries */
 784        return  write_each_non_note_until(note_path, d) ||
 785                write_each_note_helper(d->root, note_path, mode, note_oid);
 786}
 787
 788struct note_delete_list {
 789        struct note_delete_list *next;
 790        const unsigned char *sha1;
 791};
 792
 793static int prune_notes_helper(const struct object_id *object_oid,
 794                const struct object_id *note_oid, char *note_path,
 795                void *cb_data)
 796{
 797        struct note_delete_list **l = (struct note_delete_list **) cb_data;
 798        struct note_delete_list *n;
 799
 800        if (has_object_file(object_oid))
 801                return 0; /* nothing to do for this note */
 802
 803        /* failed to find object => prune this note */
 804        n = (struct note_delete_list *) xmalloc(sizeof(*n));
 805        n->next = *l;
 806        n->sha1 = object_oid->hash;
 807        *l = n;
 808        return 0;
 809}
 810
 811int combine_notes_concatenate(unsigned char *cur_sha1,
 812                const unsigned char *new_sha1)
 813{
 814        char *cur_msg = NULL, *new_msg = NULL, *buf;
 815        unsigned long cur_len, new_len, buf_len;
 816        enum object_type cur_type, new_type;
 817        int ret;
 818
 819        /* read in both note blob objects */
 820        if (!is_null_sha1(new_sha1))
 821                new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 822        if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 823                free(new_msg);
 824                return 0;
 825        }
 826        if (!is_null_sha1(cur_sha1))
 827                cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 828        if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 829                free(cur_msg);
 830                free(new_msg);
 831                hashcpy(cur_sha1, new_sha1);
 832                return 0;
 833        }
 834
 835        /* we will separate the notes by two newlines anyway */
 836        if (cur_msg[cur_len - 1] == '\n')
 837                cur_len--;
 838
 839        /* concatenate cur_msg and new_msg into buf */
 840        buf_len = cur_len + 2 + new_len;
 841        buf = (char *) xmalloc(buf_len);
 842        memcpy(buf, cur_msg, cur_len);
 843        buf[cur_len] = '\n';
 844        buf[cur_len + 1] = '\n';
 845        memcpy(buf + cur_len + 2, new_msg, new_len);
 846        free(cur_msg);
 847        free(new_msg);
 848
 849        /* create a new blob object from buf */
 850        ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
 851        free(buf);
 852        return ret;
 853}
 854
 855int combine_notes_overwrite(unsigned char *cur_sha1,
 856                const unsigned char *new_sha1)
 857{
 858        hashcpy(cur_sha1, new_sha1);
 859        return 0;
 860}
 861
 862int combine_notes_ignore(unsigned char *cur_sha1,
 863                const unsigned char *new_sha1)
 864{
 865        return 0;
 866}
 867
 868/*
 869 * Add the lines from the named object to list, with trailing
 870 * newlines removed.
 871 */
 872static int string_list_add_note_lines(struct string_list *list,
 873                                      const unsigned char *sha1)
 874{
 875        char *data;
 876        unsigned long len;
 877        enum object_type t;
 878
 879        if (is_null_sha1(sha1))
 880                return 0;
 881
 882        /* read_sha1_file NUL-terminates */
 883        data = read_sha1_file(sha1, &t, &len);
 884        if (t != OBJ_BLOB || !data || !len) {
 885                free(data);
 886                return t != OBJ_BLOB || !data;
 887        }
 888
 889        /*
 890         * If the last line of the file is EOL-terminated, this will
 891         * add an empty string to the list.  But it will be removed
 892         * later, along with any empty strings that came from empty
 893         * lines within the file.
 894         */
 895        string_list_split(list, data, '\n', -1);
 896        free(data);
 897        return 0;
 898}
 899
 900static int string_list_join_lines_helper(struct string_list_item *item,
 901                                         void *cb_data)
 902{
 903        struct strbuf *buf = cb_data;
 904        strbuf_addstr(buf, item->string);
 905        strbuf_addch(buf, '\n');
 906        return 0;
 907}
 908
 909int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
 910                const unsigned char *new_sha1)
 911{
 912        struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
 913        struct strbuf buf = STRBUF_INIT;
 914        int ret = 1;
 915
 916        /* read both note blob objects into unique_lines */
 917        if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
 918                goto out;
 919        if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
 920                goto out;
 921        string_list_remove_empty_items(&sort_uniq_list, 0);
 922        string_list_sort(&sort_uniq_list);
 923        string_list_remove_duplicates(&sort_uniq_list, 0);
 924
 925        /* create a new blob object from sort_uniq_list */
 926        if (for_each_string_list(&sort_uniq_list,
 927                                 string_list_join_lines_helper, &buf))
 928                goto out;
 929
 930        ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
 931
 932out:
 933        strbuf_release(&buf);
 934        string_list_clear(&sort_uniq_list, 0);
 935        return ret;
 936}
 937
 938static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
 939                                   int flag, void *cb)
 940{
 941        struct string_list *refs = cb;
 942        if (!unsorted_string_list_has_string(refs, refname))
 943                string_list_append(refs, refname);
 944        return 0;
 945}
 946
 947/*
 948 * The list argument must have strdup_strings set on it.
 949 */
 950void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
 951{
 952        assert(list->strdup_strings);
 953        if (has_glob_specials(glob)) {
 954                for_each_glob_ref(string_list_add_one_ref, glob, list);
 955        } else {
 956                struct object_id oid;
 957                if (get_oid(glob, &oid))
 958                        warning("notes ref %s is invalid", glob);
 959                if (!unsorted_string_list_has_string(list, glob))
 960                        string_list_append(list, glob);
 961        }
 962}
 963
 964void string_list_add_refs_from_colon_sep(struct string_list *list,
 965                                         const char *globs)
 966{
 967        struct string_list split = STRING_LIST_INIT_NODUP;
 968        char *globs_copy = xstrdup(globs);
 969        int i;
 970
 971        string_list_split_in_place(&split, globs_copy, ':', -1);
 972        string_list_remove_empty_items(&split, 0);
 973
 974        for (i = 0; i < split.nr; i++)
 975                string_list_add_refs_by_glob(list, split.items[i].string);
 976
 977        string_list_clear(&split, 0);
 978        free(globs_copy);
 979}
 980
 981static int notes_display_config(const char *k, const char *v, void *cb)
 982{
 983        int *load_refs = cb;
 984
 985        if (*load_refs && !strcmp(k, "notes.displayref")) {
 986                if (!v)
 987                        config_error_nonbool(k);
 988                string_list_add_refs_by_glob(&display_notes_refs, v);
 989        }
 990
 991        return 0;
 992}
 993
 994const char *default_notes_ref(void)
 995{
 996        const char *notes_ref = NULL;
 997        if (!notes_ref)
 998                notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 999        if (!notes_ref)
1000                notes_ref = notes_ref_name; /* value of core.notesRef config */
1001        if (!notes_ref)
1002                notes_ref = GIT_NOTES_DEFAULT_REF;
1003        return notes_ref;
1004}
1005
1006void init_notes(struct notes_tree *t, const char *notes_ref,
1007                combine_notes_fn combine_notes, int flags)
1008{
1009        struct object_id oid, object_oid;
1010        unsigned mode;
1011        struct leaf_node root_tree;
1012
1013        if (!t)
1014                t = &default_notes_tree;
1015        assert(!t->initialized);
1016
1017        if (!notes_ref)
1018                notes_ref = default_notes_ref();
1019
1020        if (!combine_notes)
1021                combine_notes = combine_notes_concatenate;
1022
1023        t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1024        t->first_non_note = NULL;
1025        t->prev_non_note = NULL;
1026        t->ref = xstrdup_or_null(notes_ref);
1027        t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1028        t->combine_notes = combine_notes;
1029        t->initialized = 1;
1030        t->dirty = 0;
1031
1032        if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1033            get_sha1_treeish(notes_ref, object_oid.hash))
1034                return;
1035        if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1036                die("Cannot use notes ref %s", notes_ref);
1037        if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1038                die("Failed to read notes tree referenced by %s (%s)",
1039                    notes_ref, oid_to_hex(&object_oid));
1040
1041        oidclr(&root_tree.key_oid);
1042        oidcpy(&root_tree.val_oid, &oid);
1043        load_subtree(t, &root_tree, t->root, 0);
1044}
1045
1046struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1047{
1048        struct string_list_item *item;
1049        int counter = 0;
1050        struct notes_tree **trees;
1051        ALLOC_ARRAY(trees, refs->nr + 1);
1052        for_each_string_list_item(item, refs) {
1053                struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1054                init_notes(t, item->string, combine_notes_ignore, flags);
1055                trees[counter++] = t;
1056        }
1057        trees[counter] = NULL;
1058        return trees;
1059}
1060
1061void init_display_notes(struct display_notes_opt *opt)
1062{
1063        char *display_ref_env;
1064        int load_config_refs = 0;
1065        display_notes_refs.strdup_strings = 1;
1066
1067        assert(!display_notes_trees);
1068
1069        if (!opt || opt->use_default_notes > 0 ||
1070            (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1071                string_list_append(&display_notes_refs, default_notes_ref());
1072                display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1073                if (display_ref_env) {
1074                        string_list_add_refs_from_colon_sep(&display_notes_refs,
1075                                                            display_ref_env);
1076                        load_config_refs = 0;
1077                } else
1078                        load_config_refs = 1;
1079        }
1080
1081        git_config(notes_display_config, &load_config_refs);
1082
1083        if (opt) {
1084                struct string_list_item *item;
1085                for_each_string_list_item(item, &opt->extra_notes_refs)
1086                        string_list_add_refs_by_glob(&display_notes_refs,
1087                                                     item->string);
1088        }
1089
1090        display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1091        string_list_clear(&display_notes_refs, 0);
1092}
1093
1094int add_note(struct notes_tree *t, const struct object_id *object_oid,
1095                const struct object_id *note_oid, combine_notes_fn combine_notes)
1096{
1097        struct leaf_node *l;
1098
1099        if (!t)
1100                t = &default_notes_tree;
1101        assert(t->initialized);
1102        t->dirty = 1;
1103        if (!combine_notes)
1104                combine_notes = t->combine_notes;
1105        l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1106        oidcpy(&l->key_oid, object_oid);
1107        oidcpy(&l->val_oid, note_oid);
1108        return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1109}
1110
1111int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1112{
1113        struct leaf_node l;
1114
1115        if (!t)
1116                t = &default_notes_tree;
1117        assert(t->initialized);
1118        hashcpy(l.key_oid.hash, object_sha1);
1119        oidclr(&l.val_oid);
1120        note_tree_remove(t, t->root, 0, &l);
1121        if (is_null_oid(&l.val_oid)) /* no note was removed */
1122                return 1;
1123        t->dirty = 1;
1124        return 0;
1125}
1126
1127const struct object_id *get_note(struct notes_tree *t,
1128                const struct object_id *oid)
1129{
1130        struct leaf_node *found;
1131
1132        if (!t)
1133                t = &default_notes_tree;
1134        assert(t->initialized);
1135        found = note_tree_find(t, t->root, 0, oid->hash);
1136        return found ? &found->val_oid : NULL;
1137}
1138
1139int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1140                void *cb_data)
1141{
1142        if (!t)
1143                t = &default_notes_tree;
1144        assert(t->initialized);
1145        return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1146}
1147
1148int write_notes_tree(struct notes_tree *t, unsigned char *result)
1149{
1150        struct tree_write_stack root;
1151        struct write_each_note_data cb_data;
1152        int ret;
1153
1154        if (!t)
1155                t = &default_notes_tree;
1156        assert(t->initialized);
1157
1158        /* Prepare for traversal of current notes tree */
1159        root.next = NULL; /* last forward entry in list is grounded */
1160        strbuf_init(&root.buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries */
1161        root.path[0] = root.path[1] = '\0';
1162        cb_data.root = &root;
1163        cb_data.next_non_note = t->first_non_note;
1164
1165        /* Write tree objects representing current notes tree */
1166        ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1167                                FOR_EACH_NOTE_YIELD_SUBTREES,
1168                        write_each_note, &cb_data) ||
1169                write_each_non_note_until(NULL, &cb_data) ||
1170                tree_write_stack_finish_subtree(&root) ||
1171                write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1172        strbuf_release(&root.buf);
1173        return ret;
1174}
1175
1176void prune_notes(struct notes_tree *t, int flags)
1177{
1178        struct note_delete_list *l = NULL;
1179
1180        if (!t)
1181                t = &default_notes_tree;
1182        assert(t->initialized);
1183
1184        for_each_note(t, 0, prune_notes_helper, &l);
1185
1186        while (l) {
1187                if (flags & NOTES_PRUNE_VERBOSE)
1188                        printf("%s\n", sha1_to_hex(l->sha1));
1189                if (!(flags & NOTES_PRUNE_DRYRUN))
1190                        remove_note(t, l->sha1);
1191                l = l->next;
1192        }
1193}
1194
1195void free_notes(struct notes_tree *t)
1196{
1197        if (!t)
1198                t = &default_notes_tree;
1199        if (t->root)
1200                note_tree_free(t->root);
1201        free(t->root);
1202        while (t->first_non_note) {
1203                t->prev_non_note = t->first_non_note->next;
1204                free(t->first_non_note->path);
1205                free(t->first_non_note);
1206                t->first_non_note = t->prev_non_note;
1207        }
1208        free(t->ref);
1209        memset(t, 0, sizeof(struct notes_tree));
1210}
1211
1212/*
1213 * Fill the given strbuf with the notes associated with the given object.
1214 *
1215 * If the given notes_tree structure is not initialized, it will be auto-
1216 * initialized to the default value (see documentation for init_notes() above).
1217 * If the given notes_tree is NULL, the internal/default notes_tree will be
1218 * used instead.
1219 *
1220 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1221 * for human consumption.
1222 */
1223static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1224                        struct strbuf *sb, const char *output_encoding, int raw)
1225{
1226        static const char utf8[] = "utf-8";
1227        const struct object_id *oid;
1228        char *msg, *msg_p;
1229        unsigned long linelen, msglen;
1230        enum object_type type;
1231
1232        if (!t)
1233                t = &default_notes_tree;
1234        if (!t->initialized)
1235                init_notes(t, NULL, NULL, 0);
1236
1237        oid = get_note(t, object_oid);
1238        if (!oid)
1239                return;
1240
1241        if (!(msg = read_sha1_file(oid->hash, &type, &msglen)) || type != OBJ_BLOB) {
1242                free(msg);
1243                return;
1244        }
1245
1246        if (output_encoding && *output_encoding &&
1247            !is_encoding_utf8(output_encoding)) {
1248                char *reencoded = reencode_string(msg, output_encoding, utf8);
1249                if (reencoded) {
1250                        free(msg);
1251                        msg = reencoded;
1252                        msglen = strlen(msg);
1253                }
1254        }
1255
1256        /* we will end the annotation by a newline anyway */
1257        if (msglen && msg[msglen - 1] == '\n')
1258                msglen--;
1259
1260        if (!raw) {
1261                const char *ref = t->ref;
1262                if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1263                        strbuf_addstr(sb, "\nNotes:\n");
1264                } else {
1265                        if (starts_with(ref, "refs/"))
1266                                ref += 5;
1267                        if (starts_with(ref, "notes/"))
1268                                ref += 6;
1269                        strbuf_addf(sb, "\nNotes (%s):\n", ref);
1270                }
1271        }
1272
1273        for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1274                linelen = strchrnul(msg_p, '\n') - msg_p;
1275
1276                if (!raw)
1277                        strbuf_addstr(sb, "    ");
1278                strbuf_add(sb, msg_p, linelen);
1279                strbuf_addch(sb, '\n');
1280        }
1281
1282        free(msg);
1283}
1284
1285void format_display_notes(const struct object_id *object_oid,
1286                          struct strbuf *sb, const char *output_encoding, int raw)
1287{
1288        int i;
1289        assert(display_notes_trees);
1290        for (i = 0; display_notes_trees[i]; i++)
1291                format_note(display_notes_trees[i], object_oid, sb,
1292                            output_encoding, raw);
1293}
1294
1295int copy_note(struct notes_tree *t,
1296              const struct object_id *from_obj, const struct object_id *to_obj,
1297              int force, combine_notes_fn combine_notes)
1298{
1299        const struct object_id *note = get_note(t, from_obj);
1300        const struct object_id *existing_note = get_note(t, to_obj);
1301
1302        if (!force && existing_note)
1303                return 1;
1304
1305        if (note)
1306                return add_note(t, to_obj, note, combine_notes);
1307        else if (existing_note)
1308                return add_note(t, to_obj, &null_oid, combine_notes);
1309
1310        return 0;
1311}
1312
1313void expand_notes_ref(struct strbuf *sb)
1314{
1315        if (starts_with(sb->buf, "refs/notes/"))
1316                return; /* we're happy */
1317        else if (starts_with(sb->buf, "notes/"))
1318                strbuf_insert(sb, 0, "refs/", 5);
1319        else
1320                strbuf_insert(sb, 0, "refs/notes/", 11);
1321}
1322
1323void expand_loose_notes_ref(struct strbuf *sb)
1324{
1325        struct object_id object;
1326
1327        if (get_oid(sb->buf, &object)) {
1328                /* fallback to expand_notes_ref */
1329                expand_notes_ref(sb);
1330        }
1331}