eabd6f30cd7142b5c95e621a9e784c5f10833f9c
1#include "cache.h"
2#include "notes.h"
3#include "utf8.h"
4#include "strbuf.h"
5#include "tree-walk.h"
6
7/*
8 * Use a non-balancing simple 16-tree structure with struct int_node as
9 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
10 * 16-array of pointers to its children.
11 * The bottom 2 bits of each pointer is used to identify the pointer type
12 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
13 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
14 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
15 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
16 *
17 * The root node is a statically allocated struct int_node.
18 */
19struct int_node {
20 void *a[16];
21};
22
23/*
24 * Leaf nodes come in two variants, note entries and subtree entries,
25 * distinguished by the LSb of the leaf node pointer (see above).
26 * As a note entry, the key is the SHA1 of the referenced object, and the
27 * value is the SHA1 of the note object.
28 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
29 * referenced object, using the last byte of the key to store the length of
30 * the prefix. The value is the SHA1 of the tree object containing the notes
31 * subtree.
32 */
33struct leaf_node {
34 unsigned char key_sha1[20];
35 unsigned char val_sha1[20];
36};
37
38#define PTR_TYPE_NULL 0
39#define PTR_TYPE_INTERNAL 1
40#define PTR_TYPE_NOTE 2
41#define PTR_TYPE_SUBTREE 3
42
43#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
44#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
45#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
46
47#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
48
49#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
50 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
51
52static struct int_node root_node;
53
54static int initialized;
55
56static void load_subtree(struct leaf_node *subtree, struct int_node *node,
57 unsigned int n);
58
59/*
60 * Search the tree until the appropriate location for the given key is found:
61 * 1. Start at the root node, with n = 0
62 * 2. If a[0] at the current level is a matching subtree entry, unpack that
63 * subtree entry and remove it; restart search at the current level.
64 * 3. Use the nth nibble of the key as an index into a:
65 * - If a[n] is an int_node, recurse from #2 into that node and increment n
66 * - If a matching subtree entry, unpack that subtree entry (and remove it);
67 * restart search at the current level.
68 * - Otherwise, we have found one of the following:
69 * - a subtree entry which does not match the key
70 * - a note entry which may or may not match the key
71 * - an unused leaf node (NULL)
72 * In any case, set *tree and *n, and return pointer to the tree location.
73 */
74static void **note_tree_search(struct int_node **tree,
75 unsigned char *n, const unsigned char *key_sha1)
76{
77 struct leaf_node *l;
78 unsigned char i;
79 void *p = (*tree)->a[0];
80
81 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
82 l = (struct leaf_node *) CLR_PTR_TYPE(p);
83 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
84 /* unpack tree and resume search */
85 (*tree)->a[0] = NULL;
86 load_subtree(l, *tree, *n);
87 free(l);
88 return note_tree_search(tree, n, key_sha1);
89 }
90 }
91
92 i = GET_NIBBLE(*n, key_sha1);
93 p = (*tree)->a[i];
94 switch (GET_PTR_TYPE(p)) {
95 case PTR_TYPE_INTERNAL:
96 *tree = CLR_PTR_TYPE(p);
97 (*n)++;
98 return note_tree_search(tree, n, key_sha1);
99 case PTR_TYPE_SUBTREE:
100 l = (struct leaf_node *) CLR_PTR_TYPE(p);
101 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
102 /* unpack tree and resume search */
103 (*tree)->a[i] = NULL;
104 load_subtree(l, *tree, *n);
105 free(l);
106 return note_tree_search(tree, n, key_sha1);
107 }
108 /* fall through */
109 default:
110 return &((*tree)->a[i]);
111 }
112}
113
114/*
115 * To find a leaf_node:
116 * Search to the tree location appropriate for the given key:
117 * If a note entry with matching key, return the note entry, else return NULL.
118 */
119static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
120 const unsigned char *key_sha1)
121{
122 void **p = note_tree_search(&tree, &n, key_sha1);
123 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
124 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
125 if (!hashcmp(key_sha1, l->key_sha1))
126 return l;
127 }
128 return NULL;
129}
130
131/* Create a new blob object by concatenating the two given blob objects */
132static int concatenate_notes(unsigned char *cur_sha1,
133 const unsigned char *new_sha1)
134{
135 char *cur_msg, *new_msg, *buf;
136 unsigned long cur_len, new_len, buf_len;
137 enum object_type cur_type, new_type;
138 int ret;
139
140 /* read in both note blob objects */
141 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
142 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
143 free(new_msg);
144 return 0;
145 }
146 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
147 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
148 free(cur_msg);
149 free(new_msg);
150 hashcpy(cur_sha1, new_sha1);
151 return 0;
152 }
153
154 /* we will separate the notes by a newline anyway */
155 if (cur_msg[cur_len - 1] == '\n')
156 cur_len--;
157
158 /* concatenate cur_msg and new_msg into buf */
159 buf_len = cur_len + 1 + new_len;
160 buf = (char *) xmalloc(buf_len);
161 memcpy(buf, cur_msg, cur_len);
162 buf[cur_len] = '\n';
163 memcpy(buf + cur_len + 1, new_msg, new_len);
164
165 free(cur_msg);
166 free(new_msg);
167
168 /* create a new blob object from buf */
169 ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
170 free(buf);
171 return ret;
172}
173
174/*
175 * To insert a leaf_node:
176 * Search to the tree location appropriate for the given leaf_node's key:
177 * - If location is unused (NULL), store the tweaked pointer directly there
178 * - If location holds a note entry that matches the note-to-be-inserted, then
179 * concatenate the two notes.
180 * - If location holds a note entry that matches the subtree-to-be-inserted,
181 * then unpack the subtree-to-be-inserted into the location.
182 * - If location holds a matching subtree entry, unpack the subtree at that
183 * location, and restart the insert operation from that level.
184 * - Else, create a new int_node, holding both the node-at-location and the
185 * node-to-be-inserted, and store the new int_node into the location.
186 */
187static void note_tree_insert(struct int_node *tree, unsigned char n,
188 struct leaf_node *entry, unsigned char type)
189{
190 struct int_node *new_node;
191 struct leaf_node *l;
192 void **p = note_tree_search(&tree, &n, entry->key_sha1);
193
194 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
195 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
196 switch (GET_PTR_TYPE(*p)) {
197 case PTR_TYPE_NULL:
198 assert(!*p);
199 *p = SET_PTR_TYPE(entry, type);
200 return;
201 case PTR_TYPE_NOTE:
202 switch (type) {
203 case PTR_TYPE_NOTE:
204 if (!hashcmp(l->key_sha1, entry->key_sha1)) {
205 /* skip concatenation if l == entry */
206 if (!hashcmp(l->val_sha1, entry->val_sha1))
207 return;
208
209 if (concatenate_notes(l->val_sha1,
210 entry->val_sha1))
211 die("failed to concatenate note %s "
212 "into note %s for object %s",
213 sha1_to_hex(entry->val_sha1),
214 sha1_to_hex(l->val_sha1),
215 sha1_to_hex(l->key_sha1));
216 free(entry);
217 return;
218 }
219 break;
220 case PTR_TYPE_SUBTREE:
221 if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
222 entry->key_sha1)) {
223 /* unpack 'entry' */
224 load_subtree(entry, tree, n);
225 free(entry);
226 return;
227 }
228 break;
229 }
230 break;
231 case PTR_TYPE_SUBTREE:
232 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
233 /* unpack 'l' and restart insert */
234 *p = NULL;
235 load_subtree(l, tree, n);
236 free(l);
237 note_tree_insert(tree, n, entry, type);
238 return;
239 }
240 break;
241 }
242
243 /* non-matching leaf_node */
244 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
245 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
246 new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
247 note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
248 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
249 note_tree_insert(new_node, n + 1, entry, type);
250}
251
252/*
253 * How to consolidate an int_node:
254 * If there are > 1 non-NULL entries, give up and return non-zero.
255 * Otherwise replace the int_node at the given index in the given parent node
256 * with the only entry (or a NULL entry if no entries) from the given tree,
257 * and return 0.
258 */
259static int note_tree_consolidate(struct int_node *tree,
260 struct int_node *parent, unsigned char index)
261{
262 unsigned int i;
263 void *p = NULL;
264
265 assert(tree && parent);
266 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
267
268 for (i = 0; i < 16; i++) {
269 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
270 if (p) /* more than one entry */
271 return -2;
272 p = tree->a[i];
273 }
274 }
275
276 /* replace tree with p in parent[index] */
277 parent->a[index] = p;
278 free(tree);
279 return 0;
280}
281
282/*
283 * To remove a leaf_node:
284 * Search to the tree location appropriate for the given leaf_node's key:
285 * - If location does not hold a matching entry, abort and do nothing.
286 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
287 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
288 */
289static void note_tree_remove(struct int_node *tree, unsigned char n,
290 struct leaf_node *entry)
291{
292 struct leaf_node *l;
293 struct int_node *parent_stack[20];
294 unsigned char i, j;
295 void **p = note_tree_search(&tree, &n, entry->key_sha1);
296
297 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
298 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
299 return; /* type mismatch, nothing to remove */
300 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
301 if (hashcmp(l->key_sha1, entry->key_sha1))
302 return; /* key mismatch, nothing to remove */
303
304 /* we have found a matching entry */
305 free(l);
306 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
307
308 /* consolidate this tree level, and parent levels, if possible */
309 if (!n)
310 return; /* cannot consolidate top level */
311 /* first, build stack of ancestors between root and current node */
312 parent_stack[0] = &root_node;
313 for (i = 0; i < n; i++) {
314 j = GET_NIBBLE(i, entry->key_sha1);
315 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
316 }
317 assert(i == n && parent_stack[i] == tree);
318 /* next, unwind stack until note_tree_consolidate() is done */
319 while (i > 0 &&
320 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
321 GET_NIBBLE(i - 1, entry->key_sha1)))
322 i--;
323}
324
325/* Free the entire notes data contained in the given tree */
326static void note_tree_free(struct int_node *tree)
327{
328 unsigned int i;
329 for (i = 0; i < 16; i++) {
330 void *p = tree->a[i];
331 switch (GET_PTR_TYPE(p)) {
332 case PTR_TYPE_INTERNAL:
333 note_tree_free(CLR_PTR_TYPE(p));
334 /* fall through */
335 case PTR_TYPE_NOTE:
336 case PTR_TYPE_SUBTREE:
337 free(CLR_PTR_TYPE(p));
338 }
339 }
340}
341
342/*
343 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
344 * - hex - Partial SHA1 segment in ASCII hex format
345 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
346 * - sha1 - Partial SHA1 value is written here
347 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
348 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
349 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
350 * Pads sha1 with NULs up to sha1_len (not included in returned length).
351 */
352static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
353 unsigned char *sha1, unsigned int sha1_len)
354{
355 unsigned int i, len = hex_len >> 1;
356 if (hex_len % 2 != 0 || len > sha1_len)
357 return -1;
358 for (i = 0; i < len; i++) {
359 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
360 if (val & ~0xff)
361 return -1;
362 *sha1++ = val;
363 hex += 2;
364 }
365 for (; i < sha1_len; i++)
366 *sha1++ = 0;
367 return len;
368}
369
370static void load_subtree(struct leaf_node *subtree, struct int_node *node,
371 unsigned int n)
372{
373 unsigned char object_sha1[20];
374 unsigned int prefix_len;
375 void *buf;
376 struct tree_desc desc;
377 struct name_entry entry;
378
379 buf = fill_tree_descriptor(&desc, subtree->val_sha1);
380 if (!buf)
381 die("Could not read %s for notes-index",
382 sha1_to_hex(subtree->val_sha1));
383
384 prefix_len = subtree->key_sha1[19];
385 assert(prefix_len * 2 >= n);
386 memcpy(object_sha1, subtree->key_sha1, prefix_len);
387 while (tree_entry(&desc, &entry)) {
388 int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
389 object_sha1 + prefix_len, 20 - prefix_len);
390 if (len < 0)
391 continue; /* entry.path is not a SHA1 sum. Skip */
392 len += prefix_len;
393
394 /*
395 * If object SHA1 is complete (len == 20), assume note object
396 * If object SHA1 is incomplete (len < 20), assume note subtree
397 */
398 if (len <= 20) {
399 unsigned char type = PTR_TYPE_NOTE;
400 struct leaf_node *l = (struct leaf_node *)
401 xcalloc(sizeof(struct leaf_node), 1);
402 hashcpy(l->key_sha1, object_sha1);
403 hashcpy(l->val_sha1, entry.sha1);
404 if (len < 20) {
405 if (!S_ISDIR(entry.mode))
406 continue; /* entry cannot be subtree */
407 l->key_sha1[19] = (unsigned char) len;
408 type = PTR_TYPE_SUBTREE;
409 }
410 note_tree_insert(node, n, l, type);
411 }
412 }
413 free(buf);
414}
415
416/*
417 * Determine optimal on-disk fanout for this part of the notes tree
418 *
419 * Given a (sub)tree and the level in the internal tree structure, determine
420 * whether or not the given existing fanout should be expanded for this
421 * (sub)tree.
422 *
423 * Values of the 'fanout' variable:
424 * - 0: No fanout (all notes are stored directly in the root notes tree)
425 * - 1: 2/38 fanout
426 * - 2: 2/2/36 fanout
427 * - 3: 2/2/2/34 fanout
428 * etc.
429 */
430static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
431 unsigned char fanout)
432{
433 /*
434 * The following is a simple heuristic that works well in practice:
435 * For each even-numbered 16-tree level (remember that each on-disk
436 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
437 * entries at that tree level. If all of them are either int_nodes or
438 * subtree entries, then there are likely plenty of notes below this
439 * level, so we return an incremented fanout.
440 */
441 unsigned int i;
442 if ((n % 2) || (n > 2 * fanout))
443 return fanout;
444 for (i = 0; i < 16; i++) {
445 switch (GET_PTR_TYPE(tree->a[i])) {
446 case PTR_TYPE_SUBTREE:
447 case PTR_TYPE_INTERNAL:
448 continue;
449 default:
450 return fanout;
451 }
452 }
453 return fanout + 1;
454}
455
456static void construct_path_with_fanout(const unsigned char *sha1,
457 unsigned char fanout, char *path)
458{
459 unsigned int i = 0, j = 0;
460 const char *hex_sha1 = sha1_to_hex(sha1);
461 assert(fanout < 20);
462 while (fanout) {
463 path[i++] = hex_sha1[j++];
464 path[i++] = hex_sha1[j++];
465 path[i++] = '/';
466 fanout--;
467 }
468 strcpy(path + i, hex_sha1 + j);
469}
470
471static int for_each_note_helper(struct int_node *tree, unsigned char n,
472 unsigned char fanout, int flags, each_note_fn fn,
473 void *cb_data)
474{
475 unsigned int i;
476 void *p;
477 int ret = 0;
478 struct leaf_node *l;
479 static char path[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */
480
481 fanout = determine_fanout(tree, n, fanout);
482 for (i = 0; i < 16; i++) {
483redo:
484 p = tree->a[i];
485 switch (GET_PTR_TYPE(p)) {
486 case PTR_TYPE_INTERNAL:
487 /* recurse into int_node */
488 ret = for_each_note_helper(CLR_PTR_TYPE(p), n + 1,
489 fanout, flags, fn, cb_data);
490 break;
491 case PTR_TYPE_SUBTREE:
492 l = (struct leaf_node *) CLR_PTR_TYPE(p);
493 /*
494 * Subtree entries in the note tree represent parts of
495 * the note tree that have not yet been explored. There
496 * is a direct relationship between subtree entries at
497 * level 'n' in the tree, and the 'fanout' variable:
498 * Subtree entries at level 'n <= 2 * fanout' should be
499 * preserved, since they correspond exactly to a fanout
500 * directory in the on-disk structure. However, subtree
501 * entries at level 'n > 2 * fanout' should NOT be
502 * preserved, but rather consolidated into the above
503 * notes tree level. We achieve this by unconditionally
504 * unpacking subtree entries that exist below the
505 * threshold level at 'n = 2 * fanout'.
506 */
507 if (n <= 2 * fanout &&
508 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
509 /* invoke callback with subtree */
510 unsigned int path_len =
511 l->key_sha1[19] * 2 + fanout;
512 assert(path_len < 40 + 19);
513 construct_path_with_fanout(l->key_sha1, fanout,
514 path);
515 /* Create trailing slash, if needed */
516 if (path[path_len - 1] != '/')
517 path[path_len++] = '/';
518 path[path_len] = '\0';
519 ret = fn(l->key_sha1, l->val_sha1, path,
520 cb_data);
521 }
522 if (n > fanout * 2 ||
523 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
524 /* unpack subtree and resume traversal */
525 tree->a[i] = NULL;
526 load_subtree(l, tree, n);
527 free(l);
528 goto redo;
529 }
530 break;
531 case PTR_TYPE_NOTE:
532 l = (struct leaf_node *) CLR_PTR_TYPE(p);
533 construct_path_with_fanout(l->key_sha1, fanout, path);
534 ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
535 break;
536 }
537 if (ret)
538 return ret;
539 }
540 return 0;
541}
542
543void init_notes(const char *notes_ref, int flags)
544{
545 unsigned char sha1[20], object_sha1[20];
546 unsigned mode;
547 struct leaf_node root_tree;
548
549 assert(!initialized);
550 initialized = 1;
551
552 if (!notes_ref)
553 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
554 if (!notes_ref)
555 notes_ref = notes_ref_name; /* value of core.notesRef config */
556 if (!notes_ref)
557 notes_ref = GIT_NOTES_DEFAULT_REF;
558
559 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
560 read_ref(notes_ref, object_sha1))
561 return;
562 if (get_tree_entry(object_sha1, "", sha1, &mode))
563 die("Failed to read notes tree referenced by %s (%s)",
564 notes_ref, object_sha1);
565
566 hashclr(root_tree.key_sha1);
567 hashcpy(root_tree.val_sha1, sha1);
568 load_subtree(&root_tree, &root_node, 0);
569}
570
571void add_note(const unsigned char *object_sha1, const unsigned char *note_sha1)
572{
573 struct leaf_node *l;
574
575 assert(initialized);
576 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
577 hashcpy(l->key_sha1, object_sha1);
578 hashcpy(l->val_sha1, note_sha1);
579 note_tree_insert(&root_node, 0, l, PTR_TYPE_NOTE);
580}
581
582void remove_note(const unsigned char *object_sha1)
583{
584 struct leaf_node l;
585
586 assert(initialized);
587 hashcpy(l.key_sha1, object_sha1);
588 hashclr(l.val_sha1);
589 return note_tree_remove(&root_node, 0, &l);
590}
591
592const unsigned char *get_note(const unsigned char *object_sha1)
593{
594 struct leaf_node *found;
595
596 assert(initialized);
597 found = note_tree_find(&root_node, 0, object_sha1);
598 return found ? found->val_sha1 : NULL;
599}
600
601int for_each_note(int flags, each_note_fn fn, void *cb_data)
602{
603 assert(initialized);
604 return for_each_note_helper(&root_node, 0, 0, flags, fn, cb_data);
605}
606
607void free_notes(void)
608{
609 note_tree_free(&root_node);
610 memset(&root_node, 0, sizeof(struct int_node));
611 initialized = 0;
612}
613
614void format_note(const unsigned char *object_sha1, struct strbuf *sb,
615 const char *output_encoding, int flags)
616{
617 static const char utf8[] = "utf-8";
618 const unsigned char *sha1;
619 char *msg, *msg_p;
620 unsigned long linelen, msglen;
621 enum object_type type;
622
623 if (!initialized)
624 init_notes(NULL, 0);
625
626 sha1 = get_note(object_sha1);
627 if (!sha1)
628 return;
629
630 if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
631 type != OBJ_BLOB) {
632 free(msg);
633 return;
634 }
635
636 if (output_encoding && *output_encoding &&
637 strcmp(utf8, output_encoding)) {
638 char *reencoded = reencode_string(msg, output_encoding, utf8);
639 if (reencoded) {
640 free(msg);
641 msg = reencoded;
642 msglen = strlen(msg);
643 }
644 }
645
646 /* we will end the annotation by a newline anyway */
647 if (msglen && msg[msglen - 1] == '\n')
648 msglen--;
649
650 if (flags & NOTES_SHOW_HEADER)
651 strbuf_addstr(sb, "\nNotes:\n");
652
653 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
654 linelen = strchrnul(msg_p, '\n') - msg_p;
655
656 if (flags & NOTES_INDENT)
657 strbuf_addstr(sb, " ");
658 strbuf_add(sb, msg_p, linelen);
659 strbuf_addch(sb, '\n');
660 }
661
662 free(msg);
663}